1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Linux system calls.
6// This file is compiled as ordinary Go code,
7// but it is also input to mksyscall,
8// which parses the //sys lines and generates system call stubs.
9// Note that sometimes we use a lowercase //sys name and
10// wrap it in our own nicer implementation.
11
12package unix
13
14import (
15	"encoding/binary"
16	"runtime"
17	"syscall"
18	"unsafe"
19)
20
21/*
22 * Wrapped
23 */
24
25func Access(path string, mode uint32) (err error) {
26	return Faccessat(AT_FDCWD, path, mode, 0)
27}
28
29func Chmod(path string, mode uint32) (err error) {
30	return Fchmodat(AT_FDCWD, path, mode, 0)
31}
32
33func Chown(path string, uid int, gid int) (err error) {
34	return Fchownat(AT_FDCWD, path, uid, gid, 0)
35}
36
37func Creat(path string, mode uint32) (fd int, err error) {
38	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
39}
40
41//sys	FanotifyInit(flags uint, event_f_flags uint) (fd int, err error)
42//sys	fanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname *byte) (err error)
43
44func FanotifyMark(fd int, flags uint, mask uint64, dirFd int, pathname string) (err error) {
45	if pathname == "" {
46		return fanotifyMark(fd, flags, mask, dirFd, nil)
47	}
48	p, err := BytePtrFromString(pathname)
49	if err != nil {
50		return err
51	}
52	return fanotifyMark(fd, flags, mask, dirFd, p)
53}
54
55//sys	fchmodat(dirfd int, path string, mode uint32) (err error)
56
57func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
58	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
59	// and check the flags. Otherwise the mode would be applied to the symlink
60	// destination which is not what the user expects.
61	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
62		return EINVAL
63	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
64		return EOPNOTSUPP
65	}
66	return fchmodat(dirfd, path, mode)
67}
68
69//sys	ioctl(fd int, req uint, arg uintptr) (err error) = SYS_IOCTL
70//sys	ioctlPtr(fd int, req uint, arg unsafe.Pointer) (err error) = SYS_IOCTL
71
72// ioctl itself should not be exposed directly, but additional get/set functions
73// for specific types are permissible. These are defined in ioctl.go and
74// ioctl_linux.go.
75//
76// The third argument to ioctl is often a pointer but sometimes an integer.
77// Callers should use ioctlPtr when the third argument is a pointer and ioctl
78// when the third argument is an integer.
79//
80// TODO: some existing code incorrectly uses ioctl when it should use ioctlPtr.
81
82//sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
83
84func Link(oldpath string, newpath string) (err error) {
85	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
86}
87
88func Mkdir(path string, mode uint32) (err error) {
89	return Mkdirat(AT_FDCWD, path, mode)
90}
91
92func Mknod(path string, mode uint32, dev int) (err error) {
93	return Mknodat(AT_FDCWD, path, mode, dev)
94}
95
96func Open(path string, mode int, perm uint32) (fd int, err error) {
97	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
98}
99
100//sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
101
102func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
103	return openat(dirfd, path, flags|O_LARGEFILE, mode)
104}
105
106//sys	openat2(dirfd int, path string, open_how *OpenHow, size int) (fd int, err error)
107
108func Openat2(dirfd int, path string, how *OpenHow) (fd int, err error) {
109	return openat2(dirfd, path, how, SizeofOpenHow)
110}
111
112//sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
113
114func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
115	if len(fds) == 0 {
116		return ppoll(nil, 0, timeout, sigmask)
117	}
118	return ppoll(&fds[0], len(fds), timeout, sigmask)
119}
120
121//sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
122
123func Readlink(path string, buf []byte) (n int, err error) {
124	return Readlinkat(AT_FDCWD, path, buf)
125}
126
127func Rename(oldpath string, newpath string) (err error) {
128	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
129}
130
