1// Copyright 2019 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package proto
6
7import (
8	"google.golang.org/protobuf/encoding/protowire"
9	"google.golang.org/protobuf/internal/encoding/messageset"
10	"google.golang.org/protobuf/internal/order"
11	"google.golang.org/protobuf/internal/pragma"
12	"google.golang.org/protobuf/reflect/protoreflect"
13	"google.golang.org/protobuf/runtime/protoiface"
14)
15
16// MarshalOptions configures the marshaler.
17//
18// Example usage:
19//   b, err := MarshalOptions{Deterministic: true}.Marshal(m)
20type MarshalOptions struct {
21	pragma.NoUnkeyedLiterals
22
23	// AllowPartial allows messages that have missing required fields to marshal
24	// without returning an error. If AllowPartial is false (the default),
25	// Marshal will return an error if there are any missing required fields.
26	AllowPartial bool
27
28	// Deterministic controls whether the same message will always be
29	// serialized to the same bytes within the same binary.
30	//
31	// Setting this option guarantees that repeated serialization of
32	// the same message will return the same bytes, and that different
33	// processes of the same binary (which may be executing on different
34	// machines) will serialize equal messages to the same bytes.
35	// It has no effect on the resulting size of the encoded message compared
36	// to a non-deterministic marshal.
37	//
38	// Note that the deterministic serialization is NOT canonical across
39	// languages. It is not guaranteed to remain stable over time. It is
40	// unstable across different builds with schema changes due to unknown
41	// fields. Users who need canonical serialization (e.g., persistent
42	// storage in a canonical form, fingerprinting, etc.) must define
43	// their own canonicalization specification and implement their own
44	// serializer rather than relying on this API.
45	//
46	// If deterministic serialization is requested, map entries will be
47	// sorted by keys in lexographical order. This is an implementation
48	// detail and subject to change.
49	Deterministic bool
50
51	// UseCachedSize indicates that the result of a previous Size call
52	// may be reused.
53	//
54	// Setting this option asserts that:
55	//
56	// 1. Size has previously been called on this message with identical
57	// options (except for UseCachedSize itself).
58	//
59	// 2. The message and all its submessages have not changed in any
60	// way since the Size call.
61	//
62	// If either of these invariants is violated,
63	// the results are undefined and may include panics or corrupted output.
64	//
65	// Implementations MAY take this option into account to provide
66	// better performance, but there is no guarantee that they will do so.
67	// There is absolutely no guarantee that Size followed by Marshal with
68	// UseCachedSize set will perform equivalently to Marshal alone.
69	UseCachedSize bool
70}
71
72// Marshal returns the wire-format encoding of m.
73func Marshal(m Message) ([]byte, error) {
74	// Treat nil message interface as an empty message; nothing to output.
75	if m == nil {
76		return nil, nil
77	}
78
79	out, err := MarshalOptions{}.marshal(nil, m.ProtoReflect())
80	if len(out.Buf) == 0 && err == nil {
81		out.Buf = emptyBytesForMessage(m)
82	}
83	return out.Buf, err
84}
85
86// Marshal returns the wire-format encoding of m.
87func (o MarshalOptions) Marshal(m Message) ([]byte, error) {
88	// Treat nil message interface as an empty message; nothing to output.
89	if m == nil {
90		return nil, nil
91	}
92
93	out, err := o.marshal(nil, m.ProtoReflect())
94	if len(out.Buf) == 0 && err == nil {
95		out.Buf = emptyBytesForMessage(m)
96	}
97	return out.Buf, err
98}
99
100// emptyBytesForMessage returns a nil buffer if and only if m is invalid,
101// otherwise it returns a non-nil empty buffer.
102//
103// This is to assist the edge-case where user-code does the following:
104//	m1.OptionalBytes, _ = proto.Marshal(m2)
105// where they expect the proto2 "optional_bytes" field to be populated
106// if any only if m2 is a valid message.
