1 /*
2  * Peer synchro management.
3  *
4  * Copyright 2010 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  *
11  */
12 
13 #include <errno.h>
14 #include <fcntl.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18 
19 #include <sys/socket.h>
20 #include <sys/stat.h>
21 #include <sys/types.h>
22 
23 #include <haproxy/api.h>
24 #include <haproxy/applet.h>
25 #include <haproxy/channel.h>
26 #include <haproxy/cli.h>
27 #include <haproxy/dict.h>
28 #include <haproxy/errors.h>
29 #include <haproxy/fd.h>
30 #include <haproxy/frontend.h>
31 #include <haproxy/net_helper.h>
32 #include <haproxy/obj_type-t.h>
33 #include <haproxy/peers.h>
34 #include <haproxy/proxy.h>
35 #include <haproxy/session-t.h>
36 #include <haproxy/signal.h>
37 #include <haproxy/stats-t.h>
38 #include <haproxy/stick_table.h>
39 #include <haproxy/stream.h>
40 #include <haproxy/stream_interface.h>
41 #include <haproxy/task.h>
42 #include <haproxy/thread.h>
43 #include <haproxy/time.h>
44 #include <haproxy/tools.h>
45 #include <haproxy/trace.h>
46 
47 
48 /*******************************/
49 /* Current peer learning state */
50 /*******************************/
51 
52 /******************************/
53 /* Current peers section resync state */
54 /******************************/
55 #define PEERS_F_RESYNC_LOCAL          0x00000001 /* Learn from local finished or no more needed */
56 #define PEERS_F_RESYNC_REMOTE         0x00000002 /* Learn from remote finished or no more needed */
57 #define PEERS_F_RESYNC_ASSIGN         0x00000004 /* A peer was assigned to learn our lesson */
58 #define PEERS_F_RESYNC_PROCESS        0x00000008 /* The assigned peer was requested for resync */
59 #define PEERS_F_RESYNC_LOCALTIMEOUT   0x00000010 /* Timeout waiting for a full resync from a local node */
60 #define PEERS_F_RESYNC_REMOTETIMEOUT  0x00000020 /* Timeout waiting for a full resync from a remote node */
61 #define PEERS_F_RESYNC_LOCALABORT     0x00000040 /* Session aborted learning from a local node */
62 #define PEERS_F_RESYNC_REMOTEABORT    0x00000080 /* Session aborted learning from a remote node */
63 #define PEERS_F_RESYNC_LOCALFINISHED  0x00000100 /* A local node teach us and was fully up to date */
64 #define PEERS_F_RESYNC_REMOTEFINISHED 0x00000200 /* A remote node teach us and was fully up to date */
65 #define PEERS_F_RESYNC_LOCALPARTIAL   0x00000400 /* A local node teach us but was partially up to date */
66 #define PEERS_F_RESYNC_REMOTEPARTIAL  0x00000800 /* A remote node teach us but was partially up to date */
67 #define PEERS_F_RESYNC_LOCALASSIGN    0x00001000 /* A local node was assigned for a full resync */
68 #define PEERS_F_RESYNC_REMOTEASSIGN   0x00002000 /* A remote node was assigned for a full resync */
69 #define PEERS_F_RESYNC_REQUESTED      0x00004000 /* A resync was explicitly requested */
70 #define PEERS_F_DONOTSTOP             0x00010000 /* Main table sync task block process during soft stop
71                                                     to push data to new process */
72 
73 #define PEERS_RESYNC_STATEMASK      (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE)
74 #define PEERS_RESYNC_FROMLOCAL      0x00000000
75 #define PEERS_RESYNC_FROMREMOTE     PEERS_F_RESYNC_LOCAL
76 #define PEERS_RESYNC_FINISHED       (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE)
77 
78 /***********************************/
79 /* Current shared table sync state */
80 /***********************************/
81 #define SHTABLE_F_TEACH_STAGE1      0x00000001 /* Teach state 1 complete */
82 #define SHTABLE_F_TEACH_STAGE2      0x00000002 /* Teach state 2 complete */
83 
84 /******************************/
85 /* Remote peer teaching state */
86 /******************************/
87 #define PEER_F_TEACH_PROCESS        0x00000001 /* Teach a lesson to current peer */
88 #define PEER_F_TEACH_FINISHED       0x00000008 /* Teach conclude, (wait for confirm) */
89 #define PEER_F_TEACH_COMPLETE       0x00000010 /* All that we know already taught to current peer, used only for a local peer */
90 #define PEER_F_LEARN_ASSIGN         0x00000100 /* Current peer was assigned for a lesson */
91 #define PEER_F_LEARN_NOTUP2DATE     0x00000200 /* Learn from peer finished but peer is not up to date */
92 #define PEER_F_ALIVE                0x20000000 /* Used to flag a peer a alive. */
93 #define PEER_F_HEARTBEAT            0x40000000 /* Heartbeat message to send. */
94 #define PEER_F_DWNGRD               0x80000000 /* When this flag is enabled, we must downgrade the supported version announced during peer sessions. */
95 
96 #define PEER_TEACH_RESET            ~(PEER_F_TEACH_PROCESS|PEER_F_TEACH_FINISHED) /* PEER_F_TEACH_COMPLETE should never be reset */
97 #define PEER_LEARN_RESET            ~(PEER_F_LEARN_ASSIGN|PEER_F_LEARN_NOTUP2DATE)
98 
99 #define PEER_RESYNC_TIMEOUT         5000 /* 5 seconds */
100 #define PEER_RECONNECT_TIMEOUT      5000 /* 5 seconds */
101 #define PEER_HEARTBEAT_TIMEOUT      3000 /* 3 seconds */
102 
103 /*****************************/
104 /* Sync message class        */
105 /*****************************/
106 enum {
107 	PEER_MSG_CLASS_CONTROL = 0,
108 	PEER_MSG_CLASS_ERROR,
109 	PEER_MSG_CLASS_STICKTABLE = 10,
110 	PEER_MSG_CLASS_RESERVED = 255,
111 };
112 
113 /*****************************/
114 /* control message types     */
115 /*****************************/
116 enum {
117 	PEER_MSG_CTRL_RESYNCREQ = 0,
118 	PEER_MSG_CTRL_RESYNCFINISHED,
119 	PEER_MSG_CTRL_RESYNCPARTIAL,
120 	PEER_MSG_CTRL_RESYNCCONFIRM,
121 	PEER_MSG_CTRL_HEARTBEAT,
122 };
123 
124 /*****************************/
125 /* error message types       */
126 /*****************************/
127 enum {
128 	PEER_MSG_ERR_PROTOCOL = 0,
129 	PEER_MSG_ERR_SIZELIMIT,
130 };
131 
132 /* network key types;
133  * network types were directly and mistakenly
134  * mapped on sample types, to keep backward
135  * compatiblitiy we keep those values but
136  * we now use a internal/network mapping
137  * to avoid further mistakes adding or
138  * modifying internals types
139  */
140 enum {
141         PEER_KT_ANY = 0,  /* any type */
142         PEER_KT_RESV1,    /* UNUSED */
143         PEER_KT_SINT,     /* signed 64bits integer type */
144         PEER_KT_RESV3,    /* UNUSED */
145         PEER_KT_IPV4,     /* ipv4 type */
146         PEER_KT_IPV6,     /* ipv6 type */
147         PEER_KT_STR,      /* char string type */
148         PEER_KT_BIN,      /* buffer type */
149         PEER_KT_TYPES     /* number of types, must always be last */
150 };
151 
152 /* Map used to retrieve network type from internal type
153  * Note: Undeclared mapping maps entry to PEER_KT_ANY == 0
154  */
155 static int peer_net_key_type[SMP_TYPES] = {
156 	[SMP_T_SINT] = PEER_KT_SINT,
157 	[SMP_T_IPV4] = PEER_KT_IPV4,
158 	[SMP_T_IPV6] = PEER_KT_IPV6,
159 	[SMP_T_STR]  = PEER_KT_STR,
160 	[SMP_T_BIN]  = PEER_KT_BIN,
161 };
162 
163 /* Map used to retrieve internal type from external type
164  * Note: Undeclared mapping maps entry to SMP_T_ANY == 0
165  */
166 static int peer_int_key_type[PEER_KT_TYPES] = {
167 	[PEER_KT_SINT] = SMP_T_SINT,
168 	[PEER_KT_IPV4] = SMP_T_IPV4,
169 	[PEER_KT_IPV6] = SMP_T_IPV6,
170 	[PEER_KT_STR]  = SMP_T_STR,
171 	[PEER_KT_BIN]  = SMP_T_BIN,
172 };
173 
174 /*
175  * Parameters used by functions to build peer protocol messages. */
176 struct peer_prep_params {
177 	struct {
178 		struct peer *peer;
179 	} hello;
180 	struct {
181 		unsigned int st1;
182 	} error_status;
183 	struct {
184 		struct stksess *stksess;
185 		struct shared_table *shared_table;
186 		unsigned int updateid;
187 		int use_identifier;
188 		int use_timed;
189 		struct peer *peer;
190 	} updt;
191 	struct {
192 		struct shared_table *shared_table;
193 	} swtch;
194 	struct {
195 		struct shared_table *shared_table;
196 	} ack;
197 	struct {
198 		unsigned char head[2];
199 	} control;
200 	struct {
201 		unsigned char head[2];
202 	} error;
203 };
204 
205 /*******************************/
206 /* stick table sync mesg types */
207 /* Note: ids >= 128 contains   */
208 /* id message contains data     */
209 /*******************************/
210 #define PEER_MSG_STKT_UPDATE           0x80
211 #define PEER_MSG_STKT_INCUPDATE        0x81
212 #define PEER_MSG_STKT_DEFINE           0x82
213 #define PEER_MSG_STKT_SWITCH           0x83
214 #define PEER_MSG_STKT_ACK              0x84
215 #define PEER_MSG_STKT_UPDATE_TIMED     0x85
216 #define PEER_MSG_STKT_INCUPDATE_TIMED  0x86
217 /* All the stick-table message identifiers abova have the #7 bit set */
218 #define PEER_MSG_STKT_BIT                 7
219 #define PEER_MSG_STKT_BIT_MASK         (1 << PEER_MSG_STKT_BIT)
220 
221 /* The maximum length of an encoded data length. */
222 #define PEER_MSG_ENC_LENGTH_MAXLEN    5
223 
224 /* Minimum 64-bits value encoded with 2 bytes */
225 #define PEER_ENC_2BYTES_MIN                                  0xf0 /*               0xf0 (or 240) */
226 /* 3 bytes */
227 #define PEER_ENC_3BYTES_MIN  ((1ULL << 11) | PEER_ENC_2BYTES_MIN) /*              0x8f0 (or 2288) */
228 /* 4 bytes */
229 #define PEER_ENC_4BYTES_MIN  ((1ULL << 18) | PEER_ENC_3BYTES_MIN) /*            0x408f0 (or 264432) */
230 /* 5 bytes */
231 #define PEER_ENC_5BYTES_MIN  ((1ULL << 25) | PEER_ENC_4BYTES_MIN) /*          0x20408f0 (or 33818864) */
232 /* 6 bytes */
233 #define PEER_ENC_6BYTES_MIN  ((1ULL << 32) | PEER_ENC_5BYTES_MIN) /*        0x1020408f0 (or 4328786160) */
234 /* 7 bytes */
235 #define PEER_ENC_7BYTES_MIN  ((1ULL << 39) | PEER_ENC_6BYTES_MIN) /*       0x81020408f0 (or 554084600048) */
236 /* 8 bytes */
237 #define PEER_ENC_8BYTES_MIN  ((1ULL << 46) | PEER_ENC_7BYTES_MIN) /*     0x4081020408f0 (or 70922828777712) */
238 /* 9 bytes */
239 #define PEER_ENC_9BYTES_MIN  ((1ULL << 53) | PEER_ENC_8BYTES_MIN) /*   0x204081020408f0 (or 9078122083518704) */
240 /* 10 bytes */
241 #define PEER_ENC_10BYTES_MIN ((1ULL << 60) | PEER_ENC_9BYTES_MIN) /* 0x10204081020408f0 (or 1161999626690365680) */
242 
243 /* #7 bit used to detect the last byte to be encoded */
244 #define PEER_ENC_STOP_BIT         7
245 /* The byte minimum value with #7 bit set */
246 #define PEER_ENC_STOP_BYTE        (1 << PEER_ENC_STOP_BIT)
247 /* The left most number of bits set for PEER_ENC_2BYTES_MIN */
248 #define PEER_ENC_2BYTES_MIN_BITS  4
249 
250 #define PEER_MSG_HEADER_LEN               2
251 
252 #define PEER_STKT_CACHE_MAX_ENTRIES       128
253 
254 /**********************************/
255 /* Peer Session IO handler states */
256 /**********************************/
257 
258 enum {
259 	PEER_SESS_ST_ACCEPT = 0,     /* Initial state for session create by an accept, must be zero! */
260 	PEER_SESS_ST_GETVERSION,     /* Validate supported protocol version */
261 	PEER_SESS_ST_GETHOST,        /* Validate host ID correspond to local host id */
262 	PEER_SESS_ST_GETPEER,        /* Validate peer ID correspond to a known remote peer id */
263 	/* after this point, data were possibly exchanged */
264 	PEER_SESS_ST_SENDSUCCESS,    /* Send ret code 200 (success) and wait for message */
265 	PEER_SESS_ST_CONNECT,        /* Initial state for session create on a connect, push presentation into buffer */
266 	PEER_SESS_ST_GETSTATUS,      /* Wait for the welcome message */
267 	PEER_SESS_ST_WAITMSG,        /* Wait for data messages */
268 	PEER_SESS_ST_EXIT,           /* Exit with status code */
269 	PEER_SESS_ST_ERRPROTO,       /* Send error proto message before exit */
270 	PEER_SESS_ST_ERRSIZE,        /* Send error size message before exit */
271 	PEER_SESS_ST_END,            /* Killed session */
272 };
273 
274 /***************************************************/
275 /* Peer Session status code - part of the protocol */
276 /***************************************************/
277 
278 #define PEER_SESS_SC_CONNECTCODE    100 /* connect in progress */
279 #define PEER_SESS_SC_CONNECTEDCODE  110 /* tcp connect success */
280 
281 #define PEER_SESS_SC_SUCCESSCODE    200 /* accept or connect successful */
282 
283 #define PEER_SESS_SC_TRYAGAIN       300 /* try again later */
284 
285 #define PEER_SESS_SC_ERRPROTO       501 /* error protocol */
286 #define PEER_SESS_SC_ERRVERSION     502 /* unknown protocol version */
287 #define PEER_SESS_SC_ERRHOST        503 /* bad host name */
288 #define PEER_SESS_SC_ERRPEER        504 /* unknown peer */
289 
290 #define PEER_SESSION_PROTO_NAME         "HAProxyS"
291 #define PEER_MAJOR_VER        2
292 #define PEER_MINOR_VER        1
293 #define PEER_DWNGRD_MINOR_VER 0
294 
295 static size_t proto_len = sizeof(PEER_SESSION_PROTO_NAME) - 1;
296 struct peers *cfg_peers = NULL;
297 static void peer_session_forceshutdown(struct peer *peer);
298 
299 static struct ebpt_node *dcache_tx_insert(struct dcache *dc,
300                                           struct dcache_tx_entry *i);
301 static inline void flush_dcache(struct peer *peer);
302 
303 /* trace source and events */
304 static void peers_trace(enum trace_level level, uint64_t mask,
305                         const struct trace_source *src,
306                         const struct ist where, const struct ist func,
307                         const void *a1, const void *a2, const void *a3, const void *a4);
308 
309 static const struct trace_event peers_trace_events[] = {
310 #define PEERS_EV_UPDTMSG         (1 << 0)
311 	{ .mask = PEERS_EV_UPDTMSG,    .name = "updtmsg",      .desc = "update message received" },
312 #define PEERS_EV_ACKMSG          (1 << 1)
313 	{ .mask = PEERS_EV_ACKMSG,     .name = "ackmsg",       .desc = "ack message received" },
314 #define PEERS_EV_SWTCMSG         (1 << 2)
315 	{ .mask = PEERS_EV_SWTCMSG,    .name = "swtcmsg",      .desc = "switch message received" },
316 #define PEERS_EV_DEFMSG          (1 << 3)
317 	{ .mask = PEERS_EV_DEFMSG,     .name = "defmsg",       .desc = "definition message received" },
318 #define PEERS_EV_CTRLMSG         (1 << 4)
319 	{ .mask = PEERS_EV_CTRLMSG,    .name = "ctrlmsg",      .desc = "control message sent/received" },
320 #define PEERS_EV_SESSREL         (1 << 5)
321 	{ .mask = PEERS_EV_SESSREL,    .name = "sessrl",       .desc = "peer session releasing" },
322 #define PEERS_EV_PROTOERR        (1 << 6)
323 	{ .mask = PEERS_EV_PROTOERR,   .name = "protoerr",     .desc = "protocol error" },
324 };
325 
326 static const struct name_desc peers_trace_lockon_args[4] = {
327 	/* arg1 */ { /* already used by the connection */ },
328 	/* arg2 */ { .name="peers", .desc="Peers protocol" },
329 	/* arg3 */ { },
330 	/* arg4 */ { }
331 };
332 
333 static const struct name_desc peers_trace_decoding[] = {
334 #define PEERS_VERB_CLEAN    1
335 	{ .name="clean",    .desc="only user-friendly stuff, generally suitable for level \"user\"" },
336 	{ /* end */ }
337 };
338 
339 
340 struct trace_source trace_peers = {
341 	.name = IST("peers"),
342 	.desc = "Peers protocol",
343 	.arg_def = TRC_ARG1_CONN,  /* TRACE()'s first argument is always a connection */
344 	.default_cb = peers_trace,
345 	.known_events = peers_trace_events,
346 	.lockon_args = peers_trace_lockon_args,
347 	.decoding = peers_trace_decoding,
348 	.report_events = ~0,  /* report everything by default */
349 };
350 
351 /* Return peer control message types as strings (only for debugging purpose). */
ctrl_msg_type_str(unsigned int type)352 static inline char *ctrl_msg_type_str(unsigned int type)
353 {
354 	switch (type) {
355 	case PEER_MSG_CTRL_RESYNCREQ:
356 		return "RESYNCREQ";
357 	case PEER_MSG_CTRL_RESYNCFINISHED:
358 		return "RESYNCFINISHED";
359 	case PEER_MSG_CTRL_RESYNCPARTIAL:
360 		return "RESYNCPARTIAL";
361 	case PEER_MSG_CTRL_RESYNCCONFIRM:
362 		return "RESYNCCONFIRM";
363 	case PEER_MSG_CTRL_HEARTBEAT:
364 		return "HEARTBEAT";
365 	default:
366 		return "???";
367 	}
368 }
369 
370 #define TRACE_SOURCE    &trace_peers
371 INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
372 
peers_trace(enum trace_level level,uint64_t mask,const struct trace_source * src,const struct ist where,const struct ist func,const void * a1,const void * a2,const void * a3,const void * a4)373 static void peers_trace(enum trace_level level, uint64_t mask,
374                         const struct trace_source *src,
375                         const struct ist where, const struct ist func,
376                         const void *a1, const void *a2, const void *a3, const void *a4)
377 {
378 	if (mask & (PEERS_EV_UPDTMSG|PEERS_EV_ACKMSG|PEERS_EV_SWTCMSG)) {
379 		if (a2) {
380 			const struct peer *peer = a2;
381 
382 			chunk_appendf(&trace_buf, " peer=%s", peer->id);
383 		}
384 		if (a3) {
385 			const char *p = a3;
386 
387 			chunk_appendf(&trace_buf, " @%p", p);
388 		}
389 		if (a4) {
390 			const size_t *val = a4;
391 
392 			chunk_appendf(&trace_buf, " %llu", (unsigned long long)*val);
393 		}
394 	}
395 
396 	if (mask & PEERS_EV_DEFMSG) {
397 		if (a2) {
398 			const struct peer *peer = a2;
399 
400 			chunk_appendf(&trace_buf, " peer=%s", peer->id);
401 		}
402 		if (a3) {
403 			const char *p = a3;
404 
405 			chunk_appendf(&trace_buf, " @%p", p);
406 		}
407 		if (a4) {
408 			const int *val = a4;
409 
410 			chunk_appendf(&trace_buf, " %d", *val);
411 		}
412 	}
413 
414 	if (mask & PEERS_EV_CTRLMSG) {
415 		if (a2) {
416 			const unsigned char *ctrl_msg_type = a2;
417 
418 			chunk_appendf(&trace_buf, " %s", ctrl_msg_type_str(*ctrl_msg_type));
419 
420 		}
421 		if (a3) {
422 			const char *local_peer = a3;
423 
424 			chunk_appendf(&trace_buf, " %s", local_peer);
425 		}
426 
427 		if (a4) {
428 			const char *remote_peer = a4;
429 
430 			chunk_appendf(&trace_buf, " -> %s", remote_peer);
431 		}
432 	}
433 
434 	if (mask & (PEERS_EV_SESSREL|PEERS_EV_PROTOERR)) {
435 		if (a2) {
436 			const struct peer *peer = a2;
437 			struct peers *peers = NULL;
438 
439 			if (peer && peer->appctx) {
440 				struct stream_interface *si;
441 
442 				si = peer->appctx->owner;
443 				if (si) {
444 					struct stream *s = si_strm(si);
445 
446 					peers = strm_fe(s)->parent;
447 				}
448 			}
449 
450 			if (peers)
451 				chunk_appendf(&trace_buf, " %s", peers->local->id);
452 			if (peer)
453 				chunk_appendf(&trace_buf, " -> %s", peer->id);
454 		}
455 
456 		if (a3) {
457 			const int *prev_state = a3;
458 
459 			chunk_appendf(&trace_buf, " prev_state=%d\n", *prev_state);
460 		}
461 	}
462 }
463 
statuscode_str(int statuscode)464 static const char *statuscode_str(int statuscode)
465 {
466 	switch (statuscode) {
467 	case PEER_SESS_SC_CONNECTCODE:
468 		return "CONN";
469 	case PEER_SESS_SC_CONNECTEDCODE:
470 		return "HSHK";
471 	case PEER_SESS_SC_SUCCESSCODE:
472 		return "ESTA";
473 	case PEER_SESS_SC_TRYAGAIN:
474 		return "RETR";
475 	case PEER_SESS_SC_ERRPROTO:
476 		return "PROT";
477 	case PEER_SESS_SC_ERRVERSION:
478 		return "VERS";
479 	case PEER_SESS_SC_ERRHOST:
480 		return "NAME";
481 	case PEER_SESS_SC_ERRPEER:
482 		return "UNKN";
483 	default:
484 		return "NONE";
485 	}
486 }
487 
488 /* This function encode an uint64 to 'dynamic' length format.