131func Rmdir(path string) error {
132	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
133}
134
135//sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
136
137func Symlink(oldpath string, newpath string) (err error) {
138	return Symlinkat(oldpath, AT_FDCWD, newpath)
139}
140
141func Unlink(path string) error {
142	return Unlinkat(AT_FDCWD, path, 0)
143}
144
145//sys	Unlinkat(dirfd int, path string, flags int) (err error)
146
147func Utimes(path string, tv []Timeval) error {
148	if tv == nil {
149		err := utimensat(AT_FDCWD, path, nil, 0)
150		if err != ENOSYS {
151			return err
152		}
153		return utimes(path, nil)
154	}
155	if len(tv) != 2 {
156		return EINVAL
157	}
158	var ts [2]Timespec
159	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
160	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
161	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
162	if err != ENOSYS {
163		return err
164	}
165	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
166}
167
168//sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
169
170func UtimesNano(path string, ts []Timespec) error {
171	if ts == nil {
172		err := utimensat(AT_FDCWD, path, nil, 0)
173		if err != ENOSYS {
174			return err
175		}
176		return utimes(path, nil)
177	}
178	if len(ts) != 2 {
179		return EINVAL
180	}
181	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
182	if err != ENOSYS {
183		return err
184	}
185	// If the utimensat syscall isn't available (utimensat was added to Linux
186	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
187	var tv [2]Timeval
188	for i := 0; i < 2; i++ {
189		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
190	}
191	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
192}
193
194func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
195	if ts == nil {
196		return utimensat(dirfd, path, nil, flags)
197	}
198	if len(ts) != 2 {
199		return EINVAL
200	}
201	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
202}
203
204func Futimesat(dirfd int, path string, tv []Timeval) error {
205	if tv == nil {
206		return futimesat(dirfd, path, nil)
207	}
208	if len(tv) != 2 {
209		return EINVAL
210	}
211	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
212}
213
214func Futimes(fd int, tv []Timeval) (err error) {
215	// Believe it or not, this is the best we can do on Linux
216	// (and is what glibc does).
217	return Utimes("/proc/self/fd/"+itoa(fd), tv)
218}
219
220const ImplementsGetwd = true
221
222//sys	Getcwd(buf []byte) (n int, err error)
223
224func Getwd() (wd string, err error) {
225	var buf [PathMax]byte
226	n, err := Getcwd(buf[0:])
227	if err != nil {
228		return "", err
229	}
230	// Getcwd returns the number of bytes written to buf, including the NUL.
231	if n < 1 || n > len(buf) || buf[n-1] != 0 {
232		return "", EINVAL
233	}
234	return string(buf[0 : n-1]), nil
235}
236
237func Getgroups() (gids []int, err error) {
238	n, err := getgroups(0, nil)
239	if err != nil {
240		return nil, err
241	}
242	if n == 0 {
243		return nil, nil
244	}
245
246	// Sanity check group count. Max is 1<<16 on Linux.
247	if n < 0 || n > 1<<20 {
248		return nil, EINVAL
249	}
250
251	a := make([]_Gid_t, n)
252	n, err = getgroups(n, &a[0])
253	if err != nil {
254		return nil, err
255	}
256	gids = make([]int, n)
257	for i, v := range a[0:n] {
258		gids[i] = int(v)
259	}
260	return
261}
262
263func Setgroups(gids []int) (err error) {
264	if len(gids) == 0 {
265		return setgroups(0, nil)
266	}
267
268	a := make([]_Gid_t, len(gids))
269	for i, v := range gids {
270		a[i] = _Gid_t(v)
271	}
272	return setgroups(len(a), &a[0])
273}
274
275type WaitStatus uint32
276
277// Wait status is 7 bits at bottom, either 0 (exited),
278// 0x7F (stopped), or a signal number that caused an exit.
279// The 0x80 bit is whether there was a core dump.
280// An extra number (exit code, signal causing a stop)
281// is in the high bits. At least that's the idea.
282// There are various irregularities. For example, the
283// "continued" status is 0xFFFF, distinguishing itself
284// from stopped via the core dump bit.
