1 /*
2 * Prefix related functions.
3 * Copyright (C) 1997, 98, 99 Kunihiro Ishiguro
4 *
5 * This file is part of GNU Zebra.
6 *
7 * GNU Zebra is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
11 *
12 * GNU Zebra is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; see the file COPYING; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <zebra.h>
23
24 #include "prefix.h"
25 #include "ipaddr.h"
26 #include "vty.h"
27 #include "sockunion.h"
28 #include "memory.h"
29 #include "log.h"
30 #include "jhash.h"
31 #include "lib_errors.h"
32 #include "printfrr.h"
33
34 DEFINE_MTYPE_STATIC(LIB, PREFIX, "Prefix")
35 DEFINE_MTYPE_STATIC(LIB, PREFIX_FLOWSPEC, "Prefix Flowspec")
36
37 /* Maskbit. */
38 static const uint8_t maskbit[] = {0x00, 0x80, 0xc0, 0xe0, 0xf0,
39 0xf8, 0xfc, 0xfe, 0xff};
40
41 /* Number of bits in prefix type. */
42 #ifndef PNBBY
43 #define PNBBY 8
44 #endif /* PNBBY */
45
46 #define MASKBIT(offset) ((0xff << (PNBBY - (offset))) & 0xff)
47
is_zero_mac(const struct ethaddr * mac)48 int is_zero_mac(const struct ethaddr *mac)
49 {
50 int i = 0;
51
52 for (i = 0; i < ETH_ALEN; i++) {
53 if (mac->octet[i])
54 return 0;
55 }
56
57 return 1;
58 }
59
is_bcast_mac(const struct ethaddr * mac)60 bool is_bcast_mac(const struct ethaddr *mac)
61 {
62 int i = 0;
63
64 for (i = 0; i < ETH_ALEN; i++)
65 if (mac->octet[i] != 0xFF)
66 return false;
67
68 return true;
69 }
70
is_mcast_mac(const struct ethaddr * mac)71 bool is_mcast_mac(const struct ethaddr *mac)
72 {
73 if ((mac->octet[0] & 0x01) == 0x01)
74 return true;
75
76 return false;
77 }
78
prefix_bit(const uint8_t * prefix,const uint16_t bit_index)79 unsigned int prefix_bit(const uint8_t *prefix, const uint16_t bit_index)
80 {
81 unsigned int offset = bit_index / 8;
82 unsigned int shift = 7 - (bit_index % 8);
83
84 return (prefix[offset] >> shift) & 1;
85 }
86
str2family(const char * string)87 int str2family(const char *string)
88 {
89 if (!strcmp("ipv4", string))
90 return AF_INET;
91 else if (!strcmp("ipv6", string))
92 return AF_INET6;
93 else if (!strcmp("ethernet", string))
94 return AF_ETHERNET;
95 else if (!strcmp("evpn", string))
96 return AF_EVPN;
97 return -1;
98 }
99
family2str(int family)100 const char *family2str(int family)
101 {
102 switch (family) {
103 case AF_INET:
104 return "IPv4";
105 case AF_INET6:
106 return "IPv6";
107 case AF_ETHERNET:
108 return "Ethernet";
109 case AF_EVPN:
110 return "Evpn";
111 }
112 return "?";
113 }
114
115 /* Address Famiy Identifier to Address Family converter. */
afi2family(afi_t afi)116 int afi2family(afi_t afi)
117 {
118 if (afi == AFI_IP)
119 return AF_INET;
120 else if (afi == AFI_IP6)
121 return AF_INET6;
122 else if (afi == AFI_L2VPN)
123 return AF_ETHERNET;
124 /* NOTE: EVPN code should NOT use this interface. */
125 return 0;
126 }
127
family2afi(int family)128 afi_t family2afi(int family)
129 {
130 if (family == AF_INET)
131 return AFI_IP;
132 else if (family == AF_INET6)
133 return AFI_IP6;
134 else if (family == AF_ETHERNET || family == AF_EVPN)
135 return AFI_L2VPN;
136 return 0;
137 }
138
afi2str(afi_t afi)139 const char *afi2str(afi_t afi)
140 {
141 switch (afi) {
142 case AFI_IP:
143 return "IPv4";
144 case AFI_IP6:
145 return "IPv6";
146 case AFI_L2VPN:
147 return "l2vpn";
148 case AFI_MAX:
149 return "bad-value";
150 default:
151 break;
152 }
153 return NULL;
154 }
155
safi2str(safi_t safi)156 const char *safi2str(safi_t safi)
157 {
158 switch (safi) {
159 case SAFI_UNICAST:
160 return "unicast";
161 case SAFI_MULTICAST:
162 return "multicast";
163 case SAFI_MPLS_VPN:
164 return "vpn";
165 case SAFI_ENCAP:
166 return "encap";
167 case SAFI_EVPN:
168 return "evpn";
169 case SAFI_LABELED_UNICAST:
170 return "labeled-unicast";
171 case SAFI_FLOWSPEC:
172 return "flowspec";
173 default:
174 return "unknown";
175 }
176 }
177
178 /* If n includes p prefix then return 1 else return 0. */
prefix_match(const struct prefix * n,const struct prefix * p)179 int prefix_match(const struct prefix *n, const struct prefix *p)
180 {
181 int offset;
182 int shift;
183 const uint8_t *np, *pp;
184
185 /* If n's prefix is longer than p's one return 0. */
186 if (n->prefixlen > p->prefixlen)
187 return 0;
188
189 if (n->family == AF_FLOWSPEC) {
190 /* prefixlen is unused. look at fs prefix len */
191 if (n->u.prefix_flowspec.family !=
192 p->u.prefix_flowspec.family)
193 return 0;
194
195 if (n->u.prefix_flowspec.prefixlen >
196 p->u.prefix_flowspec.prefixlen)
197 return 0;
198
199 /* Set both prefix's head pointer. */
200 np = (const uint8_t *)&n->u.prefix_flowspec.ptr;
201 pp = (const uint8_t *)&p->u.prefix_flowspec.ptr;
202
203 offset = n->u.prefix_flowspec.prefixlen;
204
205 while (offset--)
206 if (np[offset] != pp[offset])
207 return 0;
208 return 1;
209 }
210
211 /* Set both prefix's head pointer. */
212 np = n->u.val;
213 pp = p->u.val;
214
215 offset = n->prefixlen / PNBBY;
216 shift = n->prefixlen % PNBBY;
217
218 if (shift)
219 if (maskbit[shift] & (np[offset] ^ pp[offset]))
220 return 0;
221
222 while (offset--)
223 if (np[offset] != pp[offset])
224 return 0;
225 return 1;
226
227 }
228
229 /*
230 * n is a type5 evpn prefix. This function tries to see if there is an
231 * ip-prefix within n which matches prefix p
232 * If n includes p prefix then return 1 else return 0.