489    The encoded value is written at address *str, and the
490    caller must assure that size after *str is large enough.
491    At return, the *str is set at the next Byte after then
492    encoded integer. The function returns then length of the
493    encoded integer in Bytes */
intencode(uint64_t i,char ** str)494 int intencode(uint64_t i, char **str) {
495 	int idx = 0;
496 	unsigned char *msg;
497 
498 	msg = (unsigned char *)*str;
499 	if (i < PEER_ENC_2BYTES_MIN) {
500 		msg[0] = (unsigned char)i;
501 		*str = (char *)&msg[idx+1];
502 		return (idx+1);
503 	}
504 
505 	msg[idx] =(unsigned char)i | PEER_ENC_2BYTES_MIN;
506 	i = (i - PEER_ENC_2BYTES_MIN) >> PEER_ENC_2BYTES_MIN_BITS;
507 	while (i >= PEER_ENC_STOP_BYTE) {
508 		msg[++idx] = (unsigned char)i | PEER_ENC_STOP_BYTE;
509 		i = (i - PEER_ENC_STOP_BYTE) >> PEER_ENC_STOP_BIT;
510 	}
511 	msg[++idx] = (unsigned char)i;
512 	*str = (char *)&msg[idx+1];
513 	return (idx+1);
514 }
515 
516 
517 /* This function returns the decoded integer or 0
518    if decode failed
519    *str point on the beginning of the integer to decode
520    at the end of decoding *str point on the end of the
521    encoded integer or to null if end is reached */
intdecode(char ** str,char * end)522 uint64_t intdecode(char **str, char *end)
523 {
524 	unsigned char *msg;
525 	uint64_t i;
526 	int shift;
527 
528 	if (!*str)
529 		return 0;
530 
531 	msg = (unsigned char *)*str;
532 	if (msg >= (unsigned char *)end)
533 		goto fail;
534 
535 	i = *(msg++);
536 	if (i >= PEER_ENC_2BYTES_MIN) {
537 		shift = PEER_ENC_2BYTES_MIN_BITS;
538 		do {
539 			if (msg >= (unsigned char *)end)
540 				goto fail;
541 			i += (uint64_t)*msg << shift;
542 			shift += PEER_ENC_STOP_BIT;
543 		} while (*(msg++) >= PEER_ENC_STOP_BYTE);
544 	}
545 	*str = (char *)msg;
546 	return i;
547 
548  fail:
549 	*str = NULL;
550 	return 0;
551 }
552 
553 /*
554  * Build a "hello" peer protocol message.
555  * Return the number of written bytes written to build this messages if succeeded,
556  * 0 if not.
557  */
peer_prepare_hellomsg(char * msg,size_t size,struct peer_prep_params * p)558 static int peer_prepare_hellomsg(char *msg, size_t size, struct peer_prep_params *p)
559 {
560 	int min_ver, ret;
561 	struct peer *peer;
562 
563 	peer = p->hello.peer;
564 	min_ver = (peer->flags & PEER_F_DWNGRD) ? PEER_DWNGRD_MINOR_VER : PEER_MINOR_VER;
565 	/* Prepare headers */
566 	ret = snprintf(msg, size, PEER_SESSION_PROTO_NAME " %u.%u\n%s\n%s %d %d\n",
567 	              PEER_MAJOR_VER, min_ver, peer->id, localpeer, (int)getpid(), relative_pid);
568 	if (ret >= size)
569 		return 0;
570 
571 	return ret;
572 }
573 
574 /*
575  * Build a "handshake succeeded" status message.
576  * Return the number of written bytes written to build this messages if succeeded,
577  * 0 if not.
578  */
peer_prepare_status_successmsg(char * msg,size_t size,struct peer_prep_params * p)579 static int peer_prepare_status_successmsg(char *msg, size_t size, struct peer_prep_params *p)
580 {
581 	int ret;
582 
583 	ret = snprintf(msg, size, "%d\n", PEER_SESS_SC_SUCCESSCODE);
584 	if (ret >= size)
585 		return 0;
586 
587 	return ret;
588 }
589 
590 /*
591  * Build an error status message.
592  * Return the number of written bytes written to build this messages if succeeded,
593  * 0 if not.
594  */
peer_prepare_status_errormsg(char * msg,size_t size,struct peer_prep_params * p)595 static int peer_prepare_status_errormsg(char *msg, size_t size, struct peer_prep_params *p)
596 {
597 	int ret;
598 	unsigned int st1;
599 
600 	st1 = p->error_status.st1;
601 	ret = snprintf(msg, size, "%d\n", st1);
602 	if (ret >= size)
603 		return 0;
604 
605 	return ret;
606 }
607 
608 /* Set the stick-table UPDATE message type byte at <msg_type> address,
609  * depending on <use_identifier> and <use_timed> boolean parameters.
610  * Always successful.
611  */
peer_set_update_msg_type(char * msg_type,int use_identifier,int use_timed)612 static inline void peer_set_update_msg_type(char *msg_type, int use_identifier, int use_timed)
613 {
614 	if (use_timed) {
615 		if (use_identifier)
616 			*msg_type = PEER_MSG_STKT_UPDATE_TIMED;
617 		else
618 			*msg_type = PEER_MSG_STKT_INCUPDATE_TIMED;
619 	}
620 	else {
621 		if (use_identifier)
622 			*msg_type = PEER_MSG_STKT_UPDATE;
623 		else
624 			*msg_type = PEER_MSG_STKT_INCUPDATE;
625 	}
626 }
627 /*
628  * This prepare the data update message on the stick session <ts>, <st> is the considered
629  * stick table.
630  *  <msg> is a buffer of <size> to receive data message content
631  * If function returns 0, the caller should consider we were unable to encode this message (TODO:
632  * check size)
633  */
peer_prepare_updatemsg(char * msg,size_t size,struct peer_prep_params * p)634 static int peer_prepare_updatemsg(char *msg, size_t size, struct peer_prep_params *p)
635 {
636 	uint32_t netinteger;
637 	unsigned short datalen;
638 	char *cursor, *datamsg;
639 	unsigned int data_type;
640 	void *data_ptr;
641 	struct stksess *ts;
642 	struct shared_table *st;
643 	unsigned int updateid;
644 	int use_identifier;
645 	int use_timed;
646 	struct peer *peer;
647 
648 	ts = p->updt.stksess;
649 	st = p->updt.shared_table;
650 	updateid = p->updt.updateid;
651 	use_identifier = p->updt.use_identifier;
652 	use_timed = p->updt.use_timed;
653 	peer = p->updt.peer;
654 
655 	cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN;
656 
657 	/* construct message */
658 
659 	/* check if we need to send the update identifier */
660 	if (!st->last_pushed || updateid < st->last_pushed || ((updateid - st->last_pushed) != 1)) {
661 		use_identifier = 1;
662 	}
663 
664 	/* encode update identifier if needed */
665 	if (use_identifier)  {
666 		netinteger = htonl(updateid);
667 		memcpy(cursor, &netinteger, sizeof(netinteger));
668 		cursor += sizeof(netinteger);
669 	}
670 
671 	if (use_timed) {
672 		netinteger = htonl(tick_remain(now_ms, ts->expire));
673 		memcpy(cursor, &netinteger, sizeof(netinteger));
674 		cursor += sizeof(netinteger);
675 	}
676 
677 	/* encode the key */
678 	if (st->table->type == SMP_T_STR) {
679 		int stlen = strlen((char *)ts->key.key);
680 
681 		intencode(stlen, &cursor);
682 		memcpy(cursor, ts->key.key, stlen);
683 		cursor += stlen;
684 	}
685 	else if (st->table->type == SMP_T_SINT) {
686 		netinteger = htonl(read_u32(ts->key.key));
687 		memcpy(cursor, &netinteger, sizeof(netinteger));
688 		cursor += sizeof(netinteger);
689 	}
690 	else {
691 		memcpy(cursor, ts->key.key, st->table->key_size);
692 		cursor += st->table->key_size;
693 	}
694 
695 	HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
696 	/* encode values */
697 	for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) {
698 
699 		data_ptr = stktable_data_ptr(st->table, ts, data_type);
700 		if (data_ptr) {
701 			switch (stktable_data_types[data_type].std_type) {
702 				case STD_T_SINT: {
703 					int data;
704 
705 					data = stktable_data_cast(data_ptr, std_t_sint);
706 					intencode(data, &cursor);
707 					break;
708 				}
709 				case STD_T_UINT: {
710 					unsigned int data;
711 
712 					data = stktable_data_cast(data_ptr, std_t_uint);
713 					intencode(data, &cursor);
714 					break;
715 				}
716 				case STD_T_ULL: {
717 					unsigned long long data;
718 
719 					data = stktable_data_cast(data_ptr, std_t_ull);
720 					intencode(data, &cursor);
721 					break;
722 				}
723 				case STD_T_FRQP: {
724 					struct freq_ctr_period *frqp;
725 
726 					frqp = &stktable_data_cast(data_ptr, std_t_frqp);
727 					intencode((unsigned int)(now_ms - frqp->curr_tick), &cursor);
728 					intencode(frqp->curr_ctr, &cursor);
729 					intencode(frqp->prev_ctr, &cursor);
730 					break;
731 				}
732 				case STD_T_DICT: {
733 					struct dict_entry *de;
734 					struct ebpt_node *cached_de;
735 					struct dcache_tx_entry cde = { };
736 					char *beg, *end;
737 					size_t value_len, data_len;
738 					struct dcache *dc;
739 
740 					de = stktable_data_cast(data_ptr, std_t_dict);
741 					if (!de) {
742 						/* No entry */
743 						intencode(0, &cursor);
744 						break;
745 					}
746 
747 					dc = peer->dcache;
748 					cde.entry.key = de;
749 					cached_de = dcache_tx_insert(dc, &cde);
750 					if (cached_de == &cde.entry) {
751 						if (cde.id + 1 >= PEER_ENC_2BYTES_MIN)
752 							break;
753 						/* Encode the length of the remaining data -> 1 */
754 						intencode(1, &cursor);
755 						/* Encode the cache entry ID */
756 						intencode(cde.id + 1, &cursor);
757 					}
758 					else {
759 						/* Leave enough room to encode the remaining data length. */
760 						end = beg = cursor + PEER_MSG_ENC_LENGTH_MAXLEN;
761 						/* Encode the dictionary entry key */
762 						intencode(cde.id + 1, &end);
763 						/* Encode the length of the dictionary entry data */
764 						value_len = de->len;
765 						intencode(value_len, &end);
766 						/* Copy the data */
767 						memcpy(end, de->value.key, value_len);
768 						end += value_len;
769 						/* Encode the length of the data */
770 						data_len = end - beg;
771 						intencode(data_len, &cursor);
772 						memmove(cursor, beg, data_len);
773 						cursor += data_len;
774 					}
775 					break;
776 				}
777 			}
778 		}
779 	}
780 	HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
781 
782 	/* Compute datalen */
783 	datalen = (cursor - datamsg);
784 
785 	/*  prepare message header */
786 	msg[0] = PEER_MSG_CLASS_STICKTABLE;
787 	peer_set_update_msg_type(&msg[1], use_identifier, use_timed);
788 	cursor = &msg[2];
789 	intencode(datalen, &cursor);
790 
791 	/* move data after header */
792 	memmove(cursor, datamsg, datalen);
793 
794 	/* return header size + data_len */
795 	return (cursor - msg) + datalen;
796 }
797 
798 /*
799  * This prepare the switch table message to targeted share table <st>.
800  *  <msg> is a buffer of <size> to receive data message content
801  * If function returns 0, the caller should consider we were unable to encode this message (TODO:
802  * check size)
803  */
peer_prepare_switchmsg(char * msg,size_t size,struct peer_prep_params * params)804 static int peer_prepare_switchmsg(char *msg, size_t size, struct peer_prep_params *params)
805 {
806 	int len;
807 	unsigned short datalen;
808 	struct buffer *chunk;
809 	char *cursor, *datamsg, *chunkp, *chunkq;
810 	uint64_t data = 0;
811 	unsigned int data_type;
812 	struct shared_table *st;
813 
814 	st = params->swtch.shared_table;
815 	cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN;
816 
817 	/* Encode data */
818 
819 	/* encode local id */
820 	intencode(st->local_id, &cursor);
821 
822 	/* encode table name */
823 	len = strlen(st->table->nid);
824 	intencode(len, &cursor);
825 	memcpy(cursor, st->table->nid, len);
826 	cursor += len;
827 
828 	/* encode table type */
829 
830 	intencode(peer_net_key_type[st->table->type], &cursor);
831 
832 	/* encode table key size */
833 	intencode(st->table->key_size, &cursor);
834 
835 	chunk = get_trash_chunk();
836 	chunkp = chunkq = chunk->area;
837 	/* encode available known data types in table */
838 	for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) {
839 		if (st->table->data_ofs[data_type]) {
840 			switch (stktable_data_types[data_type].std_type) {
841 				case STD_T_SINT:
842 				case STD_T_UINT:
843 				case STD_T_ULL:
844 				case STD_T_DICT:
845 					data |= 1ULL << data_type;
846 					break;
847 				case STD_T_FRQP:
848 					data |= 1ULL << data_type;
849 					intencode(data_type, &chunkq);
850 					intencode(st->table->data_arg[data_type].u, &chunkq);
851 					break;
852 			}
853 		}
854 	}
855 	intencode(data, &cursor);
856 
857 	/* Encode stick-table entries duration. */
858 	intencode(st->table->expire, &cursor);
859 
860 	if (chunkq > chunkp) {
861 		chunk->data = chunkq - chunkp;
862 		memcpy(cursor, chunk->area, chunk->data);
863 		cursor += chunk->data;
864 	}
865 
866 	/* Compute datalen */
867 	datalen = (cursor - datamsg);
868 
869 	/*  prepare message header */
870 	msg[0] = PEER_MSG_CLASS_STICKTABLE;
871 	msg[1] = PEER_MSG_STKT_DEFINE;
872 	cursor = &msg[2];
873 	intencode(datalen, &cursor);
874 
875 	/* move data after header */
876 	memmove(cursor, datamsg, datalen);
877 
878 	/* return header size + data_len */
879 	return (cursor - msg) + datalen;
880 }
881 
882 /*
883  * This prepare the acknowledge message on the stick session <ts>, <st> is the considered
884  * stick table.