285
286const (
287	mask    = 0x7F
288	core    = 0x80
289	exited  = 0x00
290	stopped = 0x7F
291	shift   = 8
292)
293
294func (w WaitStatus) Exited() bool { return w&mask == exited }
295
296func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
297
298func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
299
300func (w WaitStatus) Continued() bool { return w == 0xFFFF }
301
302func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
303
304func (w WaitStatus) ExitStatus() int {
305	if !w.Exited() {
306		return -1
307	}
308	return int(w>>shift) & 0xFF
309}
310
311func (w WaitStatus) Signal() syscall.Signal {
312	if !w.Signaled() {
313		return -1
314	}
315	return syscall.Signal(w & mask)
316}
317
318func (w WaitStatus) StopSignal() syscall.Signal {
319	if !w.Stopped() {
320		return -1
321	}
322	return syscall.Signal(w>>shift) & 0xFF
323}
324
325func (w WaitStatus) TrapCause() int {
326	if w.StopSignal() != SIGTRAP {
327		return -1
328	}
329	return int(w>>shift) >> 8
330}
331
332//sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
333
334func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
335	var status _C_int
336	wpid, err = wait4(pid, &status, options, rusage)
337	if wstatus != nil {
338		*wstatus = WaitStatus(status)
339	}
340	return
341}
342
343func Mkfifo(path string, mode uint32) error {
344	return Mknod(path, mode|S_IFIFO, 0)
345}
346
347func Mkfifoat(dirfd int, path string, mode uint32) error {
348	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
349}
350
351func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
352	if sa.Port < 0 || sa.Port > 0xFFFF {
353		return nil, 0, EINVAL
354	}
355	sa.raw.Family = AF_INET
356	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
357	p[0] = byte(sa.Port >> 8)
358	p[1] = byte(sa.Port)
359	for i := 0; i < len(sa.Addr); i++ {
360		sa.raw.Addr[i] = sa.Addr[i]
361	}
362	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
363}
364
365func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
366	if sa.Port < 0 || sa.Port > 0xFFFF {
367		return nil, 0, EINVAL
368	}
369	sa.raw.Family = AF_INET6
370	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
371	p[0] = byte(sa.Port >> 8)
372	p[1] = byte(sa.Port)
373	sa.raw.Scope_id = sa.ZoneId
374	for i := 0; i < len(sa.Addr); i++ {
375		sa.raw.Addr[i] = sa.Addr[i]
376	}
377	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
378}
379
380func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
381	name := sa.Name
382	n := len(name)
383	if n >= len(sa.raw.Path) {
384		return nil, 0, EINVAL
385	}
386	sa.raw.Family = AF_UNIX
387	for i := 0; i < n; i++ {
388		sa.raw.Path[i] = int8(name[i])
389	}
390	// length is family (uint16), name, NUL.
391	sl := _Socklen(2)
392	if n > 0 {
393		sl += _Socklen(n) + 1
394	}
395	if sa.raw.Path[0] == '@' {
396		sa.raw.Path[0] = 0
397		// Don't count trailing NUL for abstract address.
398		sl--
399	}
400
401	return unsafe.Pointer(&sa.raw), sl, nil
402}
403
404// SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
405type SockaddrLinklayer struct {
406	Protocol uint16
407	Ifindex  int
408	Hatype   uint16
409	Pkttype  uint8
410	Halen    uint8
411	Addr     [8]byte
412	raw      RawSockaddrLinklayer
413}
414
415func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
416	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
417		return nil, 0, EINVAL
418	}
419	sa.raw.Family = AF_PACKET
420	sa.raw.Protocol = sa.Protocol
421	sa.raw.Ifindex = int32(sa.Ifindex)
422	sa.raw.Hatype = sa.Hatype
423	sa.raw.Pkttype = sa.Pkttype
424	sa.raw.Halen = sa.Halen
425	for i := 0; i < len(sa.Addr); i++ {
426		sa.raw.Addr[i] = sa.Addr[i]
427	}
428	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
429}
430
431// SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
432type SockaddrNetlink struct {
433	Family uint16
434	Pad    uint16
435	Pid    uint32
436	Groups uint32
437	raw    RawSockaddrNetlink
438}
439
440func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
441	sa.raw.Family = AF_NETLINK
442	sa.raw.Pad = sa.Pad
443	sa.raw.Pid = sa.Pid
444	sa.raw.Groups = sa.Groups
445	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
446}
447
448// SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
449// using the HCI protocol.
450type SockaddrHCI struct {
451	Dev     uint16
452	Channel uint16
453	raw     RawSockaddrHCI
454}
455
456func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
457	sa.raw.Family = AF_BLUETOOTH
458	sa.raw.Dev = sa.Dev
459	sa.raw.Channel = sa.Channel
460	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
461}
462
463// SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
464// using the L2CAP protocol.
465type SockaddrL2 struct {
466	PSM      uint16
467	CID      uint16
468	Addr     [6]uint8
469	AddrType uint8
470	raw      RawSockaddrL2
471}
472
473func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
474	sa.raw.Family = AF_BLUETOOTH
475	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
476	psm[0] = byte(sa.PSM)
477	psm[1] = byte(sa.PSM >> 8)
478	for i := 0; i < len(sa.Addr); i++ {
479		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
480	}
481	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
482	cid[0] = byte(sa.CID)
483	cid[1] = byte(sa.CID >> 8)
484	sa.raw.Bdaddr_type = sa.AddrType
485	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
486}
487
488// SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
489// using the RFCOMM protocol.