233 */
evpn_type5_prefix_match(const struct prefix * n,const struct prefix * p)234 int evpn_type5_prefix_match(const struct prefix *n, const struct prefix *p)
235 {
236 int offset;
237 int shift;
238 int prefixlen;
239 const uint8_t *np, *pp;
240 struct prefix_evpn *evp;
241
242 if (n->family != AF_EVPN)
243 return 0;
244
245 evp = (struct prefix_evpn *)n;
246 pp = p->u.val;
247
248 if ((evp->prefix.route_type != 5) ||
249 (p->family == AF_INET6 && !is_evpn_prefix_ipaddr_v6(evp)) ||
250 (p->family == AF_INET && !is_evpn_prefix_ipaddr_v4(evp)) ||
251 (is_evpn_prefix_ipaddr_none(evp)))
252 return 0;
253
254 prefixlen = evp->prefix.prefix_addr.ip_prefix_length;
255 np = &evp->prefix.prefix_addr.ip.ip.addr;
256
257 /* If n's prefix is longer than p's one return 0. */
258 if (prefixlen > p->prefixlen)
259 return 0;
260
261 offset = prefixlen / PNBBY;
262 shift = prefixlen % PNBBY;
263
264 if (shift)
265 if (maskbit[shift] & (np[offset] ^ pp[offset]))
266 return 0;
267
268 while (offset--)
269 if (np[offset] != pp[offset])
270 return 0;
271 return 1;
272
273 }
274
275 /* If n includes p then return 1 else return 0. Prefix mask is not considered */
prefix_match_network_statement(const struct prefix * n,const struct prefix * p)276 int prefix_match_network_statement(const struct prefix *n,
277 const struct prefix *p)
278 {
279 int offset;
280 int shift;
281 const uint8_t *np, *pp;
282
283 /* Set both prefix's head pointer. */
284 np = n->u.val;
285 pp = p->u.val;
286
287 offset = n->prefixlen / PNBBY;
288 shift = n->prefixlen % PNBBY;
289
290 if (shift)
291 if (maskbit[shift] & (np[offset] ^ pp[offset]))
292 return 0;
293
294 while (offset--)
295 if (np[offset] != pp[offset])
296 return 0;
297 return 1;
298 }
299
300 #ifdef __clang_analyzer__
301 #undef prefix_copy /* cf. prefix.h */
302 #endif
303
prefix_copy(union prefixptr udest,union prefixconstptr usrc)304 void prefix_copy(union prefixptr udest, union prefixconstptr usrc)
305 {
306 struct prefix *dest = udest.p;
307 const struct prefix *src = usrc.p;
308
309 dest->family = src->family;
310 dest->prefixlen = src->prefixlen;
311
312 if (src->family == AF_INET)
313 dest->u.prefix4 = src->u.prefix4;
314 else if (src->family == AF_INET6)
315 dest->u.prefix6 = src->u.prefix6;
316 else if (src->family == AF_ETHERNET) {
317 memcpy(&dest->u.prefix_eth, &src->u.prefix_eth,
318 sizeof(struct ethaddr));
319 } else if (src->family == AF_EVPN) {
320 memcpy(&dest->u.prefix_evpn, &src->u.prefix_evpn,
321 sizeof(struct evpn_addr));
322 } else if (src->family == AF_UNSPEC) {
323 dest->u.lp.id = src->u.lp.id;
324 dest->u.lp.adv_router = src->u.lp.adv_router;
325 } else if (src->family == AF_FLOWSPEC) {
326 void *temp;
327 int len;
328
329 len = src->u.prefix_flowspec.prefixlen;
330 dest->u.prefix_flowspec.prefixlen =
331 src->u.prefix_flowspec.prefixlen;
332 dest->u.prefix_flowspec.family =
333 src->u.prefix_flowspec.family;
334 dest->family = src->family;
335 temp = XCALLOC(MTYPE_PREFIX_FLOWSPEC, len);
336 dest->u.prefix_flowspec.ptr = (uintptr_t)temp;
337 memcpy((void *)dest->u.prefix_flowspec.ptr,
338 (void *)src->u.prefix_flowspec.ptr, len);
339 } else {
340 flog_err(EC_LIB_DEVELOPMENT,
341 "prefix_copy(): Unknown address family %d",
342 src->family);
343 assert(0);
344 }
345 }
346
347 /*
348 * Return 1 if the address/netmask contained in the prefix structure
349 * is the same, and else return 0. For this routine, 'same' requires
350 * that not only the prefix length and the network part be the same,
351 * but also the host part. Thus, 10.0.0.1/8 and 10.0.0.2/8 are not
352 * the same. Note that this routine has the same return value sense
353 * as '==' (which is different from prefix_cmp).
354 */
prefix_same(union prefixconstptr up1,union prefixconstptr up2)355 int prefix_same(union prefixconstptr up1, union prefixconstptr up2)
356 {
357 const struct prefix *p1 = up1.p;
358 const struct prefix *p2 = up2.p;
359
360 if ((p1 && !p2) || (!p1 && p2))
361 return 0;
362
363 if (!p1 && !p2)
364 return 1;
365
366 if (p1->family == p2->family && p1->prefixlen == p2->prefixlen) {
367 if (p1->family == AF_INET)
368 if (IPV4_ADDR_SAME(&p1->u.prefix4, &p2->u.prefix4))
369 return 1;
370 if (p1->family == AF_INET6)
371 if (IPV6_ADDR_SAME(&p1->u.prefix6.s6_addr,
372 &p2->u.prefix6.s6_addr))
373 return 1;
374 if (p1->family == AF_ETHERNET)
375 if (!memcmp(&p1->u.prefix_eth, &p2->u.prefix_eth,
376 sizeof(struct ethaddr)))
377 return 1;
378 if (p1->family == AF_EVPN)
379 if (!memcmp(&p1->u.prefix_evpn, &p2->u.prefix_evpn,
380 sizeof(struct evpn_addr)))
381 return 1;
382 if (p1->family == AF_FLOWSPEC) {
383 if (p1->u.prefix_flowspec.family !=
384 p2->u.prefix_flowspec.family)
385 return 0;
386 if (p1->u.prefix_flowspec.prefixlen !=
387 p2->u.prefix_flowspec.prefixlen)
388 return 0;
389 if (!memcmp(&p1->u.prefix_flowspec.ptr,
390 &p2->u.prefix_flowspec.ptr,
391 p2->u.prefix_flowspec.prefixlen))
392 return 1;
393 }
394 }
395 return 0;
396 }
397
398 /*
399 * Return -1/0/1 comparing the prefixes in a way that gives a full/linear
400 * order.