885  *  <msg> is a buffer of <size> to receive data message content
886  * If function returns 0, the caller should consider we were unable to encode this message (TODO:
887  * check size)
888  */
peer_prepare_ackmsg(char * msg,size_t size,struct peer_prep_params * p)889 static int peer_prepare_ackmsg(char *msg, size_t size, struct peer_prep_params *p)
890 {
891 	unsigned short datalen;
892 	char *cursor, *datamsg;
893 	uint32_t netinteger;
894 	struct shared_table *st;
895 
896 	cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN;
897 
898 	st = p->ack.shared_table;
899 	intencode(st->remote_id, &cursor);
900 	netinteger = htonl(st->last_get);
901 	memcpy(cursor, &netinteger, sizeof(netinteger));
902 	cursor += sizeof(netinteger);
903 
904 	/* Compute datalen */
905 	datalen = (cursor - datamsg);
906 
907 	/*  prepare message header */
908 	msg[0] = PEER_MSG_CLASS_STICKTABLE;
909 	msg[1] = PEER_MSG_STKT_ACK;
910 	cursor = &msg[2];
911 	intencode(datalen, &cursor);
912 
913 	/* move data after header */
914 	memmove(cursor, datamsg, datalen);
915 
916 	/* return header size + data_len */
917 	return (cursor - msg) + datalen;
918 }
919 
920 /*
921  * Function to deinit connected peer
922  */
__peer_session_deinit(struct peer * peer)923 void __peer_session_deinit(struct peer *peer)
924 {
925 	struct stream_interface *si;
926 	struct stream *s;
927 	struct peers *peers;
928 
929 	if (!peer->appctx)
930 		return;
931 
932 	si = peer->appctx->owner;
933 	if (!si)
934 		return;
935 
936 	s = si_strm(si);
937 	if (!s)
938 		return;
939 
940 	peers = strm_fe(s)->parent;
941 	if (!peers)
942 		return;
943 
944 	if (peer->appctx->st0 == PEER_SESS_ST_WAITMSG)
945 		HA_ATOMIC_SUB(&connected_peers, 1);
946 
947 	HA_ATOMIC_SUB(&active_peers, 1);
948 
949 	flush_dcache(peer);
950 
951 	/* Re-init current table pointers to force announcement on re-connect */
952 	peer->remote_table = peer->last_local_table = NULL;
953 	peer->appctx = NULL;
954 	if (peer->flags & PEER_F_LEARN_ASSIGN) {
955 		/* unassign current peer for learning */
956 		peer->flags &= ~(PEER_F_LEARN_ASSIGN);
957 		peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS);
958 
959 		if (peer->local)
960 			 peers->flags |= PEERS_F_RESYNC_LOCALABORT;
961 		else
962 			 peers->flags |= PEERS_F_RESYNC_REMOTEABORT;
963 		/* reschedule a resync */
964 		peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(5000));
965 	}
966 	/* reset teaching and learning flags to 0 */
967 	peer->flags &= PEER_TEACH_RESET;
968 	peer->flags &= PEER_LEARN_RESET;
969 	task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
970 }
971 
972 /*
973  * Callback to release a session with a peer
974  */
peer_session_release(struct appctx * appctx)975 static void peer_session_release(struct appctx *appctx)
976 {
977 	struct peer *peer = appctx->ctx.peers.ptr;
978 
979 	TRACE_PROTO("releasing peer session", PEERS_EV_SESSREL, NULL, peer);
980 	/* appctx->ctx.peers.ptr is not a peer session */
981 	if (appctx->st0 < PEER_SESS_ST_SENDSUCCESS)
982 		return;
983 
984 	/* peer session identified */
985 	if (peer) {
986 		HA_SPIN_LOCK(PEER_LOCK, &peer->lock);
987 		if (peer->appctx == appctx)
988 			__peer_session_deinit(peer);
989 		peer->flags &= ~PEER_F_ALIVE;
990 		HA_SPIN_UNLOCK(PEER_LOCK, &peer->lock);
991 	}
992 }
993 
994 /* Retrieve the major and minor versions of peers protocol
995  * announced by a remote peer. <str> is a null-terminated
996  * string with the following format: "<maj_ver>.<min_ver>".
997  */
peer_get_version(const char * str,unsigned int * maj_ver,unsigned int * min_ver)998 static int peer_get_version(const char *str,
999                             unsigned int *maj_ver, unsigned int *min_ver)
1000 {
1001 	unsigned int majv, minv;
1002 	const char *pos, *saved;
1003 	const char *end;
1004 
1005 	saved = pos = str;
1006 	end = str + strlen(str);
1007 
1008 	majv = read_uint(&pos, end);
1009 	if (saved == pos || *pos++ != '.')
1010 		return -1;
1011 
1012 	saved = pos;
1013 	minv = read_uint(&pos, end);
1014 	if (saved == pos || pos != end)
1015 		return -1;
1016 
1017 	*maj_ver = majv;
1018 	*min_ver = minv;
1019 
1020 	return 0;
1021 }
1022 
1023 /*
1024  * Parse a line terminated by an optional '\r' character, followed by a mandatory
1025  * '\n' character.
1026  * Returns 1 if succeeded or 0 if a '\n' character could not be found, and -1 if
1027  * a line could not be read because the communication channel is closed.
1028  */
peer_getline(struct appctx * appctx)1029 static inline int peer_getline(struct appctx  *appctx)
1030 {
1031 	int n;
1032 	struct stream_interface *si = appctx->owner;
1033 
1034 	n = co_getline(si_oc(si), trash.area, trash.size);
1035 	if (!n)
1036 		return 0;
1037 
1038 	if (n < 0 || trash.area[n - 1] != '\n') {
1039 		appctx->st0 = PEER_SESS_ST_END;
1040 		return -1;
1041 	}
1042 
1043 	if (n > 1 && (trash.area[n - 2] == '\r'))
1044 		trash.area[n - 2] = 0;
1045 	else
1046 		trash.area[n - 1] = 0;
1047 
1048 	co_skip(si_oc(si), n);
1049 
1050 	return n;
1051 }
1052 
1053 /*
1054  * Send a message after having called <peer_prepare_msg> to build it.
1055  * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1056  * Returns -1 if there was not enough room left to send the message,
1057  * any other negative returned value must  be considered as an error with an appcxt st0
1058  * returned value equal to PEER_SESS_ST_END.
1059  */
peer_send_msg(struct appctx * appctx,int (* peer_prepare_msg)(char *,size_t,struct peer_prep_params *),struct peer_prep_params * params)1060 static inline int peer_send_msg(struct appctx *appctx,
1061                                 int (*peer_prepare_msg)(char *, size_t, struct peer_prep_params *),
1062                                 struct peer_prep_params *params)
1063 {
1064 	int ret, msglen;
1065 	struct stream_interface *si = appctx->owner;
1066 
1067 	msglen = peer_prepare_msg(trash.area, trash.size, params);
1068 	if (!msglen) {
1069 		/* internal error: message does not fit in trash */
1070 		appctx->st0 = PEER_SESS_ST_END;
1071 		return 0;
1072 	}
1073 
1074 	/* message to buffer */
1075 	ret = ci_putblk(si_ic(si), trash.area, msglen);
1076 	if (ret <= 0) {
1077 		if (ret == -1) {
1078 			/* No more write possible */
1079 			si_rx_room_blk(si);
1080 			return -1;
1081 		}
1082 		appctx->st0 = PEER_SESS_ST_END;
1083 	}
1084 
1085 	return ret;
1086 }
1087 
1088 /*
1089  * Send a hello message.
1090  * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1091  * Returns -1 if there was not enough room left to send the message,
1092  * any other negative returned value must  be considered as an error with an appcxt st0
1093  * returned value equal to PEER_SESS_ST_END.
1094  */
peer_send_hellomsg(struct appctx * appctx,struct peer * peer)1095 static inline int peer_send_hellomsg(struct appctx *appctx, struct peer *peer)
1096 {
1097 	struct peer_prep_params p = {
1098 		.hello.peer = peer,
1099 	};
1100 
1101 	return peer_send_msg(appctx, peer_prepare_hellomsg, &p);
1102 }
1103 
1104 /*
1105  * Send a success peer handshake status message.
1106  * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1107  * Returns -1 if there was not enough room left to send the message,
1108  * any other negative returned value must  be considered as an error with an appcxt st0
1109  * returned value equal to PEER_SESS_ST_END.
1110  */
peer_send_status_successmsg(struct appctx * appctx)1111 static inline int peer_send_status_successmsg(struct appctx *appctx)
1112 {
1113 	return peer_send_msg(appctx, peer_prepare_status_successmsg, NULL);
1114 }
1115 
1116 /*
1117  * Send a peer handshake status error message.
1118  * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1119  * Returns -1 if there was not enough room left to send the message,
1120  * any other negative returned value must  be considered as an error with an appcxt st0
1121  * returned value equal to PEER_SESS_ST_END.
1122  */
peer_send_status_errormsg(struct appctx * appctx)1123 static inline int peer_send_status_errormsg(struct appctx *appctx)
1124 {
1125 	struct peer_prep_params p = {
1126 		.error_status.st1 = appctx->st1,
1127 	};
1128 
1129 	return peer_send_msg(appctx, peer_prepare_status_errormsg, &p);
1130 }
1131 
1132 /*
1133  * Send a stick-table switch message.
1134  * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1135  * Returns -1 if there was not enough room left to send the message,
1136  * any other negative returned value must  be considered as an error with an appcxt st0
1137  * returned value equal to PEER_SESS_ST_END.
1138  */
peer_send_switchmsg(struct shared_table * st,struct appctx * appctx)1139 static inline int peer_send_switchmsg(struct shared_table *st, struct appctx *appctx)
1140 {
1141 	struct peer_prep_params p = {
1142 		.swtch.shared_table = st,
1143 	};
1144 
1145 	return peer_send_msg(appctx, peer_prepare_switchmsg, &p);
1146 }
1147 
1148 /*
1149  * Send a stick-table update acknowledgement message.
1150  * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1151  * Returns -1 if there was not enough room left to send the message,
1152  * any other negative returned value must  be considered as an error with an appcxt st0
1153  * returned value equal to PEER_SESS_ST_END.
1154  */
peer_send_ackmsg(struct shared_table * st,struct appctx * appctx)1155 static inline int peer_send_ackmsg(struct shared_table *st, struct appctx *appctx)
1156 {
1157 	struct peer_prep_params p = {
1158 		.ack.shared_table = st,
1159 	};
1160 
1161 	return peer_send_msg(appctx, peer_prepare_ackmsg, &p);
1162 }
1163 
1164 /*
1165  * Send a stick-table update message.
1166  * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1167  * Returns -1 if there was not enough room left to send the message,
1168  * any other negative returned value must  be considered as an error with an appcxt st0
1169  * returned value equal to PEER_SESS_ST_END.
1170  */
peer_send_updatemsg(struct shared_table * st,struct appctx * appctx,struct stksess * ts,unsigned int updateid,int use_identifier,int use_timed)1171 static inline int peer_send_updatemsg(struct shared_table *st, struct appctx *appctx, struct stksess *ts,
1172                                       unsigned int updateid, int use_identifier, int use_timed)
1173 {
1174 	struct peer_prep_params p = {
1175 		.updt = {
1176 			.stksess = ts,
1177 			.shared_table = st,
1178 			.updateid = updateid,
1179 			.use_identifier = use_identifier,
1180 			.use_timed = use_timed,
1181 			.peer = appctx->ctx.peers.ptr,
1182 		},
1183 	};
1184 
1185 	return peer_send_msg(appctx, peer_prepare_updatemsg, &p);
1186 }
1187 
1188 /*
1189  * Build a peer protocol control class message.
1190  * Returns the number of written bytes used to build the message if succeeded,
1191  * 0 if not.
1192  */
peer_prepare_control_msg(char * msg,size_t size,struct peer_prep_params * p)1193 static int peer_prepare_control_msg(char *msg, size_t size, struct peer_prep_params *p)
1194 {
1195 	if (size < sizeof p->control.head)
1196 		return 0;
1197 
1198 	msg[0] = p->control.head[0];
1199 	msg[1] = p->control.head[1];
1200 
1201 	return 2;
1202 }
1203 
1204 /*
1205  * Send a stick-table synchronization request message.
1206  * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1207  * Returns -1 if there was not enough room left to send the message,
1208  * any other negative returned value must  be considered as an error with an appctx st0
1209  * returned value equal to PEER_SESS_ST_END.
1210  */
peer_send_resync_reqmsg(struct appctx * appctx,struct peer * peer,struct peers * peers)1211 static inline int peer_send_resync_reqmsg(struct appctx *appctx,
1212                                           struct peer *peer, struct peers *peers)
1213 {
1214 	struct peer_prep_params p = {
1215 		.control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_RESYNCREQ, },
1216 	};
1217 
1218 	TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
1219 	            NULL, &p.control.head[1], peers->local->id, peer->id);
1220 
1221 	return peer_send_msg(appctx, peer_prepare_control_msg, &p);
1222 }
1223 
1224 /*
1225  * Send a stick-table synchronization confirmation message.
1226  * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1227  * Returns -1 if there was not enough room left to send the message,
1228  * any other negative returned value must  be considered as an error with an appctx st0
1229  * returned value equal to PEER_SESS_ST_END.
1230  */
peer_send_resync_confirmsg(struct appctx * appctx,struct peer * peer,struct peers * peers)1231 static inline int peer_send_resync_confirmsg(struct appctx *appctx,
1232                                              struct peer *peer, struct peers *peers)
1233 {
1234 	struct peer_prep_params p = {
1235 		.control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_RESYNCCONFIRM, },
1236 	};
1237 
1238 	TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
1239 	            NULL, &p.control.head[1], peers->local->id, peer->id);
1240 
1241 	return peer_send_msg(appctx, peer_prepare_control_msg, &p);
1242 }
1243 
1244 /*
1245  * Send a stick-table synchronization finished message.
1246  * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1247  * Returns -1 if there was not enough room left to send the message,
1248  * any other negative returned value must  be considered as an error with an appctx st0
1249  * returned value equal to PEER_SESS_ST_END.
1250  */
peer_send_resync_finishedmsg(struct appctx * appctx,struct peer * peer,struct peers * peers)1251 static inline int peer_send_resync_finishedmsg(struct appctx *appctx,
1252                                                struct peer *peer, struct peers *peers)
1253 {
1254 	struct peer_prep_params p = {
1255 		.control.head = { PEER_MSG_CLASS_CONTROL, },
1256 	};
1257 
1258 	p.control.head[1] = (peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FINISHED ?
1259 		PEER_MSG_CTRL_RESYNCFINISHED : PEER_MSG_CTRL_RESYNCPARTIAL;
1260 
1261 	TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
1262 	            NULL, &p.control.head[1], peers->local->id, peer->id);
1263 
1264 	return peer_send_msg(appctx, peer_prepare_control_msg, &p);
1265 }
1266 
1267 /*
1268  * Send a heartbeat message.
1269  * Return 0 if the message could not be built modifying the appctx st0 to PEER_SESS_ST_END value.
1270  * Returns -1 if there was not enough room left to send the message,
1271  * any other negative returned value must  be considered as an error with an appctx st0
1272  * returned value equal to PEER_SESS_ST_END.
1273  */
peer_send_heartbeatmsg(struct appctx * appctx,struct peer * peer,struct peers * peers)1274 static inline int peer_send_heartbeatmsg(struct appctx *appctx,
1275                                          struct peer *peer, struct peers *peers)
1276 {
1277 	struct peer_prep_params p = {
1278 		.control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_HEARTBEAT, },
1279 	};
1280 
1281 	TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
1282 	            NULL, &p.control.head[1], peers->local->id, peer->id);
1283 
1284 	return peer_send_msg(appctx, peer_prepare_control_msg, &p);
1285 }
1286 
1287 /*
1288  * Build a peer protocol error class message.
1289  * Returns the number of written bytes used to build the message if succeeded,
1290  * 0 if not.
1291  */
peer_prepare_error_msg(char * msg,size_t size,struct peer_prep_params * p)1292 static int peer_prepare_error_msg(char *msg, size_t size, struct peer_prep_params *p)
1293 {
1294 	if (size < sizeof p->error.head)
1295 		return 0;
1296 
1297 	msg[0] = p->error.head[0];
1298 	msg[1] = p->error.head[1];
1299 
1300 	return 2;
1301 }
1302 
1303 /*
1304  * Send a "size limit reached" error message.
1305  * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1306  * Returns -1 if there was not enough room left to send the message,
1307  * any other negative returned value must  be considered as an error with an appctx st0
1308  * returned value equal to PEER_SESS_ST_END.
1309  */
peer_send_error_size_limitmsg(struct appctx * appctx)1310 static inline int peer_send_error_size_limitmsg(struct appctx *appctx)
1311 {
1312 	struct peer_prep_params p = {
1313 		.error.head = { PEER_MSG_CLASS_ERROR, PEER_MSG_ERR_SIZELIMIT, },
1314 	};
1315 
1316 	return peer_send_msg(appctx, peer_prepare_error_msg, &p);
1317 }
1318 
1319 /*
1320  * Send a "peer protocol" error message.
1321  * Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1322  * Returns -1 if there was not enough room left to send the message,
1323  * any other negative returned value must  be considered as an error with an appctx st0
1324  * returned value equal to PEER_SESS_ST_END.
1325  */
peer_send_error_protomsg(struct appctx * appctx)1326 static inline int peer_send_error_protomsg(struct appctx *appctx)
1327 {
1328 	struct peer_prep_params p = {
1329 		.error.head = { PEER_MSG_CLASS_ERROR, PEER_MSG_ERR_PROTOCOL, },
1330 	};
1331 
1332 	return peer_send_msg(appctx, peer_prepare_error_msg, &p);
1333 }
1334 
1335 /*
1336  * Function used to lookup for recent stick-table updates associated with
1337  * <st> shared stick-table when a lesson must be taught a peer (PEER_F_LEARN_ASSIGN flag set).
1338  */
peer_teach_process_stksess_lookup(struct shared_table * st)1339 static inline struct stksess *peer_teach_process_stksess_lookup(struct shared_table *st)
1340 {
1341 	struct eb32_node *eb;
1342 
1343 	eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1);
1344 	if (!eb) {
1345 		eb = eb32_first(&st->table->updates);
1346 		if (!eb || (eb->key == st->last_pushed)) {
1347 			st->table->commitupdate = st->last_pushed = st->table->localupdate;
1348 			return NULL;
1349 		}
1350 	}
1351 
1352 	/* if distance between the last pushed and the retrieved key
1353 	 * is greater than the distance last_pushed and the local_update
1354 	 * this means we are beyond localupdate.
1355 	 */
1356 	if ((eb->key - st->last_pushed) > (st->table->localupdate - st->last_pushed)) {
1357 		st->table->commitupdate = st->last_pushed = st->table->localupdate;
1358 		return NULL;
1359 	}
1360 
1361 	return eb32_entry(eb, struct stksess, upd);
1362 }
1363 
1364 /*
1365  * Function used to lookup for recent stick-table updates associated with
1366  * <st> shared stick-table during teach state 1 step.