490//
491// Server example:
492//
493//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
494//      _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
495//      	Channel: 1,
496//      	Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
497//      })
498//      _ = Listen(fd, 1)
499//      nfd, sa, _ := Accept(fd)
500//      fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
501//      Read(nfd, buf)
502//
503// Client example:
504//
505//      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
506//      _ = Connect(fd, &SockaddrRFCOMM{
507//      	Channel: 1,
508//      	Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
509//      })
510//      Write(fd, []byte(`hello`))
511type SockaddrRFCOMM struct {
512	// Addr represents a bluetooth address, byte ordering is little-endian.
513	Addr [6]uint8
514
515	// Channel is a designated bluetooth channel, only 1-30 are available for use.
516	// Since Linux 2.6.7 and further zero value is the first available channel.
517	Channel uint8
518
519	raw RawSockaddrRFCOMM
520}
521
522func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
523	sa.raw.Family = AF_BLUETOOTH
524	sa.raw.Channel = sa.Channel
525	sa.raw.Bdaddr = sa.Addr
526	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
527}
528
529// SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
530// The RxID and TxID fields are used for transport protocol addressing in
531// (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
532// zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
533//
534// The SockaddrCAN struct must be bound to the socket file descriptor
535// using Bind before the CAN socket can be used.
536//
537//      // Read one raw CAN frame
538//      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
539//      addr := &SockaddrCAN{Ifindex: index}
540//      Bind(fd, addr)
541//      frame := make([]byte, 16)
542//      Read(fd, frame)
543//
544// The full SocketCAN documentation can be found in the linux kernel
545// archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
546type SockaddrCAN struct {
547	Ifindex int
548	RxID    uint32
549	TxID    uint32
550	raw     RawSockaddrCAN
551}
552
553func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
554	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
555		return nil, 0, EINVAL
556	}
557	sa.raw.Family = AF_CAN
558	sa.raw.Ifindex = int32(sa.Ifindex)
559	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
560	for i := 0; i < 4; i++ {
561		sa.raw.Addr[i] = rx[i]
562	}
563	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
564	for i := 0; i < 4; i++ {
565		sa.raw.Addr[i+4] = tx[i]
566	}
567	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
568}
569
570// SockaddrCANJ1939 implements the Sockaddr interface for AF_CAN using J1939
571// protocol (https://en.wikipedia.org/wiki/SAE_J1939). For more information
572// on the purposes of the fields, check the official linux kernel documentation
573// available here: https://www.kernel.org/doc/Documentation/networking/j1939.rst
574type SockaddrCANJ1939 struct {
575	Ifindex int
576	Name    uint64
577	PGN     uint32
578	Addr    uint8
579	raw     RawSockaddrCAN
580}
581
582func (sa *SockaddrCANJ1939) sockaddr() (unsafe.Pointer, _Socklen, error) {
583	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
584		return nil, 0, EINVAL
585	}
586	sa.raw.Family = AF_CAN
587	sa.raw.Ifindex = int32(sa.Ifindex)
588	n := (*[8]byte)(unsafe.Pointer(&sa.Name))
589	for i := 0; i < 8; i++ {
590		sa.raw.Addr[i] = n[i]
591	}
592	p := (*[4]byte)(unsafe.Pointer(&sa.PGN))
593	for i := 0; i < 4; i++ {
594		sa.raw.Addr[i+8] = p[i]
595	}
596	sa.raw.Addr[12] = sa.Addr
597	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
598}
599
600// SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
601// SockaddrALG enables userspace access to the Linux kernel's cryptography
602// subsystem. The Type and Name fields specify which type of hash or cipher
603// should be used with a given socket.
604//
605// To create a file descriptor that provides access to a hash or cipher, both
606// Bind and Accept must be used. Once the setup process is complete, input
607// data can be written to the socket, processed by the kernel, and then read
608// back as hash output or ciphertext.
609//
610// Here is an example of using an AF_ALG socket with SHA1 hashing.
611// The initial socket setup process is as follows:
612//
613//      // Open a socket to perform SHA1 hashing.
614//      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
615//      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
616//      unix.Bind(fd, addr)
617//      // Note: unix.Accept does not work at this time; must invoke accept()
618//      // manually using unix.Syscall.
619//      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
620//
621// Once a file descriptor has been returned from Accept, it may be used to
622// perform SHA1 hashing. The descriptor is not safe for concurrent use, but
623// may be re-used repeatedly with subsequent Write and Read operations.