401 *
402 * Network prefixes are considered the same if the prefix lengths are equal
403 * and the network parts are the same. Host bits (which are considered masked
404 * by the prefix length) are not significant. Thus, 10.0.0.1/8 and
405 * 10.0.0.2/8 are considered equivalent by this routine. Note that
406 * this routine has the same return sense as strcmp (which is different
407 * from prefix_same).
408 */
prefix_cmp(union prefixconstptr up1,union prefixconstptr up2)409 int prefix_cmp(union prefixconstptr up1, union prefixconstptr up2)
410 {
411 const struct prefix *p1 = up1.p;
412 const struct prefix *p2 = up2.p;
413 int offset;
414 int shift;
415 int i;
416
417 /* Set both prefix's head pointer. */
418 const uint8_t *pp1;
419 const uint8_t *pp2;
420
421 if (p1->family != p2->family)
422 return numcmp(p1->family, p2->family);
423 if (p1->family == AF_FLOWSPEC) {
424 pp1 = (const uint8_t *)p1->u.prefix_flowspec.ptr;
425 pp2 = (const uint8_t *)p2->u.prefix_flowspec.ptr;
426
427 if (p1->u.prefix_flowspec.family !=
428 p2->u.prefix_flowspec.family)
429 return 1;
430
431 if (p1->u.prefix_flowspec.prefixlen !=
432 p2->u.prefix_flowspec.prefixlen)
433 return numcmp(p1->u.prefix_flowspec.prefixlen,
434 p2->u.prefix_flowspec.prefixlen);
435
436 offset = p1->u.prefix_flowspec.prefixlen;
437 while (offset--)
438 if (pp1[offset] != pp2[offset])
439 return numcmp(pp1[offset], pp2[offset]);
440 return 0;
441 }
442 pp1 = p1->u.val;
443 pp2 = p2->u.val;
444
445 if (p1->prefixlen != p2->prefixlen)
446 return numcmp(p1->prefixlen, p2->prefixlen);
447 offset = p1->prefixlen / PNBBY;
448 shift = p1->prefixlen % PNBBY;
449
450 i = memcmp(pp1, pp2, offset);
451 if (i)
452 return i;
453
454 /*
455 * At this point offset was the same, if we have shift
456 * that means we still have data to compare, if shift is
457 * 0 then we are at the end of the data structure
458 * and should just return, as that we will be accessing
459 * memory beyond the end of the party zone
460 */
461 if (shift)
462 return numcmp(pp1[offset] & maskbit[shift],
463 pp2[offset] & maskbit[shift]);
464
465 return 0;
466 }
467
468 /*
469 * Count the number of common bits in 2 prefixes. The prefix length is
470 * ignored for this function; the whole prefix is compared. If the prefix
471 * address families don't match, return -1; otherwise the return value is
472 * in range 0 ... maximum prefix length for the address family.
473 */
prefix_common_bits(const struct prefix * p1,const struct prefix * p2)474 int prefix_common_bits(const struct prefix *p1, const struct prefix *p2)
475 {
476 int pos, bit;
477 int length = 0;
478 uint8_t xor ;
479
480 /* Set both prefix's head pointer. */
481 const uint8_t *pp1 = p1->u.val;
482 const uint8_t *pp2 = p2->u.val;
483
484 if (p1->family == AF_INET)
485 length = IPV4_MAX_BYTELEN;
486 if (p1->family == AF_INET6)
487 length = IPV6_MAX_BYTELEN;
488 if (p1->family == AF_ETHERNET)
489 length = ETH_ALEN;
490 if (p1->family == AF_EVPN)
491 length = 8 * sizeof(struct evpn_addr);
492
493 if (p1->family != p2->family || !length)
494 return -1;
495
496 for (pos = 0; pos < length; pos++)
497 if (pp1[pos] != pp2[pos])
498 break;
499 if (pos == length)
500 return pos * 8;
501
502 xor = pp1[pos] ^ pp2[pos];
503 for (bit = 0; bit < 8; bit++)
504 if (xor&(1 << (7 - bit)))
505 break;
506
507 return pos * 8 + bit;
508 }
509
510 /* Return prefix family type string. */
prefix_family_str(const struct prefix * p)511 const char *prefix_family_str(const struct prefix *p)
512 {
513 if (p->family == AF_INET)
514 return "inet";
515 if (p->family == AF_INET6)
516 return "inet6";
517 if (p->family == AF_ETHERNET)
518 return "ether";
519 if (p->family == AF_EVPN)
520 return "evpn";
521 return "unspec";
522 }
523
524 /* Allocate new prefix_ipv4 structure. */
prefix_ipv4_new(void)525 struct prefix_ipv4 *prefix_ipv4_new(void)
526 {
527 struct prefix_ipv4 *p;
528
529 /* Call prefix_new to allocate a full-size struct prefix to avoid
530 problems
531 where the struct prefix_ipv4 is cast to struct prefix and unallocated
532 bytes were being referenced (e.g. in structure assignments). */
533 p = (struct prefix_ipv4 *)prefix_new();
534 p->family = AF_INET;
535 return p;
536 }
537
538 /* Free prefix_ipv4 structure. */
prefix_ipv4_free(struct prefix_ipv4 ** p)539 void prefix_ipv4_free(struct prefix_ipv4 **p)
540 {
541 prefix_free((struct prefix **)p);
542 }
543
544 /* If given string is valid return 1 else return 0 */
str2prefix_ipv4(const char * str,struct prefix_ipv4 * p)545 int str2prefix_ipv4(const char *str, struct prefix_ipv4 *p)
546 {
547 int ret;
548 int plen;
549 char *pnt;
550 char *cp;
551
552 /* Find slash inside string. */
553 pnt = strchr(str, '/');
554
555 /* String doesn't contail slash. */
556 if (pnt == NULL) {
557 /* Convert string to prefix. */
558 ret = inet_pton(AF_INET, str, &p->prefix);
559 if (ret == 0)
560 return 0;
561
562 /* If address doesn't contain slash we assume it host address.