1367  */
peer_teach_stage1_stksess_lookup(struct shared_table * st)1368 static inline struct stksess *peer_teach_stage1_stksess_lookup(struct shared_table *st)
1369 {
1370 	struct eb32_node *eb;
1371 
1372 	eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1);
1373 	if (!eb) {
1374 		st->flags |= SHTABLE_F_TEACH_STAGE1;
1375 		eb = eb32_first(&st->table->updates);
1376 		if (eb)
1377 			st->last_pushed = eb->key - 1;
1378 		return NULL;
1379 	}
1380 
1381 	return eb32_entry(eb, struct stksess, upd);
1382 }
1383 
1384 /*
1385  * Function used to lookup for recent stick-table updates associated with
1386  * <st> shared stick-table during teach state 2 step.
1387  */
peer_teach_stage2_stksess_lookup(struct shared_table * st)1388 static inline struct stksess *peer_teach_stage2_stksess_lookup(struct shared_table *st)
1389 {
1390 	struct eb32_node *eb;
1391 
1392 	eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1);
1393 	if (!eb || eb->key > st->teaching_origin) {
1394 		st->flags |= SHTABLE_F_TEACH_STAGE2;
1395 		return NULL;
1396 	}
1397 
1398 	return eb32_entry(eb, struct stksess, upd);
1399 }
1400 
1401 /*
1402  * Generic function to emit update messages for <st> stick-table when a lesson must
1403  * be taught to the peer <p>.
1404  * <locked> must be set to 1 if the shared table <st> is already locked when entering
1405  * this function, 0 if not.
1406  *
1407  * This function temporary unlock/lock <st> when it sends stick-table updates or
1408  * when decrementing its refcount in case of any error when it sends this updates.
1409  *
1410  * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1411  * Returns -1 if there was not enough room left to send the message,
1412  * any other negative returned value must  be considered as an error with an appcxt st0
1413  * returned value equal to PEER_SESS_ST_END.
1414  * If it returns 0 or -1, this function leave <st> locked if already locked when entering this function
1415  * unlocked if not already locked when entering this function.
1416  */
peer_send_teachmsgs(struct appctx * appctx,struct peer * p,struct stksess * (* peer_stksess_lookup)(struct shared_table *),struct shared_table * st,int locked)1417 static inline int peer_send_teachmsgs(struct appctx *appctx, struct peer *p,
1418                                       struct stksess *(*peer_stksess_lookup)(struct shared_table *),
1419                                       struct shared_table *st, int locked)
1420 {
1421 	int ret, new_pushed, use_timed;
1422 
1423 	ret = 1;
1424 	use_timed = 0;
1425 	if (st != p->last_local_table) {
1426 		ret = peer_send_switchmsg(st, appctx);
1427 		if (ret <= 0)
1428 			return ret;
1429 
1430 		p->last_local_table = st;
1431 	}
1432 
1433 	if (peer_stksess_lookup != peer_teach_process_stksess_lookup)
1434 		use_timed = !(p->flags & PEER_F_DWNGRD);
1435 
1436 	/* We force new pushed to 1 to force identifier in update message */
1437 	new_pushed = 1;
1438 
1439 	if (!locked)
1440 		HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock);
1441 
1442 	while (1) {
1443 		struct stksess *ts;
1444 		unsigned updateid;
1445 
1446 		/* push local updates */
1447 		ts = peer_stksess_lookup(st);
1448 		if (!ts)
1449 			break;
1450 
1451 		updateid = ts->upd.key;
1452 		ts->ref_cnt++;
1453 		HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock);
1454 
1455 		ret = peer_send_updatemsg(st, appctx, ts, updateid, new_pushed, use_timed);
1456 		if (ret <= 0) {
1457 			HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock);
1458 			ts->ref_cnt--;
1459 			if (!locked)
1460 				HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock);
1461 			return ret;
1462 		}
1463 
1464 		HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock);
1465 		ts->ref_cnt--;
1466 		st->last_pushed = updateid;
1467 
1468 		if (peer_stksess_lookup == peer_teach_process_stksess_lookup &&
1469 		    (int)(st->last_pushed - st->table->commitupdate) > 0)
1470 			st->table->commitupdate = st->last_pushed;
1471 
1472 		/* identifier may not needed in next update message */
1473 		new_pushed = 0;
1474 	}
1475 
1476  out:
1477 	if (!locked)
1478 		HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock);
1479 	return 1;
1480 }
1481 
1482 /*
1483  * Function to emit update messages for <st> stick-table when a lesson must
1484  * be taught to the peer <p> (PEER_F_LEARN_ASSIGN flag set).
1485  *
1486  * Note that <st> shared stick-table is locked when calling this function.
1487  *
1488  * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1489  * Returns -1 if there was not enough room left to send the message,
1490  * any other negative returned value must  be considered as an error with an appcxt st0
1491  * returned value equal to PEER_SESS_ST_END.
1492  */
peer_send_teach_process_msgs(struct appctx * appctx,struct peer * p,struct shared_table * st)1493 static inline int peer_send_teach_process_msgs(struct appctx *appctx, struct peer *p,
1494                                                struct shared_table *st)
1495 {
1496 	return peer_send_teachmsgs(appctx, p, peer_teach_process_stksess_lookup, st, 1);
1497 }
1498 
1499 /*
1500  * Function to emit update messages for <st> stick-table when a lesson must
1501  * be taught to the peer <p> during teach state 1 step.
1502  *
1503  * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1504  * Returns -1 if there was not enough room left to send the message,
1505  * any other negative returned value must  be considered as an error with an appcxt st0
1506  * returned value equal to PEER_SESS_ST_END.
1507  */
peer_send_teach_stage1_msgs(struct appctx * appctx,struct peer * p,struct shared_table * st)1508 static inline int peer_send_teach_stage1_msgs(struct appctx *appctx, struct peer *p,
1509                                               struct shared_table *st)
1510 {
1511 	return peer_send_teachmsgs(appctx, p, peer_teach_stage1_stksess_lookup, st, 0);
1512 }
1513 
1514 /*
1515  * Function to emit update messages for <st> stick-table when a lesson must
1516  * be taught to the peer <p> during teach state 1 step.
1517  *
1518  * Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
1519  * Returns -1 if there was not enough room left to send the message,
1520  * any other negative returned value must  be considered as an error with an appcxt st0
1521  * returned value equal to PEER_SESS_ST_END.
1522  */
peer_send_teach_stage2_msgs(struct appctx * appctx,struct peer * p,struct shared_table * st)1523 static inline int peer_send_teach_stage2_msgs(struct appctx *appctx, struct peer *p,
1524                                               struct shared_table *st)
1525 {
1526 	return peer_send_teachmsgs(appctx, p, peer_teach_stage2_stksess_lookup, st, 0);
1527 }
1528 
1529 
1530 /*
1531  * Function used to parse a stick-table update message after it has been received
1532  * by <p> peer with <msg_cur> as address of the pointer to the position in the
1533  * receipt buffer with <msg_end> being position of the end of the stick-table message.
1534  * Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
1535  * was encountered.
1536  * <exp> must be set if the stick-table entry expires.
1537  * <updt> must be set for  PEER_MSG_STKT_UPDATE or PEER_MSG_STKT_UPDATE_TIMED stick-table
1538  * messages, in this case the stick-table update message is received with a stick-table
1539  * update ID.
1540  * <totl> is the length of the stick-table update message computed upon receipt.
1541  */
peer_treat_updatemsg(struct appctx * appctx,struct peer * p,int updt,int exp,char ** msg_cur,char * msg_end,int msg_len,int totl)1542 static int peer_treat_updatemsg(struct appctx *appctx, struct peer *p, int updt, int exp,
1543                                 char **msg_cur, char *msg_end, int msg_len, int totl)
1544 {
1545 	struct stream_interface *si = appctx->owner;
1546 	struct shared_table *st = p->remote_table;
1547 	struct stksess *ts, *newts;
1548 	uint32_t update;
1549 	int expire;
1550 	unsigned int data_type;
1551 	void *data_ptr;
1552 
1553 	TRACE_ENTER(PEERS_EV_UPDTMSG, NULL, p);
1554 	/* Here we have data message */
1555 	if (!st)
1556 		goto ignore_msg;
1557 
1558 	expire = MS_TO_TICKS(st->table->expire);
1559 
1560 	if (updt) {
1561 		if (msg_len < sizeof(update)) {
1562 			TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
1563 			goto malformed_exit;
1564 		}
1565 
1566 		memcpy(&update, *msg_cur, sizeof(update));
1567 		*msg_cur += sizeof(update);
1568 		st->last_get = htonl(update);
1569 	}
1570 	else {
1571 		st->last_get++;
1572 	}
1573 
1574 	if (exp) {
1575 		size_t expire_sz = sizeof expire;
1576 
1577 		if (*msg_cur + expire_sz > msg_end) {
1578 			TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1579 			            NULL, p, *msg_cur);
1580 			TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1581 			            NULL, p, msg_end, &expire_sz);
1582 			goto malformed_exit;
1583 		}
1584 
1585 		memcpy(&expire, *msg_cur, expire_sz);
1586 		*msg_cur += expire_sz;
1587 		expire = ntohl(expire);
1588 	}
1589 
1590 	newts = stksess_new(st->table, NULL);
1591 	if (!newts)
1592 		goto ignore_msg;
1593 
1594 	if (st->table->type == SMP_T_STR) {
1595 		unsigned int to_read, to_store;
1596 
1597 		to_read = intdecode(msg_cur, msg_end);
1598 		if (!*msg_cur) {
1599 			TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
1600 			goto malformed_free_newts;
1601 		}
1602 
1603 		to_store = MIN(to_read, st->table->key_size - 1);
1604 		if (*msg_cur + to_store > msg_end) {
1605 			TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1606 			            NULL, p, *msg_cur);
1607 			TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1608 			            NULL, p, msg_end, &to_store);
1609 			goto malformed_free_newts;
1610 		}
1611 
1612 		memcpy(newts->key.key, *msg_cur, to_store);
1613 		newts->key.key[to_store] = 0;
1614 		*msg_cur += to_read;
1615 	}
1616 	else if (st->table->type == SMP_T_SINT) {
1617 		unsigned int netinteger;
1618 
1619 		if (*msg_cur + sizeof(netinteger) > msg_end) {
1620 			TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1621 			            NULL, p, *msg_cur);
1622 			TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1623 			            NULL, p, msg_end);
1624 			goto malformed_free_newts;
1625 		}
1626 
1627 		memcpy(&netinteger, *msg_cur, sizeof(netinteger));
1628 		netinteger = ntohl(netinteger);
1629 		memcpy(newts->key.key, &netinteger, sizeof(netinteger));
1630 		*msg_cur += sizeof(netinteger);
1631 	}
1632 	else {
1633 		if (*msg_cur + st->table->key_size > msg_end) {
1634 			TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1635 			            NULL, p, *msg_cur);
1636 			TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1637 			            NULL, p, msg_end, &st->table->key_size);
1638 			goto malformed_free_newts;
1639 		}
1640 
1641 		memcpy(newts->key.key, *msg_cur, st->table->key_size);
1642 		*msg_cur += st->table->key_size;
1643 	}
1644 
1645 	/* lookup for existing entry */
1646 	ts = stktable_set_entry(st->table, newts);
1647 	if (ts != newts) {
1648 		stksess_free(st->table, newts);
1649 		newts = NULL;
1650 	}
1651 
1652 	HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
1653 
1654 	for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) {
1655 		uint64_t decoded_int;
1656 
1657 		if (!((1ULL << data_type) & st->remote_data))
1658 			continue;
1659 
1660 		decoded_int = intdecode(msg_cur, msg_end);
1661 		if (!*msg_cur) {
1662 			TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
1663 			goto malformed_unlock;
1664 		}
1665 
1666 		switch (stktable_data_types[data_type].std_type) {
1667 		case STD_T_SINT:
1668 			data_ptr = stktable_data_ptr(st->table, ts, data_type);
1669 			if (data_ptr)
1670 				stktable_data_cast(data_ptr, std_t_sint) = decoded_int;
1671 			break;
1672 
1673 		case STD_T_UINT:
1674 			data_ptr = stktable_data_ptr(st->table, ts, data_type);
1675 			if (data_ptr)
1676 				stktable_data_cast(data_ptr, std_t_uint) = decoded_int;
1677 			break;
1678 
1679 		case STD_T_ULL:
1680 			data_ptr = stktable_data_ptr(st->table, ts, data_type);
1681 			if (data_ptr)
1682 				stktable_data_cast(data_ptr, std_t_ull) = decoded_int;
1683 			break;
1684 
1685 		case STD_T_FRQP: {
1686 			struct freq_ctr_period data;
1687 
1688 			/* First bit is reserved for the freq_ctr_period lock
1689 			Note: here we're still protected by the stksess lock
1690 			so we don't need to update the update the freq_ctr_period
1691 			using its internal lock */
1692 
1693 			data.curr_tick = tick_add(now_ms, -decoded_int) & ~0x1;
1694 			data.curr_ctr = intdecode(msg_cur, msg_end);
1695 			if (!*msg_cur) {
1696 				TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
1697 				goto malformed_unlock;
1698 			}
1699 
1700 			data.prev_ctr = intdecode(msg_cur, msg_end);
1701 			if (!*msg_cur) {
1702 				TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
1703 				goto malformed_unlock;
1704 			}
1705 
1706 			data_ptr = stktable_data_ptr(st->table, ts, data_type);
1707 			if (data_ptr)
1708 				stktable_data_cast(data_ptr, std_t_frqp) = data;
1709 			break;
1710 		}
1711 		case STD_T_DICT: {
1712 			struct buffer *chunk;
1713 			size_t data_len, value_len;
1714 			unsigned int id;
1715 			struct dict_entry *de;
1716 			struct dcache *dc;
1717 			char *end;
1718 
1719 			if (!decoded_int) {
1720 				/* No entry. */
1721 				break;
1722 			}
1723 			data_len = decoded_int;
1724 			if (*msg_cur + data_len > msg_end) {
1725 				TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1726 				            NULL, p, *msg_cur);
1727 				TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1728 				            NULL, p, msg_end, &data_len);
1729 				goto malformed_unlock;
1730 			}
1731 
1732 			/* Compute the end of the current data, <msg_end> being at the end of
1733 			 * the entire message.
1734 			 */
1735 			end = *msg_cur + data_len;
1736 			id = intdecode(msg_cur, end);
1737 			if (!*msg_cur || !id) {
1738 				TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1739 				            NULL, p, *msg_cur, &id);
1740 				goto malformed_unlock;
1741 			}
1742 
1743 			dc = p->dcache;
1744 			if (*msg_cur == end) {
1745 				/* Dictionary entry key without value. */
1746 				if (id > dc->max_entries) {
1747 					TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1748 					            NULL, p, NULL, &id);
1749 					goto malformed_unlock;
1750 				}
1751 				/* IDs sent over the network are numbered from 1. */
1752 				de = dc->rx[id - 1].de;
1753 			}
1754 			else {
1755 				chunk = get_trash_chunk();
1756 				value_len = intdecode(msg_cur, end);
1757 				if (!*msg_cur || *msg_cur + value_len > end ||
1758 					unlikely(value_len + 1 >= chunk->size)) {
1759 					TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1760 					            NULL, p, *msg_cur, &value_len);
1761 					TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
1762 					            NULL, p, end, &chunk->size);
1763 					goto malformed_unlock;
1764 				}
1765 
1766 				chunk_memcpy(chunk, *msg_cur, value_len);
1767 				chunk->area[chunk->data] = '\0';
1768 				*msg_cur += value_len;
1769 
1770 				de = dict_insert(&server_name_dict, chunk->area);
1771 				dc->rx[id - 1].de = de;
1772 			}
1773 			if (de) {
1774 				data_ptr = stktable_data_ptr(st->table, ts, data_type);
1775 				if (data_ptr)
1776 					stktable_data_cast(data_ptr, std_t_dict) = de;
1777 			}
1778 			break;
1779 		}
1780 		}
1781 	}
1782 	/* Force new expiration */
1783 	ts->expire = tick_add(now_ms, expire);
1784 
1785 	HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
1786 	stktable_touch_remote(st->table, ts, 1);
1787 	TRACE_LEAVE(PEERS_EV_UPDTMSG, NULL, p);
1788 	return 1;
1789 
1790  ignore_msg:
1791 	/* skip consumed message */
1792 	co_skip(si_oc(si), totl);
1793 	TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG);
1794 	return 0;
1795 
1796  malformed_unlock:
1797 	/* malformed message */
1798 	HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
1799 	stktable_touch_remote(st->table, ts, 1);
1800 	appctx->st0 = PEER_SESS_ST_ERRPROTO;
1801 	TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG);
1802 	return 0;
1803 
1804  malformed_free_newts:
1805 	/* malformed message */
1806 	stksess_free(st->table, newts);
1807  malformed_exit:
1808 	appctx->st0 = PEER_SESS_ST_ERRPROTO;
1809 	TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG);
1810 	return 0;
1811 }
1812 
1813 /*
1814  * Function used to parse a stick-table update acknowledgement message after it
1815  * has been received by <p> peer with <msg_cur> as address of the pointer to the position in the
1816  * receipt buffer with <msg_end> being the position of the end of the stick-table message.
1817  * Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
1818  * was encountered.
1819  * Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO.
1820  */
peer_treat_ackmsg(struct appctx * appctx,struct peer * p,char ** msg_cur,char * msg_end)1821 static inline int peer_treat_ackmsg(struct appctx *appctx, struct peer *p,
1822                                     char **msg_cur, char *msg_end)
1823 {
1824 	/* ack message */
1825 	uint32_t table_id ;
1826 	uint32_t update;
1827 	struct shared_table *st;
1828 
1829 	/* ignore ack during teaching process */
1830 	if (p->flags & PEER_F_TEACH_PROCESS)
1831 		return 1;
1832 
1833 	table_id = intdecode(msg_cur, msg_end);
1834 	if (!*msg_cur || (*msg_cur + sizeof(update) > msg_end)) {
1835 		/* malformed message */
1836 
1837 		TRACE_PROTO("malformed message", PEERS_EV_ACKMSG,
1838 					NULL, p, *msg_cur);
1839 		appctx->st0 = PEER_SESS_ST_ERRPROTO;
1840 		return 0;
1841 	}
1842 
1843 	memcpy(&update, *msg_cur, sizeof(update));
1844 	update = ntohl(update);
1845 
1846 	for (st = p->tables; st; st = st->next) {
1847 		if (st->local_id == table_id) {
1848 			st->update = update;
1849 			break;
1850 		}
1851 	}
1852 
1853 	return 1;
1854 }
1855 
1856 /*
1857  * Function used to parse a stick-table switch message after it has been received
1858  * by <p> peer with <msg_cur> as address of the pointer to the position in the
1859  * receipt buffer with <msg_end> being the position of the end of the stick-table message.
1860  * Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
1861  * was encountered.
1862  * Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO.