624//
625// When hashing a small byte slice or string, a single Write and Read may
626// be used:
627//
628//      // Assume hashfd is already configured using the setup process.
629//      hash := os.NewFile(hashfd, "sha1")
630//      // Hash an input string and read the results. Each Write discards
631//      // previous hash state. Read always reads the current state.
632//      b := make([]byte, 20)
633//      for i := 0; i < 2; i++ {
634//          io.WriteString(hash, "Hello, world.")
635//          hash.Read(b)
636//          fmt.Println(hex.EncodeToString(b))
637//      }
638//      // Output:
639//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
640//      // 2ae01472317d1935a84797ec1983ae243fc6aa28
641//
642// For hashing larger byte slices, or byte streams such as those read from
643// a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
644// the hash digest instead of creating a new one for a given chunk and finalizing it.
645//
646//      // Assume hashfd and addr are already configured using the setup process.
647//      hash := os.NewFile(hashfd, "sha1")
648//      // Hash the contents of a file.
649//      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
650//      b := make([]byte, 4096)
651//      for {
652//          n, err := f.Read(b)
653//          if err == io.EOF {
654//              break
655//          }
656//          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
657//      }
658//      hash.Read(b)
659//      fmt.Println(hex.EncodeToString(b))
660//      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
661//
662// For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
663type SockaddrALG struct {
664	Type    string
665	Name    string
666	Feature uint32
667	Mask    uint32
668	raw     RawSockaddrALG
669}
670
671func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
672	// Leave room for NUL byte terminator.
673	if len(sa.Type) > 13 {
674		return nil, 0, EINVAL
675	}
676	if len(sa.Name) > 63 {
677		return nil, 0, EINVAL
678	}
679
680	sa.raw.Family = AF_ALG
681	sa.raw.Feat = sa.Feature
682	sa.raw.Mask = sa.Mask
683
684	typ, err := ByteSliceFromString(sa.Type)
685	if err != nil {
686		return nil, 0, err
687	}
688	name, err := ByteSliceFromString(sa.Name)
689	if err != nil {
690		return nil, 0, err
691	}
692
693	copy(sa.raw.Type[:], typ)
694	copy(sa.raw.Name[:], name)
695
696	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
697}
698
699// SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
700// SockaddrVM provides access to Linux VM sockets: a mechanism that enables
701// bidirectional communication between a hypervisor and its guest virtual
702// machines.
703type SockaddrVM struct {
704	// CID and Port specify a context ID and port address for a VM socket.
705	// Guests have a unique CID, and hosts may have a well-known CID of:
706	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
707	//  - VMADDR_CID_LOCAL: refers to local communication (loopback).
708	//  - VMADDR_CID_HOST: refers to other processes on the host.
709	CID   uint32
710	Port  uint32
711	Flags uint8
712	raw   RawSockaddrVM
713}
714
715func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
716	sa.raw.Family = AF_VSOCK
717	sa.raw.Port = sa.Port
718	sa.raw.Cid = sa.CID
719	sa.raw.Flags = sa.Flags
720
721	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
722}
723
724type SockaddrXDP struct {
725	Flags        uint16
726	Ifindex      uint32
727	QueueID      uint32
728	SharedUmemFD uint32
729	raw          RawSockaddrXDP
730}
731
732func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
733	sa.raw.Family = AF_XDP
734	sa.raw.Flags = sa.Flags
735	sa.raw.Ifindex = sa.Ifindex
736	sa.raw.Queue_id = sa.QueueID
737	sa.raw.Shared_umem_fd = sa.SharedUmemFD
738
739	return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
740}
741
742// This constant mirrors the #define of PX_PROTO_OE in
743// linux/if_pppox.h. We're defining this by hand here instead of
744// autogenerating through mkerrors.sh because including
745// linux/if_pppox.h causes some declaration conflicts with other
746// includes (linux/if_pppox.h includes linux/in.h, which conflicts
747// with netinet/in.h). Given that we only need a single zero constant
748// out of that file, it's cleaner to just define it by hand here.
749const px_proto_oe = 0
750
751type SockaddrPPPoE struct {
752	SID    uint16
753	Remote []byte
754	Dev    string
755	raw    RawSockaddrPPPoX
756}
757
758func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
759	if len(sa.Remote) != 6 {
760		return nil, 0, EINVAL
761	}
762	if len(sa.Dev) > IFNAMSIZ-1 {
763		return nil, 0, EINVAL
764	}
765
766	*(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
767	// This next field is in host-endian byte order. We can't use the
768	// same unsafe pointer cast as above, because this value is not
769	// 32-bit aligned and some architectures don't allow unaligned
770	// access.