107func emptyBytesForMessage(m Message) []byte {
108	if m == nil || !m.ProtoReflect().IsValid() {
109		return nil
110	}
111	return emptyBuf[:]
112}
113
114// MarshalAppend appends the wire-format encoding of m to b,
115// returning the result.
116func (o MarshalOptions) MarshalAppend(b []byte, m Message) ([]byte, error) {
117	// Treat nil message interface as an empty message; nothing to append.
118	if m == nil {
119		return b, nil
120	}
121
122	out, err := o.marshal(b, m.ProtoReflect())
123	return out.Buf, err
124}
125
126// MarshalState returns the wire-format encoding of a message.
127//
128// This method permits fine-grained control over the marshaler.
129// Most users should use Marshal instead.
130func (o MarshalOptions) MarshalState(in protoiface.MarshalInput) (protoiface.MarshalOutput, error) {
131	return o.marshal(in.Buf, in.Message)
132}
133
134// marshal is a centralized function that all marshal operations go through.
135// For profiling purposes, avoid changing the name of this function or
136// introducing other code paths for marshal that do not go through this.
137func (o MarshalOptions) marshal(b []byte, m protoreflect.Message) (out protoiface.MarshalOutput, err error) {
138	allowPartial := o.AllowPartial
139	o.AllowPartial = true
140	if methods := protoMethods(m); methods != nil && methods.Marshal != nil &&
141		!(o.Deterministic && methods.Flags&protoiface.SupportMarshalDeterministic == 0) {
142		in := protoiface.MarshalInput{
143			Message: m,
144			Buf:     b,
145		}
146		if o.Deterministic {
147			in.Flags |= protoiface.MarshalDeterministic
148		}
149		if o.UseCachedSize {
150			in.Flags |= protoiface.MarshalUseCachedSize
151		}
152		if methods.Size != nil {
153			sout := methods.Size(protoiface.SizeInput{
154				Message: m,
155				Flags:   in.Flags,
156			})
157			if cap(b) < len(b)+sout.Size {
158				in.Buf = make([]byte, len(b), growcap(cap(b), len(b)+sout.Size))
159				copy(in.Buf, b)
160			}
161			in.Flags |= protoiface.MarshalUseCachedSize
162		}
163		out, err = methods.Marshal(in)
164	} else {
165		out.Buf, err = o.marshalMessageSlow(b, m)
166	}
167	if err != nil {
168		return out, err
169	}
170	if allowPartial {
171		return out, nil
172	}
173	return out, checkInitialized(m)
174}
175
176func (o MarshalOptions) marshalMessage(b []byte, m protoreflect.Message) ([]byte, error) {
177	out, err := o.marshal(b, m)
178	return out.Buf, err
179}
180
181// growcap scales up the capacity of a slice.
182//
183// Given a slice with a current capacity of oldcap and a desired
184// capacity of wantcap, growcap returns a new capacity >= wantcap.
185//
186// The algorithm is mostly identical to the one used by append as of Go 1.14.
187func growcap(oldcap, wantcap int) (newcap int) {
188	if wantcap > oldcap*2 {
189		newcap = wantcap
190	} else if oldcap < 1024 {
191		// The Go 1.14 runtime takes this case when len(s) < 1024,
192		// not when cap(s) < 1024. The difference doesn't seem
193		// significant here.
194		newcap = oldcap * 2
195	} else {
196		newcap = oldcap
197		for 0 < newcap && newcap < wantcap {
198			newcap += newcap / 4
199		}
200		if newcap <= 0 {
201			newcap = wantcap
202		}
203	}
204	return newcap
205}
206
207func (o MarshalOptions) marshalMessageSlow(b []byte, m protoreflect.Message) ([]byte, error) {
208	if messageset.IsMessageSet(m.Descriptor()) {
209		return o.marshalMessageSet(b, m)
210	}
211	fieldOrder := order.AnyFieldOrder
212	if o.Deterministic {
213		// TODO: This should use a more natural ordering like NumberFieldOrder,
214		// but doing so breaks golden tests that make invalid assumption about
215		// output stability of this implementation.