1863  */
peer_treat_switchmsg(struct appctx * appctx,struct peer * p,char ** msg_cur,char * msg_end)1864 static inline int peer_treat_switchmsg(struct appctx *appctx, struct peer *p,
1865                                       char **msg_cur, char *msg_end)
1866 {
1867 	struct shared_table *st;
1868 	int table_id;
1869 
1870 	table_id = intdecode(msg_cur, msg_end);
1871 	if (!*msg_cur) {
1872 		TRACE_PROTO("malformed message", PEERS_EV_SWTCMSG, NULL, p);
1873 		/* malformed message */
1874 		appctx->st0 = PEER_SESS_ST_ERRPROTO;
1875 		return 0;
1876 	}
1877 
1878 	p->remote_table = NULL;
1879 	for (st = p->tables; st; st = st->next) {
1880 		if (st->remote_id == table_id) {
1881 			p->remote_table = st;
1882 			break;
1883 		}
1884 	}
1885 
1886 	return 1;
1887 }
1888 
1889 /*
1890  * Function used to parse a stick-table definition message after it has been received
1891  * by <p> peer with <msg_cur> as address of the pointer to the position in the
1892  * receipt buffer with <msg_end> being the position of the end of the stick-table message.
1893  * Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
1894  * was encountered.
1895  * <totl> is the length of the stick-table update message computed upon receipt.
1896  * Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO.
1897  */
peer_treat_definemsg(struct appctx * appctx,struct peer * p,char ** msg_cur,char * msg_end,int totl)1898 static inline int peer_treat_definemsg(struct appctx *appctx, struct peer *p,
1899                                       char **msg_cur, char *msg_end, int totl)
1900 {
1901 	struct stream_interface *si = appctx->owner;
1902 	int table_id_len;
1903 	struct shared_table *st;
1904 	int table_type;
1905 	int table_keylen;
1906 	int table_id;
1907 	uint64_t table_data;
1908 
1909 	table_id = intdecode(msg_cur, msg_end);
1910 	if (!*msg_cur) {
1911 		TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
1912 		goto malformed_exit;
1913 	}
1914 
1915 	table_id_len = intdecode(msg_cur, msg_end);
1916 	if (!*msg_cur) {
1917 		TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p, *msg_cur);
1918 		goto malformed_exit;
1919 	}
1920 
1921 	p->remote_table = NULL;
1922 	if (!table_id_len || (*msg_cur + table_id_len) >= msg_end) {
1923 		TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p, *msg_cur, &table_id_len);
1924 		goto malformed_exit;
1925 	}
1926 
1927 	for (st = p->tables; st; st = st->next) {
1928 		/* Reset IDs */
1929 		if (st->remote_id == table_id)
1930 			st->remote_id = 0;
1931 
1932 		if (!p->remote_table && (table_id_len == strlen(st->table->nid)) &&
1933 		    (memcmp(st->table->nid, *msg_cur, table_id_len) == 0))
1934 			p->remote_table = st;
1935 	}
1936 
1937 	if (!p->remote_table) {
1938 		TRACE_PROTO("ignored message", PEERS_EV_DEFMSG, NULL, p);
1939 		goto ignore_msg;
1940 	}
1941 
1942 	*msg_cur += table_id_len;
1943 	if (*msg_cur >= msg_end) {
1944 		TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
1945 		goto malformed_exit;
1946 	}
1947 
1948 	table_type = intdecode(msg_cur, msg_end);
1949 	if (!*msg_cur) {
1950 		TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
1951 		goto malformed_exit;
1952 	}
1953 
1954 	table_keylen = intdecode(msg_cur, msg_end);
1955 	if (!*msg_cur) {
1956 		TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
1957 		goto malformed_exit;
1958 	}
1959 
1960 	table_data = intdecode(msg_cur, msg_end);
1961 	if (!*msg_cur) {
1962 		TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
1963 		goto malformed_exit;
1964 	}
1965 
1966 	if (p->remote_table->table->type != peer_int_key_type[table_type]
1967 		|| p->remote_table->table->key_size != table_keylen) {
1968 		p->remote_table = NULL;
1969 		TRACE_PROTO("ignored message", PEERS_EV_DEFMSG, NULL, p);
1970 		goto ignore_msg;
1971 	}
1972 
1973 	p->remote_table->remote_data = table_data;
1974 	p->remote_table->remote_id = table_id;
1975 	return 1;
1976 
1977  ignore_msg:
1978 	co_skip(si_oc(si), totl);
1979 	return 0;
1980 
1981  malformed_exit:
1982 	/* malformed message */
1983 	appctx->st0 = PEER_SESS_ST_ERRPROTO;
1984 	return 0;
1985 }
1986 
1987 /*
1988  * Receive a stick-table message or pre-parse any other message.
1989  * The message's header will be sent into <msg_head> which must be at least
1990  * <msg_head_sz> bytes long (at least 7 to store 32-bit variable lengths).
1991  * The first two bytes are always read, and the rest is only read if the
1992  * first bytes indicate a stick-table message. If the message is a stick-table
1993  * message, the varint is decoded and the equivalent number of bytes will be
1994  * copied into the trash at trash.area. <totl> is incremented by the number of
1995  * bytes read EVEN IN CASE OF INCOMPLETE MESSAGES.
1996  * Returns 1 if there was no error, if not, returns 0 if not enough data were available,
1997  * -1 if there was an error updating the appctx state st0 accordingly.
1998  */
peer_recv_msg(struct appctx * appctx,char * msg_head,size_t msg_head_sz,uint32_t * msg_len,int * totl)1999 static inline int peer_recv_msg(struct appctx *appctx, char *msg_head, size_t msg_head_sz,
2000                                 uint32_t *msg_len, int *totl)
2001 {
2002 	int reql;
2003 	struct stream_interface *si = appctx->owner;
2004 	char *cur;
2005 
2006 	reql = co_getblk(si_oc(si), msg_head, 2 * sizeof(char), *totl);
2007 	if (reql <= 0) /* closed or EOL not found */
2008 		goto incomplete;
2009 
2010 	*totl += reql;
2011 
2012 	if (!(msg_head[1] & PEER_MSG_STKT_BIT_MASK))
2013 		return 1;
2014 
2015 	/* This is a stick-table message, let's go on */
2016 
2017 	/* Read and Decode message length */
2018 	msg_head    += *totl;
2019 	msg_head_sz -= *totl;
2020 	reql = co_data(si_oc(si)) - *totl;
2021 	if (reql > msg_head_sz)
2022 		reql = msg_head_sz;
2023 
2024 	reql = co_getblk(si_oc(si), msg_head, reql, *totl);
2025 	if (reql <= 0) /* closed */
2026 		goto incomplete;
2027 
2028 	cur = msg_head;
2029 	*msg_len = intdecode(&cur, cur + reql);
2030 	if (!cur) {
2031 		/* the number is truncated, did we read enough ? */
2032 		if (reql < msg_head_sz)
2033 			goto incomplete;
2034 
2035 		/* malformed message */
2036 		TRACE_PROTO("malformed message: too large length encoding", PEERS_EV_UPDTMSG);
2037 		appctx->st0 = PEER_SESS_ST_ERRPROTO;
2038 		return -1;
2039 	}
2040 	*totl += cur - msg_head;
2041 
2042 	/* Read message content */
2043 	if (*msg_len) {
2044 		if (*msg_len > trash.size) {
2045 			/* Status code is not success, abort */
2046 			appctx->st0 = PEER_SESS_ST_ERRSIZE;
2047 			return -1;
2048 		}
2049 
2050 		reql = co_getblk(si_oc(si), trash.area, *msg_len, *totl);
2051 		if (reql <= 0) /* closed */
2052 			goto incomplete;
2053 		*totl += reql;
2054 	}
2055 
2056 	return 1;
2057 
2058  incomplete:
2059 	if (reql < 0 || (si_oc(si)->flags & (CF_SHUTW|CF_SHUTW_NOW))) {
2060 		/* there was an error or the message was truncated */
2061 		appctx->st0 = PEER_SESS_ST_END;
2062 		return -1;
2063 	}
2064 
2065 	return 0;
2066 }
2067 
2068 /*
2069  * Treat the awaited message with <msg_head> as header.*
2070  * Return 1 if succeeded, 0 if not.
2071  */
peer_treat_awaited_msg(struct appctx * appctx,struct peer * peer,unsigned char * msg_head,char ** msg_cur,char * msg_end,int msg_len,int totl)2072 static inline int peer_treat_awaited_msg(struct appctx *appctx, struct peer *peer, unsigned char *msg_head,
2073                                          char **msg_cur, char *msg_end, int msg_len, int totl)
2074 {
2075 	struct stream_interface *si = appctx->owner;
2076 	struct stream *s = si_strm(si);
2077 	struct peers *peers = strm_fe(s)->parent;
2078 
2079 	if (msg_head[0] == PEER_MSG_CLASS_CONTROL) {
2080 		if (msg_head[1] == PEER_MSG_CTRL_RESYNCREQ) {
2081 			struct shared_table *st;
2082 			/* Reset message: remote need resync */
2083 
2084 			TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
2085 			            NULL, &msg_head[1], peers->local->id, peer->id);
2086 			/* prepare tables for a global push */
2087 			for (st = peer->tables; st; st = st->next) {
2088 				st->teaching_origin = st->last_pushed = st->update;
2089 				st->flags = 0;
2090 			}
2091 
2092 			/* reset teaching flags to 0 */
2093 			peer->flags &= PEER_TEACH_RESET;
2094 
2095 			/* flag to start to teach lesson */
2096 			peer->flags |= PEER_F_TEACH_PROCESS;
2097 			peers->flags |= PEERS_F_RESYNC_REQUESTED;
2098 		}
2099 		else if (msg_head[1] == PEER_MSG_CTRL_RESYNCFINISHED) {
2100 			TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
2101 			            NULL, &msg_head[1], peers->local->id, peer->id);
2102 			if (peer->flags & PEER_F_LEARN_ASSIGN) {
2103 				peer->flags &= ~PEER_F_LEARN_ASSIGN;
2104 				peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS);
2105 				peers->flags |= (PEERS_F_RESYNC_LOCAL|PEERS_F_RESYNC_REMOTE);
2106 				if (peer->local)
2107 					peers->flags |= PEERS_F_RESYNC_LOCALFINISHED;
2108 				else
2109 					peers->flags |= PEERS_F_RESYNC_REMOTEFINISHED;
2110 			}
2111 			peer->confirm++;
2112 		}
2113 		else if (msg_head[1] == PEER_MSG_CTRL_RESYNCPARTIAL) {
2114 			TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
2115 			            NULL, &msg_head[1], peers->local->id, peer->id);
2116 			if (peer->flags & PEER_F_LEARN_ASSIGN) {
2117 				peer->flags &= ~PEER_F_LEARN_ASSIGN;
2118 				peers->flags &= ~(PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS);
2119 
2120 				if (peer->local)
2121 					peers->flags |= PEERS_F_RESYNC_LOCALPARTIAL;
2122 				else
2123 					peers->flags |= PEERS_F_RESYNC_REMOTEPARTIAL;
2124 				peer->flags |= PEER_F_LEARN_NOTUP2DATE;
2125 				peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
2126 				task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
2127 			}
2128 			peer->confirm++;
2129 		}
2130 		else if (msg_head[1] == PEER_MSG_CTRL_RESYNCCONFIRM)  {
2131 			struct shared_table *st;
2132 
2133 			TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
2134 			            NULL, &msg_head[1], peers->local->id, peer->id);
2135 			/* If stopping state */
2136 			if (stopping) {
2137 				/* Close session, push resync no more needed */
2138 				peer->flags |= PEER_F_TEACH_COMPLETE;
2139 				appctx->st0 = PEER_SESS_ST_END;
2140 				return 0;
2141 			}
2142 			for (st = peer->tables; st; st = st->next) {
2143 				st->update = st->last_pushed = st->teaching_origin;
2144 				st->flags = 0;
2145 			}
2146 
2147 			/* reset teaching flags to 0 */
2148 			peer->flags &= PEER_TEACH_RESET;
2149 		}
2150 		else if (msg_head[1] == PEER_MSG_CTRL_HEARTBEAT) {
2151 			TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
2152 			            NULL, &msg_head[1], peers->local->id, peer->id);
2153 			peer->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT));
2154 			peer->rx_hbt++;
2155 		}
2156 	}
2157 	else if (msg_head[0] == PEER_MSG_CLASS_STICKTABLE) {
2158 		if (msg_head[1] == PEER_MSG_STKT_DEFINE) {
2159 			if (!peer_treat_definemsg(appctx, peer, msg_cur, msg_end, totl))
2160 				return 0;
2161 		}
2162 		else if (msg_head[1] == PEER_MSG_STKT_SWITCH) {
2163 			if (!peer_treat_switchmsg(appctx, peer, msg_cur, msg_end))
2164 				return 0;
2165 		}
2166 		else if (msg_head[1] == PEER_MSG_STKT_UPDATE ||
2167 		         msg_head[1] == PEER_MSG_STKT_INCUPDATE ||
2168 		         msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED ||
2169 		         msg_head[1] == PEER_MSG_STKT_INCUPDATE_TIMED) {
2170 			int update, expire;
2171 
2172 			update = msg_head[1] == PEER_MSG_STKT_UPDATE || msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED;
2173 			expire = msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED || msg_head[1] == PEER_MSG_STKT_INCUPDATE_TIMED;
2174 			if (!peer_treat_updatemsg(appctx, peer, update, expire,
2175 			                          msg_cur, msg_end, msg_len, totl))
2176 				return 0;
2177 
2178 		}
2179 		else if (msg_head[1] == PEER_MSG_STKT_ACK) {
2180 			if (!peer_treat_ackmsg(appctx, peer, msg_cur, msg_end))
2181 				return 0;
2182 		}
2183 	}
2184 	else if (msg_head[0] == PEER_MSG_CLASS_RESERVED) {
2185 		appctx->st0 = PEER_SESS_ST_ERRPROTO;
2186 		return 0;
2187 	}
2188 
2189 	return 1;
2190 }
2191 
2192 
2193 /*
2194  * Send any message to <peer> peer.
2195  * Returns 1 if succeeded, or -1 or 0 if failed.
2196  * -1 means an internal error occurred, 0 is for a peer protocol error leading
2197  * to a peer state change (from the peer I/O handler point of view).
2198  */
peer_send_msgs(struct appctx * appctx,struct peer * peer,struct peers * peers)2199 static inline int peer_send_msgs(struct appctx *appctx,
2200                                  struct peer *peer, struct peers *peers)
2201 {
2202 	int repl;
2203 
2204 	/* Need to request a resync */
2205 	if ((peer->flags & PEER_F_LEARN_ASSIGN) &&
2206 		(peers->flags & PEERS_F_RESYNC_ASSIGN) &&
2207 		!(peers->flags & PEERS_F_RESYNC_PROCESS)) {
2208 
2209 		repl = peer_send_resync_reqmsg(appctx, peer, peers);
2210 		if (repl <= 0)
2211 			return repl;
2212 
2213 		peers->flags |= PEERS_F_RESYNC_PROCESS;
2214 	}
2215 
2216 	/* Nothing to read, now we start to write */
2217 	if (peer->tables) {
2218 		struct shared_table *st;
2219 		struct shared_table *last_local_table;
2220 
2221 		last_local_table = peer->last_local_table;
2222 		if (!last_local_table)
2223 			last_local_table = peer->tables;
2224 		st = last_local_table->next;
2225 
2226 		while (1) {
2227 			if (!st)
2228 				st = peer->tables;
2229 
2230 			/* It remains some updates to ack */
2231 			if (st->last_get != st->last_acked) {
2232 				repl = peer_send_ackmsg(st, appctx);
2233 				if (repl <= 0)
2234 					return repl;
2235 
2236 				st->last_acked = st->last_get;
2237 			}
2238 
2239 			if (!(peer->flags & PEER_F_TEACH_PROCESS)) {
2240 				HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock);
2241 				if (!(peer->flags & PEER_F_LEARN_ASSIGN) &&
2242 					(st->last_pushed != st->table->localupdate)) {
2243 
2244 					repl = peer_send_teach_process_msgs(appctx, peer, st);
2245 					if (repl <= 0) {
2246 						HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock);
2247 						return repl;
2248 					}
2249 				}
2250 				HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock);
2251 			}
2252 			else if (!(peer->flags & PEER_F_TEACH_FINISHED)) {
2253 				if (!(st->flags & SHTABLE_F_TEACH_STAGE1)) {
2254 					repl = peer_send_teach_stage1_msgs(appctx, peer, st);
2255 					if (repl <= 0)
2256 						return repl;
2257 				}
2258 
2259 				if (!(st->flags & SHTABLE_F_TEACH_STAGE2)) {
2260 					repl = peer_send_teach_stage2_msgs(appctx, peer, st);
2261 					if (repl <= 0)
2262 						return repl;
2263 				}
2264 			}
2265 
2266 			if (st == last_local_table)
2267 				break;
2268 			st = st->next;
2269 		}
2270 	}
2271 
2272 	if ((peer->flags & PEER_F_TEACH_PROCESS) && !(peer->flags & PEER_F_TEACH_FINISHED)) {
2273 		repl = peer_send_resync_finishedmsg(appctx, peer, peers);
2274 		if (repl <= 0)
2275 			return repl;
2276 
2277 		/* flag finished message sent */
2278 		peer->flags |= PEER_F_TEACH_FINISHED;
2279 	}
2280 
2281 	/* Confirm finished or partial messages */
2282 	while (peer->confirm) {
2283 		repl = peer_send_resync_confirmsg(appctx, peer, peers);
2284 		if (repl <= 0)
2285 			return repl;
2286 
2287 		peer->confirm--;
2288 	}
2289 
2290 	return 1;
2291 }
2292 
2293 /*
2294  * Read and parse a first line of a "hello" peer protocol message.
2295  * Returns 0 if could not read a line, -1 if there was a read error or
2296  * the line is malformed, 1 if succeeded.
2297  */
peer_getline_version(struct appctx * appctx,unsigned int * maj_ver,unsigned int * min_ver)2298 static inline int peer_getline_version(struct appctx *appctx,
2299                                        unsigned int *maj_ver, unsigned int *min_ver)
2300 {
2301 	int reql;
2302 
2303 	reql = peer_getline(appctx);
2304 	if (!reql)
2305 		return 0;
2306 
2307 	if (reql < 0)
2308 		return -1;
2309 
2310 	/* test protocol */
2311 	if (strncmp(PEER_SESSION_PROTO_NAME " ", trash.area, proto_len + 1) != 0) {
2312 		appctx->st0 = PEER_SESS_ST_EXIT;
2313 		appctx->st1 = PEER_SESS_SC_ERRPROTO;
2314 		return -1;
2315 	}
2316 	if (peer_get_version(trash.area + proto_len + 1, maj_ver, min_ver) == -1 ||
2317 		*maj_ver != PEER_MAJOR_VER || *min_ver > PEER_MINOR_VER) {
2318 		appctx->st0 = PEER_SESS_ST_EXIT;
2319 		appctx->st1 = PEER_SESS_SC_ERRVERSION;
2320 		return -1;
2321 	}
2322 
2323 	return 1;
2324 }
2325 
2326 /*
2327  * Read and parse a second line of a "hello" peer protocol message.