771	//
772	// However, the value of px_proto_oe is 0, so we can use
773	// encoding/binary helpers to write the bytes without worrying
774	// about the ordering.
775	binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
776	// This field is deliberately big-endian, unlike the previous
777	// one. The kernel expects SID to be in network byte order.
778	binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
779	copy(sa.raw[8:14], sa.Remote)
780	for i := 14; i < 14+IFNAMSIZ; i++ {
781		sa.raw[i] = 0
782	}
783	copy(sa.raw[14:], sa.Dev)
784	return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
785}
786
787// SockaddrTIPC implements the Sockaddr interface for AF_TIPC type sockets.
788// For more information on TIPC, see: http://tipc.sourceforge.net/.
789type SockaddrTIPC struct {
790	// Scope is the publication scopes when binding service/service range.
791	// Should be set to TIPC_CLUSTER_SCOPE or TIPC_NODE_SCOPE.
792	Scope int
793
794	// Addr is the type of address used to manipulate a socket. Addr must be
795	// one of:
796	//  - *TIPCSocketAddr: "id" variant in the C addr union
797	//  - *TIPCServiceRange: "nameseq" variant in the C addr union
798	//  - *TIPCServiceName: "name" variant in the C addr union
799	//
800	// If nil, EINVAL will be returned when the structure is used.
801	Addr TIPCAddr
802
803	raw RawSockaddrTIPC
804}
805
806// TIPCAddr is implemented by types that can be used as an address for
807// SockaddrTIPC. It is only implemented by *TIPCSocketAddr, *TIPCServiceRange,
808// and *TIPCServiceName.
809type TIPCAddr interface {
810	tipcAddrtype() uint8
811	tipcAddr() [12]byte
812}
813
814func (sa *TIPCSocketAddr) tipcAddr() [12]byte {
815	var out [12]byte
816	copy(out[:], (*(*[unsafe.Sizeof(TIPCSocketAddr{})]byte)(unsafe.Pointer(sa)))[:])
817	return out
818}
819
820func (sa *TIPCSocketAddr) tipcAddrtype() uint8 { return TIPC_SOCKET_ADDR }
821
822func (sa *TIPCServiceRange) tipcAddr() [12]byte {
823	var out [12]byte
824	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceRange{})]byte)(unsafe.Pointer(sa)))[:])
825	return out
826}
827
828func (sa *TIPCServiceRange) tipcAddrtype() uint8 { return TIPC_SERVICE_RANGE }
829
830func (sa *TIPCServiceName) tipcAddr() [12]byte {
831	var out [12]byte
832	copy(out[:], (*(*[unsafe.Sizeof(TIPCServiceName{})]byte)(unsafe.Pointer(sa)))[:])
833	return out
834}
835
836func (sa *TIPCServiceName) tipcAddrtype() uint8 { return TIPC_SERVICE_ADDR }
837
838func (sa *SockaddrTIPC) sockaddr() (unsafe.Pointer, _Socklen, error) {
839	if sa.Addr == nil {
840		return nil, 0, EINVAL
841	}
842
843	sa.raw.Family = AF_TIPC
844	sa.raw.Scope = int8(sa.Scope)
845	sa.raw.Addrtype = sa.Addr.tipcAddrtype()
846	sa.raw.Addr = sa.Addr.tipcAddr()
847
848	return unsafe.Pointer(&sa.raw), SizeofSockaddrTIPC, nil
849}
850
851// SockaddrL2TPIP implements the Sockaddr interface for IPPROTO_L2TP/AF_INET sockets.
852type SockaddrL2TPIP struct {
853	Addr   [4]byte
854	ConnId uint32
855	raw    RawSockaddrL2TPIP
856}
857
858func (sa *SockaddrL2TPIP) sockaddr() (unsafe.Pointer, _Socklen, error) {
859	sa.raw.Family = AF_INET
860	sa.raw.Conn_id = sa.ConnId
861	for i := 0; i < len(sa.Addr); i++ {
862		sa.raw.Addr[i] = sa.Addr[i]
863	}
864	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP, nil
865}
866
867// SockaddrL2TPIP6 implements the Sockaddr interface for IPPROTO_L2TP/AF_INET6 sockets.