563 */
564 p->family = AF_INET;
565 p->prefixlen = IPV4_MAX_BITLEN;
566
567 return ret;
568 } else {
569 cp = XMALLOC(MTYPE_TMP, (pnt - str) + 1);
570 memcpy(cp, str, pnt - str);
571 *(cp + (pnt - str)) = '\0';
572 ret = inet_pton(AF_INET, cp, &p->prefix);
573 XFREE(MTYPE_TMP, cp);
574 if (ret == 0)
575 return 0;
576
577 /* Get prefix length. */
578 plen = (uint8_t)atoi(++pnt);
579 if (plen > IPV4_MAX_PREFIXLEN)
580 return 0;
581
582 p->family = AF_INET;
583 p->prefixlen = plen;
584 }
585
586 return ret;
587 }
588
589 /* When string format is invalid return 0. */
str2prefix_eth(const char * str,struct prefix_eth * p)590 int str2prefix_eth(const char *str, struct prefix_eth *p)
591 {
592 int ret = 0;
593 int plen = 48;
594 char *pnt;
595 char *cp = NULL;
596 const char *str_addr = str;
597 unsigned int a[6];
598 int i;
599 bool slash = false;
600
601 if (!strcmp(str, "any")) {
602 memset(p, 0, sizeof(*p));
603 p->family = AF_ETHERNET;
604 return 1;
605 }
606
607 /* Find slash inside string. */
608 pnt = strchr(str, '/');
609
610 if (pnt) {
611 /* Get prefix length. */
612 plen = (uint8_t)atoi(++pnt);
613 if (plen > 48) {
614 ret = 0;
615 goto done;
616 }
617
618 cp = XMALLOC(MTYPE_TMP, (pnt - str) + 1);
619 memcpy(cp, str, pnt - str);
620 *(cp + (pnt - str)) = '\0';
621
622 str_addr = cp;
623 slash = true;
624 }
625
626 /* Convert string to prefix. */
627 if (sscanf(str_addr, "%2x:%2x:%2x:%2x:%2x:%2x", a + 0, a + 1, a + 2,
628 a + 3, a + 4, a + 5)
629 != 6) {
630 ret = 0;
631 goto done;
632 }
633 for (i = 0; i < 6; ++i) {
634 p->eth_addr.octet[i] = a[i] & 0xff;
635 }
636 p->prefixlen = plen;
637 p->family = AF_ETHERNET;
638
639 /*
640 * special case to allow old configurations to work
641 * Since all zero's is implicitly meant to allow
642 * a comparison to zero, let's assume
643 */
644 if (!slash && is_zero_mac(&(p->eth_addr)))
645 p->prefixlen = 0;
646
647 ret = 1;
648
649 done:
650 XFREE(MTYPE_TMP, cp);
651
652 return ret;
653 }
654
655 /* Convert masklen into IP address's netmask (network byte order). */
masklen2ip(const int masklen,struct in_addr * netmask)656 void masklen2ip(const int masklen, struct in_addr *netmask)
657 {
658 assert(masklen >= 0 && masklen <= IPV4_MAX_BITLEN);
659
660 /* left shift is only defined for less than the size of the type.
661 * we unconditionally use long long in case the target platform
662 * has defined behaviour for << 32 (or has a 64-bit left shift) */
663
664 if (sizeof(unsigned long long) > 4)
665 netmask->s_addr = htonl(0xffffffffULL << (32 - masklen));
666 else
667 netmask->s_addr =
668 htonl(masklen ? 0xffffffffU << (32 - masklen) : 0);
669 }
670
671 /* Convert IP address's netmask into integer. We assume netmask is
672 * sequential one. Argument netmask should be network byte order. */
ip_masklen(struct in_addr netmask)673 uint8_t ip_masklen(struct in_addr netmask)
674 {
675 uint32_t tmp = ~ntohl(netmask.s_addr);
676
677 /*
678 * clz: count leading zeroes. sadly, the behaviour of this builtin is
679 * undefined for a 0 argument, even though most CPUs give 32
680 */
681 return tmp ? __builtin_clz(tmp) : 32;
682 }
683
684 /* Apply mask to IPv4 prefix (network byte order). */
apply_mask_ipv4(struct prefix_ipv4 * p)685 void apply_mask_ipv4(struct prefix_ipv4 *p)
686 {
687 struct in_addr mask;
688 masklen2ip(p->prefixlen, &mask);
689 p->prefix.s_addr &= mask.s_addr;
690 }
691
692 /* If prefix is 0.0.0.0/0 then return 1 else return 0. */
prefix_ipv4_any(const struct prefix_ipv4 * p)693 int prefix_ipv4_any(const struct prefix_ipv4 *p)
694 {
695 return (p->prefix.s_addr == INADDR_ANY && p->prefixlen == 0);
696 }
697
698 /* Allocate a new ip version 6 route */
prefix_ipv6_new(void)699 struct prefix_ipv6 *prefix_ipv6_new(void)
700 {
701 struct prefix_ipv6 *p;
702
703 /* Allocate a full-size struct prefix to avoid problems with structure
704 size mismatches. */
705 p = (struct prefix_ipv6 *)prefix_new();
706 p->family = AF_INET6;
707 return p;
708 }
709
710 /* Free prefix for IPv6. */
prefix_ipv6_free(struct prefix_ipv6 ** p)711 void prefix_ipv6_free(struct prefix_ipv6 **p)
712 {
713 prefix_free((struct prefix **)p);
714 }
715
716 /* If given string is valid return 1 else return 0 */
str2prefix_ipv6(const char * str,struct prefix_ipv6 * p)717 int str2prefix_ipv6(const char *str, struct prefix_ipv6 *p)
718 {
719 char *pnt;
720 char *cp;
721 int ret;
722
723 pnt = strchr(str, '/');
724
725 /* If string doesn't contain `/' treat it as host route. */
726 if (pnt == NULL) {
727 ret = inet_pton(AF_INET6, str, &p->prefix);
728 if (ret == 0)
729 return 0;
730 p->prefixlen = IPV6_MAX_BITLEN;
731 } else {
732 int plen;
733
734 cp = XMALLOC(MTYPE_TMP, (pnt - str) + 1);
735 memcpy(cp, str, pnt - str);
736 *(cp + (pnt - str)) = '\0';
737 ret = inet_pton(AF_INET6, cp, &p->prefix);
738 XFREE(MTYPE_TMP, cp);
739 if (ret == 0)
740 return 0;
741 plen = (uint8_t)atoi(++pnt);
742 if (plen > IPV6_MAX_BITLEN)
743 return 0;
744 p->prefixlen = plen;
745 }
746 p->family = AF_INET6;
747
748 return ret;
749 }
750
751 /* Convert struct in6_addr netmask into integer.