2328  * Returns 0 if could not read a line, -1 if there was a read error or
2329  * the line is malformed, 1 if succeeded.
2330  */
peer_getline_host(struct appctx * appctx)2331 static inline int peer_getline_host(struct appctx *appctx)
2332 {
2333 	int reql;
2334 
2335 	reql = peer_getline(appctx);
2336 	if (!reql)
2337 		return 0;
2338 
2339 	if (reql < 0)
2340 		return -1;
2341 
2342 	/* test hostname match */
2343 	if (strcmp(localpeer, trash.area) != 0) {
2344 		appctx->st0 = PEER_SESS_ST_EXIT;
2345 		appctx->st1 = PEER_SESS_SC_ERRHOST;
2346 		return -1;
2347 	}
2348 
2349 	return 1;
2350 }
2351 
2352 /*
2353  * Read and parse a last line of a "hello" peer protocol message.
2354  * Returns 0 if could not read a character, -1 if there was a read error or
2355  * the line is malformed, 1 if succeeded.
2356  * Set <curpeer> accordingly (the remote peer sending the "hello" message).
2357  */
peer_getline_last(struct appctx * appctx,struct peer ** curpeer)2358 static inline int peer_getline_last(struct appctx *appctx, struct peer **curpeer)
2359 {
2360 	char *p;
2361 	int reql;
2362 	struct peer *peer;
2363 	struct stream_interface *si = appctx->owner;
2364 	struct stream *s = si_strm(si);
2365 	struct peers *peers = strm_fe(s)->parent;
2366 
2367 	reql = peer_getline(appctx);
2368 	if (!reql)
2369 		return 0;
2370 
2371 	if (reql < 0)
2372 		return -1;
2373 
2374 	/* parse line "<peer name> <pid> <relative_pid>" */
2375 	p = strchr(trash.area, ' ');
2376 	if (!p) {
2377 		appctx->st0 = PEER_SESS_ST_EXIT;
2378 		appctx->st1 = PEER_SESS_SC_ERRPROTO;
2379 		return -1;
2380 	}
2381 	*p = 0;
2382 
2383 	/* lookup known peer */
2384 	for (peer = peers->remote; peer; peer = peer->next) {
2385 		if (strcmp(peer->id, trash.area) == 0)
2386 			break;
2387 	}
2388 
2389 	/* if unknown peer */
2390 	if (!peer) {
2391 		appctx->st0 = PEER_SESS_ST_EXIT;
2392 		appctx->st1 = PEER_SESS_SC_ERRPEER;
2393 		return -1;
2394 	}
2395 	*curpeer = peer;
2396 
2397 	return 1;
2398 }
2399 
2400 /*
2401  * Init <peer> peer after having accepted it at peer protocol level.
2402  */
init_accepted_peer(struct peer * peer,struct peers * peers)2403 static inline void init_accepted_peer(struct peer *peer, struct peers *peers)
2404 {
2405 	struct shared_table *st;
2406 
2407 	peer->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
2408 	/* Register status code */
2409 	peer->statuscode = PEER_SESS_SC_SUCCESSCODE;
2410 	peer->last_hdshk = now_ms;
2411 
2412 	/* Awake main task */
2413 	task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
2414 
2415 	/* Init confirm counter */
2416 	peer->confirm = 0;
2417 
2418 	/* Init cursors */
2419 	for (st = peer->tables; st ; st = st->next) {
2420 		st->last_get = st->last_acked = 0;
2421 		HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock);
2422 		/* if st->update appears to be in future it means
2423 		 * that the last acked value is very old and we
2424 		 * remain unconnected a too long time to use this
2425 		 * acknowlegement as a reset.
2426 		 * We should update the protocol to be able to
2427 		 * signal the remote peer that it needs a full resync.
2428 		 * Here a partial fix consist to set st->update at
2429 		 * the max past value
2430 		 */
2431 		if ((int)(st->table->localupdate - st->update) < 0)
2432 			st->update = st->table->localupdate + (2147483648U);
2433 		st->teaching_origin = st->last_pushed = st->update;
2434 		st->flags = 0;
2435 		if ((int)(st->last_pushed - st->table->commitupdate) > 0)
2436 			st->table->commitupdate = st->last_pushed;
2437 		HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock);
2438 	}
2439 
2440 	/* reset teaching and learning flags to 0 */
2441 	peer->flags &= PEER_TEACH_RESET;
2442 	peer->flags &= PEER_LEARN_RESET;
2443 
2444 	/* if current peer is local */
2445 	if (peer->local) {
2446 		/* if current host need resyncfrom local and no process assigned  */
2447 		if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMLOCAL &&
2448 		    !(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
2449 			/* assign local peer for a lesson, consider lesson already requested */
2450 			peer->flags |= PEER_F_LEARN_ASSIGN;
2451 			peers->flags |= (PEERS_F_RESYNC_ASSIGN|PEERS_F_RESYNC_PROCESS);
2452 			peers->flags |= PEERS_F_RESYNC_LOCALASSIGN;
2453 		}
2454 
2455 	}
2456 	else if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE &&
2457 	         !(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
2458 		/* assign peer for a lesson  */
2459 		peer->flags |= PEER_F_LEARN_ASSIGN;
2460 		peers->flags |= PEERS_F_RESYNC_ASSIGN;
2461 		peers->flags |= PEERS_F_RESYNC_REMOTEASSIGN;
2462 	}
2463 }
2464 
2465 /*
2466  * Init <peer> peer after having connected it at peer protocol level.
2467  */
init_connected_peer(struct peer * peer,struct peers * peers)2468 static inline void init_connected_peer(struct peer *peer, struct peers *peers)
2469 {
2470 	struct shared_table *st;
2471 
2472 	peer->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
2473 	/* Init cursors */
2474 	for (st = peer->tables; st ; st = st->next) {
2475 		st->last_get = st->last_acked = 0;
2476 		HA_SPIN_LOCK(STK_TABLE_LOCK, &st->table->lock);
2477 		/* if st->update appears to be in future it means
2478 		 * that the last acked value is very old and we
2479 		 * remain unconnected a too long time to use this
2480 		 * acknowlegement as a reset.
2481 		 * We should update the protocol to be able to
2482 		 * signal the remote peer that it needs a full resync.
2483 		 * Here a partial fix consist to set st->update at
2484 		 * the max past value.
2485 		 */
2486 		if ((int)(st->table->localupdate - st->update) < 0)
2487 			st->update = st->table->localupdate + (2147483648U);
2488 		st->teaching_origin = st->last_pushed = st->update;
2489 		st->flags = 0;
2490 		if ((int)(st->last_pushed - st->table->commitupdate) > 0)
2491 			st->table->commitupdate = st->last_pushed;
2492 		HA_SPIN_UNLOCK(STK_TABLE_LOCK, &st->table->lock);
2493 	}
2494 
2495 	/* Init confirm counter */
2496 	peer->confirm = 0;
2497 
2498 	/* reset teaching and learning flags to 0 */
2499 	peer->flags &= PEER_TEACH_RESET;
2500 	peer->flags &= PEER_LEARN_RESET;
2501 
2502 	/* If current peer is local */
2503 	if (peer->local) {
2504 		/* flag to start to teach lesson */
2505 		peer->flags |= PEER_F_TEACH_PROCESS;
2506 	}
2507 	else if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE &&
2508 	         !(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
2509 		/* If peer is remote and resync from remote is needed,
2510 		and no peer currently assigned */
2511 
2512 		/* assign peer for a lesson */
2513 		peer->flags |= PEER_F_LEARN_ASSIGN;
2514 		peers->flags |= PEERS_F_RESYNC_ASSIGN;
2515 		peers->flags |= PEERS_F_RESYNC_REMOTEASSIGN;
2516 	}
2517 }
2518 
2519 /*
2520  * IO Handler to handle message exchange with a peer
2521  */
peer_io_handler(struct appctx * appctx)2522 static void peer_io_handler(struct appctx *appctx)
2523 {
2524 	struct stream_interface *si = appctx->owner;
2525 	struct stream *s = si_strm(si);
2526 	struct peers *curpeers = strm_fe(s)->parent;
2527 	struct peer *curpeer = NULL;
2528 	int reql = 0;
2529 	int repl = 0;
2530 	unsigned int maj_ver, min_ver;
2531 	int prev_state;
2532 
2533 	/* Check if the input buffer is available. */
2534 	if (si_ic(si)->buf.size == 0) {
2535 		si_rx_room_blk(si);
2536 		goto out;
2537 	}
2538 
2539 	while (1) {
2540 		prev_state = appctx->st0;
2541 switchstate:
2542 		maj_ver = min_ver = (unsigned int)-1;
2543 		switch(appctx->st0) {
2544 			case PEER_SESS_ST_ACCEPT:
2545 				prev_state = appctx->st0;
2546 				appctx->ctx.peers.ptr = NULL;
2547 				appctx->st0 = PEER_SESS_ST_GETVERSION;
2548 				/* fall through */
2549 			case PEER_SESS_ST_GETVERSION:
2550 				prev_state = appctx->st0;
2551 				reql = peer_getline_version(appctx, &maj_ver, &min_ver);
2552 				if (reql <= 0) {
2553 					if (!reql)
2554 						goto out;
2555 					goto switchstate;
2556 				}
2557 
2558 				appctx->st0 = PEER_SESS_ST_GETHOST;
2559 				/* fall through */
2560 			case PEER_SESS_ST_GETHOST:
2561 				prev_state = appctx->st0;
2562 				reql = peer_getline_host(appctx);
2563 				if (reql <= 0) {
2564 					if (!reql)
2565 						goto out;
2566 					goto switchstate;
2567 				}
2568 
2569 				appctx->st0 = PEER_SESS_ST_GETPEER;
2570 				/* fall through */
2571 			case PEER_SESS_ST_GETPEER: {
2572 				prev_state = appctx->st0;
2573 				reql = peer_getline_last(appctx, &curpeer);
2574 				if (reql <= 0) {
2575 					if (!reql)
2576 						goto out;
2577 					goto switchstate;
2578 				}
2579 
2580 				HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
2581 				if (curpeer->appctx && curpeer->appctx != appctx) {
2582 					if (curpeer->local) {
2583 						/* Local connection, reply a retry */
2584 						appctx->st0 = PEER_SESS_ST_EXIT;
2585 						appctx->st1 = PEER_SESS_SC_TRYAGAIN;
2586 						goto switchstate;
2587 					}
2588 
2589 					/* we're killing a connection, we must apply a random delay before
2590 					 * retrying otherwise the other end will do the same and we can loop
2591 					 * for a while.
2592 					 */
2593 					curpeer->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000));
2594 					peer_session_forceshutdown(curpeer);
2595 					curpeer->heartbeat = TICK_ETERNITY;
2596 					curpeer->coll++;
2597 				}
2598 				if (maj_ver != (unsigned int)-1 && min_ver != (unsigned int)-1) {
2599 					if (min_ver == PEER_DWNGRD_MINOR_VER) {
2600 						curpeer->flags |= PEER_F_DWNGRD;
2601 					}
2602 					else {
2603 						curpeer->flags &= ~PEER_F_DWNGRD;
2604 					}
2605 				}
2606 				curpeer->appctx = appctx;
2607 				curpeer->flags |= PEER_F_ALIVE;
2608 				appctx->ctx.peers.ptr = curpeer;
2609 				appctx->st0 = PEER_SESS_ST_SENDSUCCESS;
2610 				_HA_ATOMIC_ADD(&active_peers, 1);
2611 			}
2612 			/* fall through */
2613 			case PEER_SESS_ST_SENDSUCCESS: {
2614 				prev_state = appctx->st0;
2615 				if (!curpeer) {
2616 					curpeer = appctx->ctx.peers.ptr;
2617 					HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
2618 					if (curpeer->appctx != appctx) {
2619 						appctx->st0 = PEER_SESS_ST_END;
2620 						goto switchstate;
2621 					}
2622 				}
2623 
2624 				repl = peer_send_status_successmsg(appctx);
2625 				if (repl <= 0) {
2626 					if (repl == -1)
2627 						goto out;
2628 					goto switchstate;
2629 				}
2630 
2631 				init_accepted_peer(curpeer, curpeers);
2632 
2633 				/* switch to waiting message state */
2634 				_HA_ATOMIC_ADD(&connected_peers, 1);
2635 				appctx->st0 = PEER_SESS_ST_WAITMSG;
2636 				goto switchstate;
2637 			}
2638 			case PEER_SESS_ST_CONNECT: {
2639 				prev_state = appctx->st0;
2640 				if (!curpeer) {
2641 					curpeer = appctx->ctx.peers.ptr;
2642 					HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
2643 					if (curpeer->appctx != appctx) {
2644 						appctx->st0 = PEER_SESS_ST_END;
2645 						goto switchstate;
2646 					}
2647 				}
2648 
2649 				repl = peer_send_hellomsg(appctx, curpeer);
2650 				if (repl <= 0) {
2651 					if (repl == -1)
2652 						goto out;
2653 					goto switchstate;
2654 				}
2655 
2656 				/* switch to the waiting statuscode state */
2657 				appctx->st0 = PEER_SESS_ST_GETSTATUS;
2658 			}
2659 			/* fall through */
2660 			case PEER_SESS_ST_GETSTATUS: {
2661 				prev_state = appctx->st0;
2662 				if (!curpeer) {
2663 					curpeer = appctx->ctx.peers.ptr;
2664 					HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
2665 					if (curpeer->appctx != appctx) {
2666 						appctx->st0 = PEER_SESS_ST_END;
2667 						goto switchstate;
2668 					}
2669 				}
2670 
2671 				if (si_ic(si)->flags & CF_WRITE_PARTIAL)
2672 					curpeer->statuscode = PEER_SESS_SC_CONNECTEDCODE;
2673 
2674 				reql = peer_getline(appctx);
2675 				if (!reql)
2676 					goto out;
2677 
2678 				if (reql < 0)
2679 					goto switchstate;
2680 
2681 				/* Register status code */
2682 				curpeer->statuscode = atoi(trash.area);
2683 				curpeer->last_hdshk = now_ms;
2684 
2685 				/* Awake main task */
2686 				task_wakeup(curpeers->sync_task, TASK_WOKEN_MSG);
2687 
2688 				/* If status code is success */
2689 				if (curpeer->statuscode == PEER_SESS_SC_SUCCESSCODE) {
2690 					init_connected_peer(curpeer, curpeers);
2691 				}
2692 				else {
2693 					if (curpeer->statuscode == PEER_SESS_SC_ERRVERSION)
2694 						curpeer->flags |= PEER_F_DWNGRD;
2695 					/* Status code is not success, abort */
2696 					appctx->st0 = PEER_SESS_ST_END;
2697 					goto switchstate;
2698 				}
2699 				_HA_ATOMIC_ADD(&connected_peers, 1);
2700 				appctx->st0 = PEER_SESS_ST_WAITMSG;
2701 			}
2702 			/* fall through */
2703 			case PEER_SESS_ST_WAITMSG: {
2704 				uint32_t msg_len = 0;
2705 				char *msg_cur = trash.area;
2706 				char *msg_end = trash.area;
2707 				unsigned char msg_head[7]; // 2 + 5 for varint32
2708 				int totl = 0;
2709 
2710 				prev_state = appctx->st0;
2711 				if (!curpeer) {
2712 					curpeer = appctx->ctx.peers.ptr;
2713 					HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
2714 					if (curpeer->appctx != appctx) {
2715 						appctx->st0 = PEER_SESS_ST_END;
2716 						goto switchstate;
2717 					}
2718 				}
2719 
2720 				reql = peer_recv_msg(appctx, (char *)msg_head, sizeof msg_head, &msg_len, &totl);
2721 				if (reql <= 0) {
2722 					if (reql == -1)
2723 						goto switchstate;
2724 					goto send_msgs;
2725 				}
2726 
2727 				msg_end += msg_len;
2728 				if (!peer_treat_awaited_msg(appctx, curpeer, msg_head, &msg_cur, msg_end, msg_len, totl))
2729 					goto switchstate;
2730 
2731 				curpeer->flags |= PEER_F_ALIVE;
2732 
2733 				/* skip consumed message */
2734 				co_skip(si_oc(si), totl);
2735 				/* loop on that state to peek next message */
2736 				goto switchstate;
2737 
2738 send_msgs:
2739 				if (curpeer->flags & PEER_F_HEARTBEAT) {
2740 					curpeer->flags &= ~PEER_F_HEARTBEAT;
2741 					repl = peer_send_heartbeatmsg(appctx, curpeer, curpeers);
2742 					if (repl <= 0) {
2743 						if (repl == -1)
2744 							goto out;
2745 						goto switchstate;
2746 					}
2747 					curpeer->tx_hbt++;
2748 				}
2749 				/* we get here when a peer_recv_msg() returns 0 in reql */
2750 				repl = peer_send_msgs(appctx, curpeer, curpeers);
2751 				if (repl <= 0) {
2752 					if (repl == -1)
2753 						goto out;
2754 					goto switchstate;
2755 				}
2756 
2757 				/* noting more to do */
2758 				goto out;
2759 			}
2760 			case PEER_SESS_ST_EXIT:
2761 				if (prev_state == PEER_SESS_ST_WAITMSG)
2762 					_HA_ATOMIC_SUB(&connected_peers, 1);
2763 				prev_state = appctx->st0;
2764 				if (peer_send_status_errormsg(appctx) == -1)
2765 					goto out;
2766 				appctx->st0 = PEER_SESS_ST_END;
2767 				goto switchstate;
2768 			case PEER_SESS_ST_ERRSIZE: {
2769 				if (prev_state == PEER_SESS_ST_WAITMSG)
2770 					_HA_ATOMIC_SUB(&connected_peers, 1);
2771 				prev_state = appctx->st0;
2772 				if (peer_send_error_size_limitmsg(appctx) == -1)
2773 					goto out;
2774 				appctx->st0 = PEER_SESS_ST_END;
2775 				goto switchstate;
2776 			}
2777 			case PEER_SESS_ST_ERRPROTO: {
2778 				TRACE_PROTO("protocol error", PEERS_EV_PROTOERR,
2779 				            NULL, curpeer, &prev_state);
2780 				if (curpeer)
2781 					curpeer->proto_err++;
2782 				if (prev_state == PEER_SESS_ST_WAITMSG)
2783 					_HA_ATOMIC_SUB(&connected_peers, 1);
2784 				prev_state = appctx->st0;
2785 				if (peer_send_error_protomsg(appctx) == -1) {
2786 					TRACE_PROTO("could not send error message", PEERS_EV_PROTOERR);
2787 					goto out;
2788 				}
2789 				appctx->st0 = PEER_SESS_ST_END;
2790 				prev_state = appctx->st0;
2791 			}
2792 			/* fall through */
2793 			case PEER_SESS_ST_END: {
2794 				if (prev_state == PEER_SESS_ST_WAITMSG)
2795 					_HA_ATOMIC_SUB(&connected_peers, 1);
2796 				prev_state = appctx->st0;
2797 				if (curpeer) {
2798 					HA_SPIN_UNLOCK(PEER_LOCK, &curpeer->lock);
2799 					curpeer = NULL;
2800 				}
2801 				si_shutw(si);
2802 				si_shutr(si);
2803 				si_ic(si)->flags |= CF_READ_NULL;
2804 				goto out;
2805 			}
2806 		}
2807 	}
2808 out:
2809 	si_oc(si)->flags |= CF_READ_DONTWAIT;
2810 
2811 	if (curpeer)
2812 		HA_SPIN_UNLOCK(PEER_LOCK, &curpeer->lock);
2813 	return;
2814 }
2815 
2816 static struct applet peer_applet = {
2817 	.obj_type = OBJ_TYPE_APPLET,
2818 	.name = "<PEER>", /* used for logging */
2819 	.fct = peer_io_handler,
2820 	.release = peer_session_release,
2821 };
2822 
2823 
2824 /*
2825  * Use this function to force a close of a peer session
2826  */
peer_session_forceshutdown(struct peer * peer)2827 static void peer_session_forceshutdown(struct peer *peer)
2828 {
2829 	struct appctx *appctx = peer->appctx;
2830 
2831 	/* Note that the peer sessions which have just been created
2832 	 * (->st0 == PEER_SESS_ST_CONNECT) must not
2833 	 * be shutdown, if not, the TCP session will never be closed
2834 	 * and stay in CLOSE_WAIT state after having been closed by
2835 	 * the remote side.