868type SockaddrL2TPIP6 struct {
869	Addr   [16]byte
870	ZoneId uint32
871	ConnId uint32
872	raw    RawSockaddrL2TPIP6
873}
874
875func (sa *SockaddrL2TPIP6) sockaddr() (unsafe.Pointer, _Socklen, error) {
876	sa.raw.Family = AF_INET6
877	sa.raw.Conn_id = sa.ConnId
878	sa.raw.Scope_id = sa.ZoneId
879	for i := 0; i < len(sa.Addr); i++ {
880		sa.raw.Addr[i] = sa.Addr[i]
881	}
882	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2TPIP6, nil
883}
884
885// SockaddrIUCV implements the Sockaddr interface for AF_IUCV sockets.
886type SockaddrIUCV struct {
887	UserID string
888	Name   string
889	raw    RawSockaddrIUCV
890}
891
892func (sa *SockaddrIUCV) sockaddr() (unsafe.Pointer, _Socklen, error) {
893	sa.raw.Family = AF_IUCV
894	// These are EBCDIC encoded by the kernel, but we still need to pad them
895	// with blanks. Initializing with blanks allows the caller to feed in either
896	// a padded or an unpadded string.
897	for i := 0; i < 8; i++ {
898		sa.raw.Nodeid[i] = ' '
899		sa.raw.User_id[i] = ' '
900		sa.raw.Name[i] = ' '
901	}
902	if len(sa.UserID) > 8 || len(sa.Name) > 8 {
903		return nil, 0, EINVAL
904	}
905	for i, b := range []byte(sa.UserID[:]) {
906		sa.raw.User_id[i] = int8(b)
907	}
908	for i, b := range []byte(sa.Name[:]) {
909		sa.raw.Name[i] = int8(b)
910	}
911	return unsafe.Pointer(&sa.raw), SizeofSockaddrIUCV, nil
912}
913
914type SockaddrNFC struct {
915	DeviceIdx   uint32
916	TargetIdx   uint32
917	NFCProtocol uint32
918	raw         RawSockaddrNFC
919}
920
921func (sa *SockaddrNFC) sockaddr() (unsafe.Pointer, _Socklen, error) {
922	sa.raw.Sa_family = AF_NFC
923	sa.raw.Dev_idx = sa.DeviceIdx
924	sa.raw.Target_idx = sa.TargetIdx
925	sa.raw.Nfc_protocol = sa.NFCProtocol
926	return unsafe.Pointer(&sa.raw), SizeofSockaddrNFC, nil
927}
928
929type SockaddrNFCLLCP struct {
930	DeviceIdx      uint32
931	TargetIdx      uint32
932	NFCProtocol    uint32
933	DestinationSAP uint8
934	SourceSAP      uint8
935	ServiceName    string
936	raw            RawSockaddrNFCLLCP
937}
938
939func (sa *SockaddrNFCLLCP) sockaddr() (unsafe.Pointer, _Socklen, error) {
940	sa.raw.Sa_family = AF_NFC
941	sa.raw.Dev_idx = sa.DeviceIdx
942	sa.raw.Target_idx = sa.TargetIdx
943	sa.raw.Nfc_protocol = sa.NFCProtocol
944	sa.raw.Dsap = sa.DestinationSAP
945	sa.raw.Ssap = sa.SourceSAP
946	if len(sa.ServiceName) > len(sa.raw.Service_name) {
947		return nil, 0, EINVAL
948	}
949	copy(sa.raw.Service_name[:], sa.ServiceName)
950	sa.raw.SetServiceNameLen(len(sa.ServiceName))
951	return unsafe.Pointer(&sa.raw), SizeofSockaddrNFCLLCP, nil
952}
953
954var socketProtocol = func(fd int) (int, error) {
955	return GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
956}
957
958func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
959	switch rsa.Addr.Family {
960	case AF_NETLINK:
961		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
962		sa := new(SockaddrNetlink)
963		sa.Family = pp.Family
964		sa.Pad = pp.Pad
965		sa.Pid = pp.Pid
966		sa.Groups = pp.Groups
967		return sa, nil
968
969	case AF_PACKET:
970		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
971		sa := new(SockaddrLinklayer)
972		sa.Protocol = pp.Protocol
973		sa.Ifindex = int(pp.Ifindex)
974		sa.Hatype = pp.Hatype
975		sa.Pkttype = pp.Pkttype
976		sa.Halen = pp.Halen
977		for i := 0; i < len(sa.Addr); i++ {
978			sa.Addr[i] = pp.Addr[i]
979		}
980		return sa, nil
981
982	case AF_UNIX:
983		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
984		sa := new(SockaddrUnix)
985		if pp.Path[0] == 0 {
986			// "Abstract" Unix domain socket.