752 * FIXME return uint8_t as ip_maskleni() does. */
ip6_masklen(struct in6_addr netmask)753 int ip6_masklen(struct in6_addr netmask)
754 {
755 if (netmask.s6_addr32[0] != 0xffffffffU)
756 return __builtin_clz(~ntohl(netmask.s6_addr32[0]));
757 if (netmask.s6_addr32[1] != 0xffffffffU)
758 return __builtin_clz(~ntohl(netmask.s6_addr32[1])) + 32;
759 if (netmask.s6_addr32[2] != 0xffffffffU)
760 return __builtin_clz(~ntohl(netmask.s6_addr32[2])) + 64;
761 if (netmask.s6_addr32[3] != 0xffffffffU)
762 return __builtin_clz(~ntohl(netmask.s6_addr32[3])) + 96;
763 /* note __builtin_clz(0) is undefined */
764 return 128;
765 }
766
masklen2ip6(const int masklen,struct in6_addr * netmask)767 void masklen2ip6(const int masklen, struct in6_addr *netmask)
768 {
769 assert(masklen >= 0 && masklen <= IPV6_MAX_BITLEN);
770
771 if (masklen == 0) {
772 /* note << 32 is undefined */
773 memset(netmask, 0, sizeof(*netmask));
774 } else if (masklen <= 32) {
775 netmask->s6_addr32[0] = htonl(0xffffffffU << (32 - masklen));
776 netmask->s6_addr32[1] = 0;
777 netmask->s6_addr32[2] = 0;
778 netmask->s6_addr32[3] = 0;
779 } else if (masklen <= 64) {
780 netmask->s6_addr32[0] = 0xffffffffU;
781 netmask->s6_addr32[1] = htonl(0xffffffffU << (64 - masklen));
782 netmask->s6_addr32[2] = 0;
783 netmask->s6_addr32[3] = 0;
784 } else if (masklen <= 96) {
785 netmask->s6_addr32[0] = 0xffffffffU;
786 netmask->s6_addr32[1] = 0xffffffffU;
787 netmask->s6_addr32[2] = htonl(0xffffffffU << (96 - masklen));
788 netmask->s6_addr32[3] = 0;
789 } else {
790 netmask->s6_addr32[0] = 0xffffffffU;
791 netmask->s6_addr32[1] = 0xffffffffU;
792 netmask->s6_addr32[2] = 0xffffffffU;
793 netmask->s6_addr32[3] = htonl(0xffffffffU << (128 - masklen));
794 }
795 }
796
apply_mask_ipv6(struct prefix_ipv6 * p)797 void apply_mask_ipv6(struct prefix_ipv6 *p)
798 {
799 uint8_t *pnt;
800 int index;
801 int offset;
802
803 index = p->prefixlen / 8;
804
805 if (index < 16) {
806 pnt = (uint8_t *)&p->prefix;
807 offset = p->prefixlen % 8;
808
809 pnt[index] &= maskbit[offset];
810 index++;
811
812 while (index < 16)
813 pnt[index++] = 0;
814 }
815 }
816
apply_mask(struct prefix * p)817 void apply_mask(struct prefix *p)
818 {
819 switch (p->family) {
820 case AF_INET:
821 apply_mask_ipv4((struct prefix_ipv4 *)p);
822 break;
823 case AF_INET6:
824 apply_mask_ipv6((struct prefix_ipv6 *)p);
825 break;
826 default:
827 break;
828 }
829 return;
830 }
831
832 /* Utility function of convert between struct prefix <=> union sockunion. */
sockunion2hostprefix(const union sockunion * su,struct prefix * prefix)833 struct prefix *sockunion2hostprefix(const union sockunion *su,
834 struct prefix *prefix)
835 {
836 if (su->sa.sa_family == AF_INET) {
837 struct prefix_ipv4 *p;
838
839 p = prefix ? (struct prefix_ipv4 *)prefix : prefix_ipv4_new();
840 p->family = AF_INET;
841 p->prefix = su->sin.sin_addr;
842 p->prefixlen = IPV4_MAX_BITLEN;
843 return (struct prefix *)p;
844 }
845 if (su->sa.sa_family == AF_INET6) {
846 struct prefix_ipv6 *p;
847
848 p = prefix ? (struct prefix_ipv6 *)prefix : prefix_ipv6_new();
849 p->family = AF_INET6;
850 p->prefixlen = IPV6_MAX_BITLEN;
851 memcpy(&p->prefix, &su->sin6.sin6_addr,
852 sizeof(struct in6_addr));
853 return (struct prefix *)p;
854 }
855 return NULL;
856 }
857
prefix2sockunion(const struct prefix * p,union sockunion * su)858 void prefix2sockunion(const struct prefix *p, union sockunion *su)
859 {
860 memset(su, 0, sizeof(*su));
861
862 su->sa.sa_family = p->family;
863 if (p->family == AF_INET)
864 su->sin.sin_addr = p->u.prefix4;
865 if (p->family == AF_INET6)
866 memcpy(&su->sin6.sin6_addr, &p->u.prefix6,
867 sizeof(struct in6_addr));
868 }
869
prefix_blen(const struct prefix * p)870 int prefix_blen(const struct prefix *p)
871 {
872 switch (p->family) {
873 case AF_INET:
874 return IPV4_MAX_BYTELEN;
875 case AF_INET6:
876 return IPV6_MAX_BYTELEN;
877 case AF_ETHERNET:
878 return ETH_ALEN;
879 }
880 return 0;
881 }
882
883 /* Generic function for conversion string to struct prefix. */
str2prefix(const char * str,struct prefix * p)884 int str2prefix(const char *str, struct prefix *p)
885 {
886 int ret;
887
888 if (!str || !p)
889 return 0;
890
891 /* First we try to convert string to struct prefix_ipv4. */
892 ret = str2prefix_ipv4(str, (struct prefix_ipv4 *)p);
893 if (ret)
894 return ret;
895
896 /* Next we try to convert string to struct prefix_ipv6. */
897 ret = str2prefix_ipv6(str, (struct prefix_ipv6 *)p);
898 if (ret)
899 return ret;
900
901 /* Next we try to convert string to struct prefix_eth. */
902 ret = str2prefix_eth(str, (struct prefix_eth *)p);
903 if (ret)
904 return ret;
905
906 return 0;
907 }
908
prefixevpn_ead2str(const struct prefix_evpn * p,char * str,int size)909 static const char *prefixevpn_ead2str(const struct prefix_evpn *p, char *str,
910 int size)
911 {