2836 	 */
2837 	if (!appctx || appctx->st0 == PEER_SESS_ST_CONNECT)
2838 		return;
2839 
2840 	if (appctx->applet != &peer_applet)
2841 		return;
2842 
2843 	__peer_session_deinit(peer);
2844 
2845 	appctx->st0 = PEER_SESS_ST_END;
2846 	appctx_wakeup(appctx);
2847 }
2848 
2849 /* Pre-configures a peers frontend to accept incoming connections */
peers_setup_frontend(struct proxy * fe)2850 void peers_setup_frontend(struct proxy *fe)
2851 {
2852 	fe->last_change = now.tv_sec;
2853 	fe->cap = PR_CAP_FE | PR_CAP_BE;
2854 	fe->mode = PR_MODE_PEERS;
2855 	fe->maxconn = 0;
2856 	fe->conn_retries = CONN_RETRIES;
2857 	fe->timeout.client = MS_TO_TICKS(5000);
2858 	fe->accept = frontend_accept;
2859 	fe->default_target = &peer_applet.obj_type;
2860 	fe->options2 |= PR_O2_INDEPSTR | PR_O2_SMARTCON | PR_O2_SMARTACC;
2861 	fe->bind_proc = 0; /* will be filled by users */
2862 }
2863 
2864 /*
2865  * Create a new peer session in assigned state (connect will start automatically)
2866  */
peer_session_create(struct peers * peers,struct peer * peer)2867 static struct appctx *peer_session_create(struct peers *peers, struct peer *peer)
2868 {
2869 	struct proxy *p = peers->peers_fe; /* attached frontend */
2870 	struct appctx *appctx;
2871 	struct session *sess;
2872 	struct stream *s;
2873 
2874 	peer->new_conn++;
2875 	peer->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT));
2876 	peer->heartbeat = TICK_ETERNITY;
2877 	peer->statuscode = PEER_SESS_SC_CONNECTCODE;
2878 	peer->last_hdshk = now_ms;
2879 	s = NULL;
2880 
2881 	appctx = appctx_new(&peer_applet, tid_bit);
2882 	if (!appctx)
2883 		goto out_close;
2884 
2885 	appctx->st0 = PEER_SESS_ST_CONNECT;
2886 	appctx->ctx.peers.ptr = (void *)peer;
2887 
2888 	sess = session_new(p, NULL, &appctx->obj_type);
2889 	if (!sess) {
2890 		ha_alert("out of memory in peer_session_create().\n");
2891 		goto out_free_appctx;
2892 	}
2893 
2894 	if ((s = stream_new(sess, &appctx->obj_type)) == NULL) {
2895 		ha_alert("Failed to initialize stream in peer_session_create().\n");
2896 		goto out_free_sess;
2897 	}
2898 
2899 	/* applet is waiting for data */
2900 	si_cant_get(&s->si[0]);
2901 	appctx_wakeup(appctx);
2902 
2903 	/* initiate an outgoing connection */
2904 	s->target = peer_session_target(peer, s);
2905 	if (!sockaddr_alloc(&s->target_addr, &peer->addr, sizeof(peer->addr)))
2906 		goto out_free_strm;
2907 	s->flags = SF_ASSIGNED|SF_ADDR_SET;
2908 	s->si[1].flags |= SI_FL_NOLINGER;
2909 
2910 	s->do_log = NULL;
2911 	s->uniq_id = 0;
2912 
2913 	s->res.flags |= CF_READ_DONTWAIT;
2914 
2915 	peer->appctx = appctx;
2916 	task_wakeup(s->task, TASK_WOKEN_INIT);
2917 	_HA_ATOMIC_ADD(&active_peers, 1);
2918 	return appctx;
2919 
2920 	/* Error unrolling */
2921  out_free_strm:
2922 	LIST_DEL(&s->list);
2923 	pool_free(pool_head_stream, s);
2924  out_free_sess:
2925 	session_free(sess);
2926  out_free_appctx:
2927 	appctx_free(appctx);
2928  out_close:
2929 	return NULL;
2930 }
2931 
2932 /*
2933  * Task processing function to manage re-connect, peer session
2934  * tasks wakeup on local update and heartbeat.
2935  */
process_peer_sync(struct task * task,void * context,unsigned short state)2936 static struct task *process_peer_sync(struct task * task, void *context, unsigned short state)
2937 {
2938 	struct peers *peers = context;
2939 	struct peer *ps;
2940 	struct shared_table *st;
2941 
2942 	task->expire = TICK_ETERNITY;
2943 
2944 	if (!peers->peers_fe) {
2945 		/* this one was never started, kill it */
2946 		signal_unregister_handler(peers->sighandler);
2947 		task_destroy(peers->sync_task);
2948 		peers->sync_task = NULL;
2949 		return NULL;
2950 	}
2951 
2952 	/* Acquire lock for all peers of the section */
2953 	for (ps = peers->remote; ps; ps = ps->next)
2954 		HA_SPIN_LOCK(PEER_LOCK, &ps->lock);
2955 
2956 	if (!stopping) {
2957 		/* Normal case (not soft stop)*/
2958 
2959 		/* resync timeout set to TICK_ETERNITY means we just start
2960 		 * a new process and timer was not initialized.
2961 		 * We must arm this timer to switch to a request to a remote
2962 		 * node if incoming connection from old local process never
2963 		 * comes.
2964 		 */
2965 		if (peers->resync_timeout == TICK_ETERNITY)
2966 			peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
2967 
2968 		if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMLOCAL) &&
2969 		     (!nb_oldpids || tick_is_expired(peers->resync_timeout, now_ms)) &&
2970 		     !(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
2971 			/* Resync from local peer needed
2972 			   no peer was assigned for the lesson
2973 			   and no old local peer found
2974 			       or resync timeout expire */
2975 
2976 			/* flag no more resync from local, to try resync from remotes */
2977 			peers->flags |= PEERS_F_RESYNC_LOCAL;
2978 			peers->flags |= PEERS_F_RESYNC_LOCALTIMEOUT;
2979 
2980 			/* reschedule a resync */
2981 			peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
2982 		}
2983 
2984 		/* For each session */
2985 		for (ps = peers->remote; ps; ps = ps->next) {
2986 			/* For each remote peers */
2987 			if (!ps->local) {
2988 				if (!ps->appctx) {
2989 					/* no active peer connection */
2990 					if (ps->statuscode == 0 ||
2991 					    ((ps->statuscode == PEER_SESS_SC_CONNECTCODE ||
2992 					      ps->statuscode == PEER_SESS_SC_SUCCESSCODE ||
2993 					      ps->statuscode == PEER_SESS_SC_CONNECTEDCODE) &&
2994 					     tick_is_expired(ps->reconnect, now_ms))) {
2995 						/* connection never tried
2996 						 * or previous peer connection established with success
2997 						 * or previous peer connection failed while connecting
2998 						 * and reconnection timer is expired */
2999 
3000 						/* retry a connect */
3001 						ps->appctx = peer_session_create(peers, ps);
3002 					}
3003 					else if (!tick_is_expired(ps->reconnect, now_ms)) {
3004 						/* If previous session failed during connection
3005 						 * but reconnection timer is not expired */
3006 
3007 						/* reschedule task for reconnect */
3008 						task->expire = tick_first(task->expire, ps->reconnect);
3009 					}
3010 					/* else do nothing */
3011 				} /* !ps->appctx */
3012 				else if (ps->statuscode == PEER_SESS_SC_SUCCESSCODE) {
3013 					/* current peer connection is active and established */
3014 					if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE) &&
3015 					    !(peers->flags & PEERS_F_RESYNC_ASSIGN) &&
3016 					    !(ps->flags & PEER_F_LEARN_NOTUP2DATE)) {
3017 						/* Resync from a remote is needed
3018 						 * and no peer was assigned for lesson
3019 						 * and current peer may be up2date */
3020 
3021 						/* assign peer for the lesson */
3022 						ps->flags |= PEER_F_LEARN_ASSIGN;
3023 						peers->flags |= PEERS_F_RESYNC_ASSIGN;
3024 						peers->flags |= PEERS_F_RESYNC_REMOTEASSIGN;
3025 
3026 						/* wake up peer handler to handle a request of resync */
3027 						appctx_wakeup(ps->appctx);
3028 					}
3029 					else {
3030 						int update_to_push = 0;
3031 
3032 						/* Awake session if there is data to push */
3033 						for (st = ps->tables; st ; st = st->next) {
3034 							if (st->last_pushed != st->table->localupdate) {
3035 								/* wake up the peer handler to push local updates */
3036 								update_to_push = 1;
3037 								/* There is no need to send a heartbeat message
3038 								 * when some updates must be pushed. The remote
3039 								 * peer will consider <ps> peer as alive when it will
3040 								 * receive these updates.
3041 								 */
3042 								ps->flags &= ~PEER_F_HEARTBEAT;
3043 								/* Re-schedule another one later. */
3044 								ps->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
3045 								/* We are going to send updates, let's ensure we will
3046 								 * come back to send heartbeat messages or to reconnect.
3047 								 */
3048 								task->expire = tick_first(ps->reconnect, ps->heartbeat);
3049 								appctx_wakeup(ps->appctx);
3050 								break;
3051 							}
3052 						}
3053 						/* When there are updates to send we do not reconnect
3054 						 * and do not send heartbeat message either.
3055 						 */
3056 						if (!update_to_push) {
3057 							if (tick_is_expired(ps->reconnect, now_ms)) {
3058 								if (ps->flags & PEER_F_ALIVE) {
3059 									/* This peer was alive during a 'reconnect' period.
3060 									 * Flag it as not alive again for the next period.
3061 									 */
3062 									ps->flags &= ~PEER_F_ALIVE;
3063 									ps->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT));
3064 								}
3065 								else  {
3066 									ps->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000));
3067 									ps->heartbeat = TICK_ETERNITY;
3068 									peer_session_forceshutdown(ps);
3069 									ps->no_hbt++;
3070 								}
3071 							}
3072 							else if (tick_is_expired(ps->heartbeat, now_ms)) {
3073 								ps->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
3074 								ps->flags |= PEER_F_HEARTBEAT;
3075 								appctx_wakeup(ps->appctx);
3076 							}
3077 							task->expire = tick_first(ps->reconnect, ps->heartbeat);
3078 						}
3079 					}
3080 					/* else do nothing */
3081 				} /* SUCCESSCODE */
3082 			} /* !ps->peer->local */
3083 		} /* for */
3084 
3085 		/* Resync from remotes expired: consider resync is finished */
3086 		if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE) &&
3087 		    !(peers->flags & PEERS_F_RESYNC_ASSIGN) &&
3088 		    tick_is_expired(peers->resync_timeout, now_ms)) {
3089 			/* Resync from remote peer needed
3090 			 * no peer was assigned for the lesson
3091 			 * and resync timeout expire */
3092 
3093 			/* flag no more resync from remote, consider resync is finished */
3094 			peers->flags |= PEERS_F_RESYNC_REMOTE;
3095 			peers->flags |= PEERS_F_RESYNC_REMOTETIMEOUT;
3096 		}
3097 
3098 		if ((peers->flags & PEERS_RESYNC_STATEMASK) != PEERS_RESYNC_FINISHED) {
3099 			/* Resync not finished*/
3100 			/* reschedule task to resync timeout if not expired, to ended resync if needed */
3101 			if (!tick_is_expired(peers->resync_timeout, now_ms))
3102 				task->expire = tick_first(task->expire, peers->resync_timeout);
3103 		}
3104 	} /* !stopping */
3105 	else {
3106 		/* soft stop case */
3107 		if (state & TASK_WOKEN_SIGNAL) {
3108 			/* We've just received the signal */
3109 			if (!(peers->flags & PEERS_F_DONOTSTOP)) {
3110 				/* add DO NOT STOP flag if not present */
3111 				_HA_ATOMIC_ADD(&jobs, 1);
3112 				peers->flags |= PEERS_F_DONOTSTOP;
3113 
3114 				/* disconnect all connected peers to process a local sync
3115 				 * this must be done only the first time we are switching
3116 				 * in stopping state
3117 				 */
3118 				for (ps = peers->remote; ps; ps = ps->next) {
3119 					/* we're killing a connection, we must apply a random delay before
3120 					 * retrying otherwise the other end will do the same and we can loop
3121 					 * for a while.
3122 					 */
3123 					ps->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000));
3124 					if (ps->appctx) {
3125 						peer_session_forceshutdown(ps);
3126 					}
3127 				}
3128 			}
3129 		}
3130 
3131 		ps = peers->local;
3132 		if (ps->flags & PEER_F_TEACH_COMPLETE) {
3133 			if (peers->flags & PEERS_F_DONOTSTOP) {
3134 				/* resync of new process was complete, current process can die now */
3135 				_HA_ATOMIC_SUB(&jobs, 1);
3136 				peers->flags &= ~PEERS_F_DONOTSTOP;
3137 				for (st = ps->tables; st ; st = st->next)
3138 					_HA_ATOMIC_SUB(&st->table->refcnt, 1);
3139 			}
3140 		}
3141 		else if (!ps->appctx) {
3142 			/* If there's no active peer connection */
3143 			if (ps->statuscode == 0 ||
3144 			    ps->statuscode == PEER_SESS_SC_SUCCESSCODE ||
3145 			    ps->statuscode == PEER_SESS_SC_CONNECTEDCODE ||
3146 			    ps->statuscode == PEER_SESS_SC_TRYAGAIN) {
3147 				/* connection never tried
3148 				 * or previous peer connection was successfully established
3149 				 * or previous tcp connect succeeded but init state incomplete
3150 				 * or during previous connect, peer replies a try again statuscode */
3151 
3152 				/* connect to the local peer if we must push a local sync */
3153 				if (peers->flags & PEERS_F_DONOTSTOP) {
3154 					peer_session_create(peers, ps);
3155 				}
3156 			}
3157 			else {
3158 				/* Other error cases */
3159 				if (peers->flags & PEERS_F_DONOTSTOP) {
3160 					/* unable to resync new process, current process can die now */
3161 					_HA_ATOMIC_SUB(&jobs, 1);
3162 					peers->flags &= ~PEERS_F_DONOTSTOP;
3163 					for (st = ps->tables; st ; st = st->next)
3164 						_HA_ATOMIC_SUB(&st->table->refcnt, 1);
3165 				}
3166 			}
3167 		}
3168 		else if (ps->statuscode == PEER_SESS_SC_SUCCESSCODE ) {
3169 			/* current peer connection is active and established
3170 			 * wake up all peer handlers to push remaining local updates */
3171 			for (st = ps->tables; st ; st = st->next) {
3172 				if (st->last_pushed != st->table->localupdate) {
3173 					appctx_wakeup(ps->appctx);
3174 					break;
3175 				}
3176 			}
3177 		}
3178 	} /* stopping */
3179 
3180 	/* Release lock for all peers of the section */
3181 	for (ps = peers->remote; ps; ps = ps->next)
3182 		HA_SPIN_UNLOCK(PEER_LOCK, &ps->lock);
3183 
3184 	/* Wakeup for re-connect */
3185 	return task;
3186 }
3187 
3188 
3189 /*
3190  * returns 0 in case of error.
3191  */
peers_init_sync(struct peers * peers)3192 int peers_init_sync(struct peers *peers)
3193 {
3194 	struct peer * curpeer;
3195 
3196 	for (curpeer = peers->remote; curpeer; curpeer = curpeer->next) {
3197 		peers->peers_fe->maxconn += 3;
3198 	}
3199 
3200 	peers->sync_task = task_new(MAX_THREADS_MASK);
3201 	if (!peers->sync_task)
3202 		return 0;
3203 
3204 	peers->sync_task->process = process_peer_sync;
3205 	peers->sync_task->context = (void *)peers;
3206 	peers->sighandler = signal_register_task(0, peers->sync_task, 0);
3207 	task_wakeup(peers->sync_task, TASK_WOKEN_INIT);
3208 	return 1;
3209 }
3210 
3211 /*
3212  * Allocate a cache a dictionary entries used upon transmission.
3213  */
new_dcache_tx(size_t max_entries)3214 static struct dcache_tx *new_dcache_tx(size_t max_entries)
3215 {
3216 	struct dcache_tx *d;
3217 	struct ebpt_node *entries;
3218 
3219 	d = malloc(sizeof *d);
3220 	entries = calloc(max_entries, sizeof *entries);
3221 	if (!d || !entries)
3222 		goto err;
3223 
3224 	d->lru_key = 0;
3225 	d->prev_lookup = NULL;
3226 	d->cached_entries = EB_ROOT_UNIQUE;
3227 	d->entries = entries;
3228 
3229 	return d;
3230 
3231  err:
3232 	free(d);
3233 	free(entries);
3234 	return NULL;
3235 }
3236 
3237 /*
3238  * Allocate a cache of dictionary entries with <name> as name and <max_entries>
3239  * as maximum of entries.