216		fieldOrder = order.LegacyFieldOrder
217	}
218	var err error
219	order.RangeFields(m, fieldOrder, func(fd protoreflect.FieldDescriptor, v protoreflect.Value) bool {
220		b, err = o.marshalField(b, fd, v)
221		return err == nil
222	})
223	if err != nil {
224		return b, err
225	}
226	b = append(b, m.GetUnknown()...)
227	return b, nil
228}
229
230func (o MarshalOptions) marshalField(b []byte, fd protoreflect.FieldDescriptor, value protoreflect.Value) ([]byte, error) {
231	switch {
232	case fd.IsList():
233		return o.marshalList(b, fd, value.List())
234	case fd.IsMap():
235		return o.marshalMap(b, fd, value.Map())
236	default:
237		b = protowire.AppendTag(b, fd.Number(), wireTypes[fd.Kind()])
238		return o.marshalSingular(b, fd, value)
239	}
240}
241
242func (o MarshalOptions) marshalList(b []byte, fd protoreflect.FieldDescriptor, list protoreflect.List) ([]byte, error) {
243	if fd.IsPacked() && list.Len() > 0 {
244		b = protowire.AppendTag(b, fd.Number(), protowire.BytesType)
245		b, pos := appendSpeculativeLength(b)
246		for i, llen := 0, list.Len(); i < llen; i++ {
247			var err error
248			b, err = o.marshalSingular(b, fd, list.Get(i))
249			if err != nil {
250				return b, err
251			}
252		}
253		b = finishSpeculativeLength(b, pos)
254		return b, nil
255	}
256
257	kind := fd.Kind()
258	for i, llen := 0, list.Len(); i < llen; i++ {
259		var err error
260		b = protowire.AppendTag(b, fd.Number(), wireTypes[kind])
261		b, err = o.marshalSingular(b, fd, list.Get(i))
262		if err != nil {
263			return b, err
264		}
265	}
266	return b, nil
267}
268
269func (o MarshalOptions) marshalMap(b []byte, fd protoreflect.FieldDescriptor, mapv protoreflect.Map) ([]byte, error) {
270	keyf := fd.MapKey()
271	valf := fd.MapValue()
272	keyOrder := order.AnyKeyOrder
273	if o.Deterministic {
274		keyOrder = order.GenericKeyOrder
275	}
276	var err error
277	order.RangeEntries(mapv, keyOrder, func(key protoreflect.MapKey, value protoreflect.Value) bool {
278		b = protowire.AppendTag(b, fd.Number(), protowire.BytesType)
279		var pos int
280		b, pos = appendSpeculativeLength(b)
281
282		b, err = o.marshalField(b, keyf, key.Value())
283		if err != nil {
284			return false
285		}
286		b, err = o.marshalField(b, valf, value)
287		if err != nil {
288			return false
289		}
290		b = finishSpeculativeLength(b, pos)
291		return true
292	})
293	return b, err
294}
295
296// When encoding length-prefixed fields, we speculatively set aside some number of bytes
297// for the length, encode the data, and then encode the length (shifting the data if necessary
298// to make room).
299const speculativeLength = 1
300
301func appendSpeculativeLength(b []byte) ([]byte, int) {
302	pos := len(b)
303	b = append(b, "\x00\x00\x00\x00"[:speculativeLength]...)
304	return b, pos
305}
306
307func finishSpeculativeLength(b []byte, pos int) []byte {
308	mlen := len(b) - pos - speculativeLength
309	msiz := protowire.SizeVarint(uint64(mlen))
310	if msiz != speculativeLength {
311		for i := 0; i < msiz-speculativeLength; i++ {
312			b = append(b, 0)
313		}
314		copy(b[pos+msiz:], b[pos+speculativeLength:])
315		b = b[:pos+msiz+mlen]
316	}
317	protowire.AppendVarint(b[:pos], uint64(mlen))
318	return b
319}
320