912 snprintf(str, size, "Unsupported EVPN prefix");
913 return str;
914 }
915
prefixevpn_macip2str(const struct prefix_evpn * p,char * str,int size)916 static const char *prefixevpn_macip2str(const struct prefix_evpn *p, char *str,
917 int size)
918 {
919 uint8_t family;
920 char buf[PREFIX2STR_BUFFER];
921 char buf2[ETHER_ADDR_STRLEN];
922
923 if (is_evpn_prefix_ipaddr_none(p))
924 snprintf(str, size, "[%d]:[%s]/%d",
925 p->prefix.route_type,
926 prefix_mac2str(&p->prefix.macip_addr.mac,
927 buf2, sizeof(buf2)),
928 p->prefixlen);
929 else {
930 family = is_evpn_prefix_ipaddr_v4(p)
931 ? AF_INET
932 : AF_INET6;
933 snprintf(str, size, "[%d]:[%s]:[%s]/%d",
934 p->prefix.route_type,
935 prefix_mac2str(&p->prefix.macip_addr.mac,
936 buf2, sizeof(buf2)),
937 inet_ntop(family,
938 &p->prefix.macip_addr.ip.ip.addr,
939 buf, PREFIX2STR_BUFFER),
940 p->prefixlen);
941 }
942 return str;
943 }
944
prefixevpn_imet2str(const struct prefix_evpn * p,char * str,int size)945 static const char *prefixevpn_imet2str(const struct prefix_evpn *p, char *str,
946 int size)
947 {
948 uint8_t family;
949 char buf[PREFIX2STR_BUFFER];
950
951 family = is_evpn_prefix_ipaddr_v4(p)
952 ? AF_INET
953 : AF_INET6;
954 snprintf(str, size, "[%d]:[%s]/%d", p->prefix.route_type,
955 inet_ntop(family,
956 &p->prefix.imet_addr.ip.ip.addr, buf,
957 PREFIX2STR_BUFFER),
958 p->prefixlen);
959 return str;
960 }
961
prefixevpn_es2str(const struct prefix_evpn * p,char * str,int size)962 static const char *prefixevpn_es2str(const struct prefix_evpn *p, char *str,
963 int size)
964 {
965 char buf[ESI_STR_LEN];
966
967 snprintf(str, size, "[%d]:[%s]:[%s]/%d", p->prefix.route_type,
968 esi_to_str(&p->prefix.es_addr.esi, buf, sizeof(buf)),
969 inet_ntoa(p->prefix.es_addr.ip.ipaddr_v4),
970 p->prefixlen);
971 return str;
972 }
973
prefixevpn_prefix2str(const struct prefix_evpn * p,char * str,int size)974 static const char *prefixevpn_prefix2str(const struct prefix_evpn *p, char *str,
975 int size)
976 {
977 uint8_t family;
978 char buf[PREFIX2STR_BUFFER];
979
980 family = is_evpn_prefix_ipaddr_v4(p)
981 ? AF_INET
982 : AF_INET6;
983 snprintf(str, size, "[%d]:[%u]:[%s/%d]/%d",
984 p->prefix.route_type,
985 p->prefix.prefix_addr.eth_tag,
986 inet_ntop(family,
987 &p->prefix.prefix_addr.ip.ip.addr, buf,
988 PREFIX2STR_BUFFER),
989 p->prefix.prefix_addr.ip_prefix_length,
990 p->prefixlen);
991 return str;
992 }
993
prefixevpn2str(const struct prefix_evpn * p,char * str,int size)994 static const char *prefixevpn2str(const struct prefix_evpn *p, char *str,
995 int size)
996 {
997 switch (p->prefix.route_type) {
998 case 1:
999 return prefixevpn_ead2str(p, str, size);
1000 case 2:
1001 return prefixevpn_macip2str(p, str, size);
1002 case 3:
1003 return prefixevpn_imet2str(p, str, size);
1004 case 4:
1005 return prefixevpn_es2str(p, str, size);
1006 case 5:
1007 return prefixevpn_prefix2str(p, str, size);
1008 default:
1009 snprintf(str, size, "Unsupported EVPN prefix");
1010 break;
1011 }
1012 return str;
1013 }
1014
prefix2str(union prefixconstptr pu,char * str,int size)1015 const char *prefix2str(union prefixconstptr pu, char *str, int size)
1016 {
1017 const struct prefix *p = pu.p;
1018 char buf[PREFIX2STR_BUFFER];
1019 int byte, tmp, a, b;
1020 bool z = false;
1021 size_t l;
1022
1023 switch (p->family) {
1024 case AF_INET:
1025 case AF_INET6:
1026 inet_ntop(p->family, &p->u.prefix, buf, sizeof(buf));
1027 l = strlen(buf);
1028 buf[l++] = '/';
1029 byte = p->prefixlen;
1030 if ((tmp = p->prefixlen - 100) >= 0) {
1031 buf[l++] = '1';
1032 z = true;
1033 byte = tmp;
1034 }
1035 b = byte % 10;
1036 a = byte / 10;
1037 if (a || z)
1038 buf[l++] = '0' + a;
1039 buf[l++] = '0' + b;
1040 buf[l] = '\0';
1041 strlcpy(str, buf, size);
1042 break;
1043
1044 case AF_ETHERNET:
1045 snprintf(str, size, "%s/%d",
1046 prefix_mac2str(&p->u.prefix_eth, buf, sizeof(buf)),
1047 p->prefixlen);
1048 break;
1049
1050 case AF_EVPN:
1051 prefixevpn2str((const struct prefix_evpn *)p, str, size);
1052 break;
1053
1054 case AF_FLOWSPEC:
1055 strlcpy(str, "FS prefix", size);
1056 break;
1057
1058 default:
1059 strlcpy(str, "UNK prefix", size);
1060 break;
1061 }
1062
1063 return str;
1064 }
1065
prefix_mcast_inet4_dump(const char * onfail,struct in_addr addr,char * buf,int buf_size)1066 void prefix_mcast_inet4_dump(const char *onfail, struct in_addr addr,
1067 char *buf, int buf_size)
1068 {
1069 int save_errno = errno;
1070
1071 if (addr.s_addr == INADDR_ANY)
1072 strlcpy(buf, "*", buf_size);
1073 else {
1074 if (!inet_ntop(AF_INET, &addr, buf, buf_size)) {
1075 if (onfail)
1076 snprintf(buf, buf_size, "%s", onfail);
1077 }
1078 }
1079
1080 errno = save_errno;
1081 }
1082
prefix_sg2str(const struct prefix_sg * sg,char * sg_str)1083 const char *prefix_sg2str(const struct prefix_sg *sg, char *sg_str)
1084 {
1085 char src_str[INET_ADDRSTRLEN];