3240  * Return the dictionary cache if succeeded, NULL if not.
3241  * Must be deallocated calling free_dcache().
3242  */
new_dcache(size_t max_entries)3243 static struct dcache *new_dcache(size_t max_entries)
3244 {
3245 	struct dcache_tx *dc_tx;
3246 	struct dcache *dc;
3247 	struct dcache_rx *dc_rx;
3248 
3249 	dc = calloc(1, sizeof *dc);
3250 	dc_tx = new_dcache_tx(max_entries);
3251 	dc_rx = calloc(max_entries, sizeof *dc_rx);
3252 	if (!dc || !dc_tx || !dc_rx)
3253 		goto err;
3254 
3255 	dc->tx = dc_tx;
3256 	dc->rx = dc_rx;
3257 	dc->max_entries = max_entries;
3258 
3259 	return dc;
3260 
3261  err:
3262 	free(dc);
3263 	free(dc_tx);
3264 	free(dc_rx);
3265 	return NULL;
3266 }
3267 
3268 /*
3269  * Look for the dictionary entry with the value of <i> in <d> cache of dictionary
3270  * entries used upon transmission.
3271  * Return the entry if found, NULL if not.
3272  */
dcache_tx_lookup_value(struct dcache_tx * d,struct dcache_tx_entry * i)3273 static struct ebpt_node *dcache_tx_lookup_value(struct dcache_tx *d,
3274                                                 struct dcache_tx_entry *i)
3275 {
3276 	return ebpt_lookup(&d->cached_entries, i->entry.key);
3277 }
3278 
3279 /*
3280  * Flush <dc> cache.
3281  * Always succeeds.
3282  */
flush_dcache(struct peer * peer)3283 static inline void flush_dcache(struct peer *peer)
3284 {
3285 	int i;
3286 	struct dcache *dc = peer->dcache;
3287 
3288 	for (i = 0; i < dc->max_entries; i++) {
3289 		ebpt_delete(&dc->tx->entries[i]);
3290 		dc->tx->entries[i].key = NULL;
3291 	}
3292 	dc->tx->prev_lookup = NULL;
3293 	dc->tx->lru_key = 0;
3294 
3295 	memset(dc->rx, 0, dc->max_entries * sizeof *dc->rx);
3296 }
3297 
3298 /*
3299  * Insert a dictionary entry in <dc> cache part used upon transmission (->tx)
3300  * with information provided by <i> dictionary cache entry (especially the value
3301  * to be inserted if not already). Return <i> if already present in the cache
3302  * or something different of <i> if not.
3303  */
dcache_tx_insert(struct dcache * dc,struct dcache_tx_entry * i)3304 static struct ebpt_node *dcache_tx_insert(struct dcache *dc, struct dcache_tx_entry *i)
3305 {
3306 	struct dcache_tx *dc_tx;
3307 	struct ebpt_node *o;
3308 
3309 	dc_tx = dc->tx;
3310 
3311 	if (dc_tx->prev_lookup && dc_tx->prev_lookup->key == i->entry.key) {
3312 		o = dc_tx->prev_lookup;
3313 	} else {
3314 		o = dcache_tx_lookup_value(dc_tx, i);
3315 		if (o) {
3316 			/* Save it */
3317 			dc_tx->prev_lookup = o;
3318 		}
3319 	}
3320 
3321 	if (o) {
3322 		/* Copy the ID. */
3323 		i->id = o - dc->tx->entries;
3324 		return &i->entry;
3325 	}
3326 
3327 	/* The new entry to put in cache */
3328 	dc_tx->prev_lookup = o = &dc_tx->entries[dc_tx->lru_key];
3329 
3330 	ebpt_delete(o);
3331 	o->key = i->entry.key;
3332 	ebpt_insert(&dc_tx->cached_entries, o);
3333 	i->id = dc_tx->lru_key;
3334 
3335 	/* Update the index for the next entry to put in cache */
3336 	dc_tx->lru_key = (dc_tx->lru_key + 1) & (dc->max_entries - 1);
3337 
3338 	return o;
3339 }
3340 
3341 /*
3342  * Allocate a dictionary cache for each peer of <peers> section.
3343  * Return 1 if succeeded, 0 if not.
3344  */
peers_alloc_dcache(struct peers * peers)3345 int peers_alloc_dcache(struct peers *peers)
3346 {
3347 	struct peer *p;
3348 
3349 	for (p = peers->remote; p; p = p->next) {
3350 		p->dcache = new_dcache(PEER_STKT_CACHE_MAX_ENTRIES);
3351 		if (!p->dcache)
3352 			return 0;
3353 	}
3354 
3355 	return 1;
3356 }
3357 
3358 /*
3359  * Function used to register a table for sync on a group of peers
3360  * Returns 0 in case of success.
3361  */
peers_register_table(struct peers * peers,struct stktable * table)3362 int peers_register_table(struct peers *peers, struct stktable *table)
3363 {
3364 	struct shared_table *st;
3365 	struct peer * curpeer;
3366 	int id = 0;
3367 	int retval = 0;
3368 
3369 	for (curpeer = peers->remote; curpeer; curpeer = curpeer->next) {
3370 		st = calloc(1,sizeof(*st));
3371 		if (!st) {
3372 			retval = 1;
3373 			break;
3374 		}
3375 		st->table = table;
3376 		st->next = curpeer->tables;
3377 		if (curpeer->tables)
3378 			id = curpeer->tables->local_id;
3379 		st->local_id = id + 1;
3380 
3381 		/* If peer is local we inc table
3382 		 * refcnt to protect against flush
3383 		 * until this process pushed all
3384 		 * table content to the new one
3385 		 */
3386 		if (curpeer->local)
3387 			_HA_ATOMIC_ADD(&st->table->refcnt, 1);
3388 		curpeer->tables = st;
3389 	}
3390 
3391 	table->sync_task = peers->sync_task;
3392 
3393 	return retval;
3394 }
3395 
3396 /*
3397  * Parse the "show peers" command arguments.
3398  * Returns 0 if succeeded, 1 if not with the ->msg of the appctx set as
3399  * error message.
3400  */
cli_parse_show_peers(char ** args,char * payload,struct appctx * appctx,void * private)3401 static int cli_parse_show_peers(char **args, char *payload, struct appctx *appctx, void *private)
3402 {
3403 	appctx->ctx.cfgpeers.target = NULL;
3404 
3405 	if (*args[2]) {
3406 		struct peers *p;
3407 
3408 		for (p = cfg_peers; p; p = p->next) {
3409 			if (!strcmp(p->id, args[2])) {
3410 				appctx->ctx.cfgpeers.target = p;
3411 				break;
3412 			}
3413 		}
3414 
3415 		if (!p)
3416 			return cli_err(appctx, "No such peers\n");
3417 	}
3418 
3419 	return 0;
3420 }
3421 
3422 /*
3423  * This function dumps the peer state information of <peers> "peers" section.
3424  * Returns 0 if the output buffer is full and needs to be called again, non-zero if not.
3425  * Dedicated to be called by cli_io_handler_show_peers() cli I/O handler.
3426  */
peers_dump_head(struct buffer * msg,struct stream_interface * si,struct peers * peers)3427 static int peers_dump_head(struct buffer *msg, struct stream_interface *si, struct peers *peers)
3428 {
3429 	struct tm tm;
3430 
3431 	get_localtime(peers->last_change, &tm);
3432 	chunk_appendf(msg, "%p: [%02d/%s/%04d:%02d:%02d:%02d] id=%s disabled=%d flags=0x%x resync_timeout=%s task_calls=%u\n",
3433 	              peers,
3434 	              tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
3435 	              tm.tm_hour, tm.tm_min, tm.tm_sec,
3436 	              peers->id, peers->disabled, peers->flags,
3437 	              peers->resync_timeout ?
3438 			             tick_is_expired(peers->resync_timeout, now_ms) ? "<PAST>" :
3439 			                     human_time(TICKS_TO_MS(peers->resync_timeout - now_ms),
3440 			                     TICKS_TO_MS(1000)) : "<NEVER>",
3441 	              peers->sync_task ? peers->sync_task->calls : 0);
3442 
3443 	if (ci_putchk(si_ic(si), msg) == -1) {
3444 		si_rx_room_blk(si);
3445 		return 0;
3446 	}
3447 
3448 	return 1;
3449 }
3450 
3451 /*
3452  * This function dumps <peer> state information.
3453  * Returns 0 if the output buffer is full and needs to be called again, non-zero
3454  * if not. Dedicated to be called by cli_io_handler_show_peers() cli I/O handler.
3455  */
peers_dump_peer(struct buffer * msg,struct stream_interface * si,struct peer * peer)3456 static int peers_dump_peer(struct buffer *msg, struct stream_interface *si, struct peer *peer)
3457 {
3458 	struct connection *conn;
3459 	char pn[INET6_ADDRSTRLEN];
3460 	struct stream_interface *peer_si;
3461 	struct stream *peer_s;
3462 	struct appctx *appctx;
3463 	struct shared_table *st;
3464 
3465 	addr_to_str(&peer->addr, pn, sizeof pn);
3466 	chunk_appendf(msg, "  %p: id=%s(%s,%s) addr=%s:%d last_status=%s",
3467 	              peer, peer->id,
3468 	              peer->local ? "local" : "remote",
3469 	              peer->appctx ? "active" : "inactive",
3470 	              pn, get_host_port(&peer->addr),
3471 	              statuscode_str(peer->statuscode));
3472 
3473 	chunk_appendf(msg, " last_hdshk=%s\n",
3474 	              peer->last_hdshk ? human_time(TICKS_TO_MS(now_ms - peer->last_hdshk),
3475 	                                            TICKS_TO_MS(1000)) : "<NEVER>");
3476 
3477 	chunk_appendf(msg, "        reconnect=%s",
3478 	              peer->reconnect ?
3479 			             tick_is_expired(peer->reconnect, now_ms) ? "<PAST>" :
3480 			                     human_time(TICKS_TO_MS(peer->reconnect - now_ms),
3481 			                     TICKS_TO_MS(1000)) : "<NEVER>");
3482 
3483 	chunk_appendf(msg, " heartbeat=%s",
3484 	              peer->heartbeat ?
3485 			             tick_is_expired(peer->heartbeat, now_ms) ? "<PAST>" :
3486 			                     human_time(TICKS_TO_MS(peer->heartbeat - now_ms),
3487 			                     TICKS_TO_MS(1000)) : "<NEVER>");
3488 
3489 	chunk_appendf(msg, " confirm=%u tx_hbt=%u rx_hbt=%u no_hbt=%u new_conn=%u proto_err=%u coll=%u\n",
3490 	              peer->confirm, peer->tx_hbt, peer->rx_hbt,
3491 	              peer->no_hbt, peer->new_conn, peer->proto_err, peer->coll);
3492 
3493 	chunk_appendf(&trash, "        flags=0x%x", peer->flags);
3494 
3495 	appctx = peer->appctx;
3496 	if (!appctx)
3497 		goto table_info;
3498 
3499 	chunk_appendf(&trash, " appctx:%p st0=%d st1=%d task_calls=%u", appctx, appctx->st0, appctx->st1,
3500 	                                                                appctx->t ? appctx->t->calls : 0);
3501 
3502 	peer_si = peer->appctx->owner;
3503 	if (!peer_si)
3504 		goto table_info;
3505 
3506 	peer_s = si_strm(peer_si);
3507 	if (!peer_s)
3508 		goto table_info;
3509 
3510 	chunk_appendf(&trash, " state=%s", si_state_str(si_opposite(peer_si)->state));
3511 
3512 	conn = objt_conn(strm_orig(peer_s));
3513 	if (conn)
3514 		chunk_appendf(&trash, "\n        xprt=%s", conn_get_xprt_name(conn));
3515 
3516 	switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
3517 	case AF_INET:
3518 	case AF_INET6:
3519 		chunk_appendf(&trash, " src=%s:%d", pn, get_host_port(conn->src));
3520 		break;
3521 	case AF_UNIX:
3522 		chunk_appendf(&trash, " src=unix:%d", strm_li(peer_s)->luid);
3523 		break;
3524 	}
3525 
3526 	switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
3527 	case AF_INET:
3528 	case AF_INET6:
3529 		chunk_appendf(&trash, " addr=%s:%d", pn, get_host_port(conn->dst));
3530 		break;
3531 	case AF_UNIX:
3532 		chunk_appendf(&trash, " addr=unix:%d", strm_li(peer_s)->luid);
3533 		break;
3534 	}
3535 
3536  table_info:
3537 	if (peer->remote_table)
3538 		chunk_appendf(&trash, "\n        remote_table:%p id=%s local_id=%d remote_id=%d",
3539 		              peer->remote_table,
3540 		              peer->remote_table->table->id,
3541 		              peer->remote_table->local_id,
3542 		              peer->remote_table->remote_id);
3543 
3544 	if (peer->last_local_table)
3545 		chunk_appendf(&trash, "\n        last_local_table:%p id=%s local_id=%d remote_id=%d",
3546 		              peer->last_local_table,
3547 		              peer->last_local_table->table->id,
3548 		              peer->last_local_table->local_id,
3549 		              peer->last_local_table->remote_id);
3550 
3551 	if (peer->tables) {
3552 		chunk_appendf(&trash, "\n        shared tables:");
3553 		for (st = peer->tables; st; st = st->next) {
3554 			int i, count;
3555 			struct stktable *t;
3556 			struct dcache *dcache;
3557 
3558 			t = st->table;
3559 			dcache = peer->dcache;
3560 
3561 			chunk_appendf(&trash, "\n          %p local_id=%d remote_id=%d "
3562 			              "flags=0x%x remote_data=0x%llx",
3563 			              st, st->local_id, st->remote_id,
3564 			              st->flags, (unsigned long long)st->remote_data);
3565 			chunk_appendf(&trash, "\n              last_acked=%u last_pushed=%u last_get=%u"
3566 			              " teaching_origin=%u update=%u",
3567 			              st->last_acked, st->last_pushed, st->last_get,
3568 			              st->teaching_origin, st->update);
3569 			chunk_appendf(&trash, "\n              table:%p id=%s update=%u localupdate=%u"
3570 			              " commitupdate=%u refcnt=%u",
3571 			              t, t->id, t->update, t->localupdate, t->commitupdate, t->refcnt);
3572 			chunk_appendf(&trash, "\n        TX dictionary cache:");
3573 			count = 0;
3574 			for (i = 0; i < dcache->max_entries; i++) {
3575 				struct ebpt_node *node;
3576 				struct dict_entry *de;
3577 
3578 				node = &dcache->tx->entries[i];
3579 				if (!node->key)
3580 					break;
3581 
3582 				if (!count++)
3583 					chunk_appendf(&trash, "\n        ");
3584 				de = node->key;
3585 				chunk_appendf(&trash, "  %3u -> %s", i, (char *)de->value.key);
3586 				count &= 0x3;
3587 			}
3588 			chunk_appendf(&trash, "\n        RX dictionary cache:");
3589 			count = 0;
3590 			for (i = 0; i < dcache->max_entries; i++) {
3591 				if (!count++)
3592 					chunk_appendf(&trash, "\n        ");
3593 				chunk_appendf(&trash, "  %3u -> %s", i,
3594 				              dcache->rx[i].de ?
3595 				                  (char *)dcache->rx[i].de->value.key : "-");
3596 				count &= 0x3;
3597 			}
3598 		}
3599 	}
3600 
3601  end:
3602 	chunk_appendf(&trash, "\n");
3603 	if (ci_putchk(si_ic(si), msg) == -1) {
3604 		si_rx_room_blk(si);
3605 		return 0;
3606 	}
3607 
3608 	return 1;
3609 }
3610 
3611 /*
3612  * This function dumps all the peers of "peers" section.
3613  * Returns 0 if the output buffer is full and needs to be called
3614  * again, non-zero if not. It proceeds in an isolated thread, so
3615  * there is no thread safety issue here.
3616  */
cli_io_handler_show_peers(struct appctx * appctx)3617 static int cli_io_handler_show_peers(struct appctx *appctx)
3618 {
3619 	int show_all;
3620 	int ret = 0, first_peers = 1;
3621 	struct stream_interface *si = appctx->owner;
3622 
3623 	thread_isolate();
3624 
3625 	show_all = !appctx->ctx.cfgpeers.target;
3626 
3627 	chunk_reset(&trash);
3628 
3629 	while (appctx->st2 != STAT_ST_FIN) {
3630 		switch (appctx->st2) {
3631 		case STAT_ST_INIT:
3632 			if (show_all)
3633 				appctx->ctx.cfgpeers.peers = cfg_peers;
3634 			else
3635 				appctx->ctx.cfgpeers.peers = appctx->ctx.cfgpeers.target;
3636 
3637 			appctx->st2 = STAT_ST_LIST;
3638 			/* fall through */
3639 
3640 		case STAT_ST_LIST:
3641 			if (!appctx->ctx.cfgpeers.peers) {
3642 				/* No more peers list. */
3643 				appctx->st2 = STAT_ST_END;
3644 			}
3645 			else {
3646 				if (!first_peers)
3647 					chunk_appendf(&trash, "\n");
3648 				else
3649 					first_peers = 0;
3650 				if (!peers_dump_head(&trash, si, appctx->ctx.cfgpeers.peers))
3651 					goto out;
3652 
3653 				appctx->ctx.cfgpeers.peer = appctx->ctx.cfgpeers.peers->remote;
3654 				appctx->ctx.cfgpeers.peers = appctx->ctx.cfgpeers.peers->next;
3655 				appctx->st2 = STAT_ST_INFO;
3656 			}
3657 			break;
3658 
3659 		case STAT_ST_INFO:
3660 			if (!appctx->ctx.cfgpeers.peer) {
3661 				/* End of peer list */
3662 				if (show_all)
3663 					appctx->st2 = STAT_ST_LIST;
3664 			    else
3665 					appctx->st2 = STAT_ST_END;
3666 			}
3667 			else {
3668 				if (!peers_dump_peer(&trash, si, appctx->ctx.cfgpeers.peer))
3669 					goto out;
3670 
3671 				appctx->ctx.cfgpeers.peer = appctx->ctx.cfgpeers.peer->next;
3672 			}
3673 		    break;
3674 
3675 		case STAT_ST_END:
3676 			appctx->st2 = STAT_ST_FIN;
3677 			break;
3678 		}
3679 	}
3680 	ret = 1;
3681  out:
3682 	thread_release();
3683 	return ret;
3684 }
3685 
3686 /*
3687  * CLI keywords.
3688  */
3689 static struct cli_kw_list cli_kws = {{ }, {
3690 	{ { "show", "peers", NULL }, "show peers [peers section]: dump some information about all the peers or this peers section", cli_parse_show_peers, cli_io_handler_show_peers, },
3691 	{},
3692 }};
3693 
3694 /* Register cli keywords */
3695 INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
3696 
3697