1086 char grp_str[INET_ADDRSTRLEN];
1087
1088 prefix_mcast_inet4_dump("<src?>", sg->src, src_str, sizeof(src_str));
1089 prefix_mcast_inet4_dump("<grp?>", sg->grp, grp_str, sizeof(grp_str));
1090 snprintf(sg_str, PREFIX_SG_STR_LEN, "(%s,%s)", src_str, grp_str);
1091
1092 return sg_str;
1093 }
1094
prefix_new(void)1095 struct prefix *prefix_new(void)
1096 {
1097 struct prefix *p;
1098
1099 p = XCALLOC(MTYPE_PREFIX, sizeof(*p));
1100 return p;
1101 }
1102
prefix_free_lists(void * arg)1103 void prefix_free_lists(void *arg)
1104 {
1105 struct prefix *p = arg;
1106
1107 prefix_free(&p);
1108 }
1109
1110 /* Free prefix structure. */
prefix_free(struct prefix ** p)1111 void prefix_free(struct prefix **p)
1112 {
1113 XFREE(MTYPE_PREFIX, *p);
1114 }
1115
1116 /* Utility function to convert ipv4 prefixes to Classful prefixes */
apply_classful_mask_ipv4(struct prefix_ipv4 * p)1117 void apply_classful_mask_ipv4(struct prefix_ipv4 *p)
1118 {
1119
1120 uint32_t destination;
1121
1122 destination = ntohl(p->prefix.s_addr);
1123
1124 if (p->prefixlen == IPV4_MAX_PREFIXLEN)
1125 ;
1126 /* do nothing for host routes */
1127 else if (IN_CLASSC(destination)) {
1128 p->prefixlen = 24;
1129 apply_mask_ipv4(p);
1130 } else if (IN_CLASSB(destination)) {
1131 p->prefixlen = 16;
1132 apply_mask_ipv4(p);
1133 } else {
1134 p->prefixlen = 8;
1135 apply_mask_ipv4(p);
1136 }
1137 }
1138
ipv4_broadcast_addr(in_addr_t hostaddr,int masklen)1139 in_addr_t ipv4_broadcast_addr(in_addr_t hostaddr, int masklen)
1140 {
1141 struct in_addr mask;
1142
1143 masklen2ip(masklen, &mask);
1144 return (masklen != IPV4_MAX_PREFIXLEN - 1) ?
1145 /* normal case */
1146 (hostaddr | ~mask.s_addr)
1147 :
1148 /* For prefix 31 return 255.255.255.255 (RFC3021) */
1149 htonl(0xFFFFFFFF);
1150 }
1151
1152 /* Utility function to convert ipv4 netmask to prefixes
1153 ex.) "1.1.0.0" "255.255.0.0" => "1.1.0.0/16"
1154 ex.) "1.0.0.0" NULL => "1.0.0.0/8" */
netmask_str2prefix_str(const char * net_str,const char * mask_str,char * prefix_str)1155 int netmask_str2prefix_str(const char *net_str, const char *mask_str,
1156 char *prefix_str)
1157 {
1158 struct in_addr network;
1159 struct in_addr mask;
1160 uint8_t prefixlen;
1161 uint32_t destination;
1162 int ret;
1163
1164 ret = inet_aton(net_str, &network);
1165 if (!ret)
1166 return 0;
1167
1168 if (mask_str) {
1169 ret = inet_aton(mask_str, &mask);
1170 if (!ret)
1171 return 0;
1172
1173 prefixlen = ip_masklen(mask);
1174 } else {
1175 destination = ntohl(network.s_addr);
1176
1177 if (network.s_addr == INADDR_ANY)
1178 prefixlen = 0;
1179 else if (IN_CLASSC(destination))
1180 prefixlen = 24;
1181 else if (IN_CLASSB(destination))
1182 prefixlen = 16;
1183 else if (IN_CLASSA(destination))
1184 prefixlen = 8;
1185 else
1186 return 0;
1187 }
1188
1189 sprintf(prefix_str, "%s/%d", net_str, prefixlen);
1190
1191 return 1;
1192 }
1193
1194 /* Utility function for making IPv6 address string. */
inet6_ntoa(struct in6_addr addr)1195 const char *inet6_ntoa(struct in6_addr addr)
1196 {
1197 static char buf[INET6_ADDRSTRLEN];
1198
1199 inet_ntop(AF_INET6, &addr, buf, INET6_ADDRSTRLEN);
1200 return buf;
1201 }
1202
1203 /* converts to internal representation of mac address
1204 * returns 1 on success, 0 otherwise
1205 * format accepted: AA:BB:CC:DD:EE:FF
1206 * if mac parameter is null, then check only
1207 */
prefix_str2mac(const char * str,struct ethaddr * mac)1208 int prefix_str2mac(const char *str, struct ethaddr *mac)
1209 {
1210 unsigned int a[6];
1211 int i;
1212
1213 if (!str)
1214 return 0;
1215
1216 if (sscanf(str, "%2x:%2x:%2x:%2x:%2x:%2x", a + 0, a + 1, a + 2, a + 3,
1217 a + 4, a + 5)
1218 != 6) {
1219 /* error in incoming str length */
1220 return 0;
1221 }
1222 /* valid mac address */
1223 if (!mac)
1224 return 1;
1225 for (i = 0; i < 6; ++i)
1226 mac->octet[i] = a[i] & 0xff;
1227 return 1;
1228 }
1229
prefix_mac2str(const struct ethaddr * mac,char * buf,int size)1230 char *prefix_mac2str(const struct ethaddr *mac, char *buf, int size)
1231 {
1232 char *ptr;
1233
1234 if (!mac)
1235 return NULL;
1236 if (!buf)
1237 ptr = XMALLOC(MTYPE_TMP, ETHER_ADDR_STRLEN * sizeof(char));
1238 else {
1239 assert(size >= ETHER_ADDR_STRLEN);
1240 ptr = buf;
1241 }
1242 snprintf(ptr, (ETHER_ADDR_STRLEN), "%02x:%02x:%02x:%02x:%02x:%02x",
1243 (uint8_t)mac->octet[0], (uint8_t)mac->octet[1],
1244 (uint8_t)mac->octet[2], (uint8_t)mac->octet[3],
1245 (uint8_t)mac->octet[4], (uint8_t)mac->octet[5]);
1246 return ptr;
1247 }
1248
prefix_hash_key(const void * pp)1249 unsigned prefix_hash_key(const void *pp)
1250 {
1251 struct prefix copy;
1252
1253 if (((struct prefix *)pp)->family == AF_FLOWSPEC) {
1254 uint32_t len;
1255 void *temp;
1256
1257 /* make sure *all* unused bits are zero,
1258 * particularly including alignment /
1259 * padding and unused prefix bytes.
1260 */
1261 memset(©, 0, sizeof(copy));
1262 prefix_copy(©, (struct prefix *)pp);
1263 len = jhash((void *)copy.u.prefix_flowspec.ptr,
1264 copy.u.prefix_flowspec.prefixlen,
1265 0x55aa5a5a);
1266 temp = (void *)copy.u.prefix_flowspec.ptr;
1267 XFREE(MTYPE_PREFIX_FLOWSPEC, temp);
1268 copy.u.prefix_flowspec.ptr = (uintptr_t)NULL;
1269 return len;
1270 }
1271 /* make sure *all* unused bits are zero, particularly including
1272 * alignment /
1273 * padding and unused prefix bytes. */
1274 memset(©, 0, sizeof(copy));
1275 prefix_copy(©, (struct prefix *)pp);
1276 return jhash(©,
1277 offsetof(struct prefix, u.prefix) + PSIZE(copy.prefixlen),
1278 0x55aa5a5a);
1279 }
1280
1281 /* converts to internal representation of esi
1282 * returns 1 on success, 0 otherwise
1283 * format accepted: aa:aa:aa:aa:aa:aa:aa:aa:aa:aa
1284 * if esi parameter is null, then check only
1285 */
str_to_esi(const char * str,esi_t * esi)1286 int str_to_esi(const char *str, esi_t *esi)
1287 {
1288 int i;
1289 unsigned int a[ESI_BYTES];
1290
1291 if (!str)
1292 return 0;
1293
1294 if (sscanf(str, "%2x:%2x:%2x:%2x:%2x:%2x:%2x:%2x:%2x:%2x",
1295 a + 0, a + 1, a + 2, a + 3,
1296 a + 4, a + 5, a + 6, a + 7,
1297 a + 8, a + 9)
1298 != ESI_BYTES) {
1299 /* error in incoming str length */
1300 return 0;
1301 }
1302
1303 /* valid ESI */
1304 if (!esi)
1305 return 1;
1306 for (i = 0; i < ESI_BYTES; ++i)
1307 esi->val[i] = a[i] & 0xff;
1308 return 1;
1309 }
1310
esi_to_str(const esi_t * esi,char * buf,int size)1311 char *esi_to_str(const esi_t *esi, char *buf, int size)
1312 {
1313 char *ptr;
1314
1315 if (!esi)
1316 return NULL;
1317 if (!buf)
1318 ptr = XMALLOC(MTYPE_TMP, ESI_STR_LEN * sizeof(char));
1319 else {
1320 assert(size >= ESI_STR_LEN);
1321 ptr = buf;
1322 }
1323
1324 snprintf(ptr, ESI_STR_LEN,
1325 "%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
1326 esi->val[0], esi->val[1], esi->val[2],
1327 esi->val[3], esi->val[4], esi->val[5],
1328 esi->val[6], esi->val[7], esi->val[8],
1329 esi->val[9]);
1330 return ptr;
1331 }
1332
1333 printfrr_ext_autoreg_p("EA", printfrr_ea)
printfrr_ea(char * buf,size_t bsz,const char * fmt,int prec,const void * ptr)1334 static ssize_t printfrr_ea(char *buf, size_t bsz, const char *fmt,
1335 int prec, const void *ptr)
1336 {
1337 const struct ethaddr *mac = ptr;
1338
1339 prefix_mac2str(mac, buf, bsz);
1340 return 2;
1341 }
1342
1343 printfrr_ext_autoreg_p("IA", printfrr_ia)
printfrr_ia(char * buf,size_t bsz,const char * fmt,int prec,const void * ptr)1344 static ssize_t printfrr_ia(char *buf, size_t bsz, const char *fmt,
1345 int prec, const void *ptr)
1346 {
1347 const struct ipaddr *ipa = ptr;
1348
1349 ipaddr2str(ipa, buf, bsz);
1350 return 2;
1351 }
1352
1353 printfrr_ext_autoreg_p("I4", printfrr_i4)
printfrr_i4(char * buf,size_t bsz,const char * fmt,int prec,const void * ptr)1354 static ssize_t printfrr_i4(char *buf, size_t bsz, const char *fmt,
1355 int prec, const void *ptr)
1356 {
1357 inet_ntop(AF_INET, ptr, buf, bsz);
1358 return 2;
1359 }
1360
1361 printfrr_ext_autoreg_p("I6", printfrr_i6)
printfrr_i6(char * buf,size_t bsz,const char * fmt,int prec,const void * ptr)1362 static ssize_t printfrr_i6(char *buf, size_t bsz, const char *fmt,
1363 int prec, const void *ptr)
1364 {
1365 inet_ntop(AF_INET6, ptr, buf, bsz);
1366 return 2;
1367 }
1368
1369 printfrr_ext_autoreg_p("FX", printfrr_pfx)
printfrr_pfx(char * buf,size_t bsz,const char * fmt,int prec,const void * ptr)1370 static ssize_t printfrr_pfx(char *buf, size_t bsz, const char *fmt,
1371 int prec, const void *ptr)
1372 {
1373 prefix2str(ptr, buf, bsz);
1374 return 2;
1375 }
1376
1377 printfrr_ext_autoreg_p("SG4", printfrr_psg)
printfrr_psg(char * buf,size_t bsz,const char * fmt,int prec,const void * ptr)1378 static ssize_t printfrr_psg(char *buf, size_t bsz, const char *fmt,
1379 int prec, const void *ptr)
1380 {
1381 const struct prefix_sg *sg = ptr;
1382 struct fbuf fb = { .buf = buf, .pos = buf, .len = bsz - 1 };
1383
1384 if (sg->src.s_addr == INADDR_ANY)
1385 bprintfrr(&fb, "(*,");
1386 else
1387 bprintfrr(&fb, "(%pI4,", &sg->src);
1388
1389 if (sg->grp.s_addr == INADDR_ANY)
1390 bprintfrr(&fb, "*)");
1391 else
1392 bprintfrr(&fb, "%pI4)", &sg->grp);
1393
1394 fb.pos[0] = '\0';
1395 return 3;
1396 }
1397