987			// Rewrite leading NUL as @ for textual display.
988			// (This is the standard convention.)
989			// Not friendly to overwrite in place,
990			// but the callers below don't care.
991			pp.Path[0] = '@'
992		}
993
994		// Assume path ends at NUL.
995		// This is not technically the Linux semantics for
996		// abstract Unix domain sockets--they are supposed
997		// to be uninterpreted fixed-size binary blobs--but
998		// everyone uses this convention.
999		n := 0
1000		for n < len(pp.Path) && pp.Path[n] != 0 {
1001			n++
1002		}
1003		bytes := (*[len(pp.Path)]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
1004		sa.Name = string(bytes)
1005		return sa, nil
1006
1007	case AF_INET:
1008		proto, err := socketProtocol(fd)
1009		if err != nil {
1010			return nil, err
1011		}
1012
1013		switch proto {
1014		case IPPROTO_L2TP:
1015			pp := (*RawSockaddrL2TPIP)(unsafe.Pointer(rsa))
1016			sa := new(SockaddrL2TPIP)
1017			sa.ConnId = pp.Conn_id
1018			for i := 0; i < len(sa.Addr); i++ {
1019				sa.Addr[i] = pp.Addr[i]
1020			}
1021			return sa, nil
1022		default:
1023			pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
1024			sa := new(SockaddrInet4)
1025			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1026			sa.Port = int(p[0])<<8 + int(p[1])
1027			for i := 0; i < len(sa.Addr); i++ {
1028				sa.Addr[i] = pp.Addr[i]
1029			}
1030			return sa, nil
1031		}
1032
1033	case AF_INET6:
1034		proto, err := socketProtocol(fd)
1035		if err != nil {
1036			return nil, err
1037		}
1038
1039		switch proto {
1040		case IPPROTO_L2TP:
1041			pp := (*RawSockaddrL2TPIP6)(unsafe.Pointer(rsa))
1042			sa := new(SockaddrL2TPIP6)
1043			sa.ConnId = pp.Conn_id
1044			sa.ZoneId = pp.Scope_id
1045			for i := 0; i < len(sa.Addr); i++ {
1046				sa.Addr[i] = pp.Addr[i]
1047			}
1048			return sa, nil
1049		default:
1050			pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
1051			sa := new(SockaddrInet6)
1052			p := (*[2]byte)(unsafe.Pointer(&pp.Port))
1053			sa.Port = int(p[0])<<8 + int(p[1])
1054			sa.ZoneId = pp.Scope_id
1055			for i := 0; i < len(sa.Addr); i++ {
1056				sa.Addr[i] = pp.Addr[i]
1057			}
1058			return sa, nil
1059		}
1060
1061	case AF_VSOCK:
1062		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
1063		sa := &SockaddrVM{
1064			CID:   pp.Cid,
1065			Port:  pp.Port,
1066			Flags: pp.Flags,
1067		}
1068		return sa, nil
1069	case AF_BLUETOOTH:
1070		proto, err := socketProtocol(fd)
1071		if err != nil {
1072			return nil, err
1073		}
1074		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
1075		switch proto {
1076		case BTPROTO_L2CAP:
1077			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
1078			sa := &SockaddrL2{
1079				PSM:      pp.Psm,
1080				CID:      pp.Cid,
1081				Addr:     pp.Bdaddr,
1082				AddrType: pp.Bdaddr_type,
1083			}
1084			return sa, nil
1085		case BTPROTO_RFCOMM:
1086			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
1087			sa := &SockaddrRFCOMM{
1088				Channel: pp.Channel,
1089				Addr:    pp.Bdaddr,
1090			}
1091			return sa, nil
1092		}
1093	case AF_XDP:
1094		pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
1095		sa := &SockaddrXDP{
1096			Flags:        pp.Flags,
1097			Ifindex:      pp.Ifindex,
1098			QueueID:      pp.Queue_id,
1099			SharedUmemFD: pp.Shared_umem_fd,
1100		}
1101		return sa, nil
1102	case AF_PPPOX:
1103		pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
1104		if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
1105			return nil, EINVAL
1106		}
1107		sa := &SockaddrPPPoE{
1108			SID:    binary.BigEndian.Uint16(pp[6:8]),
1109			Remote: pp[8:14],
1110		}
1111		for i := 14; i < 14+IFNAMSIZ; i++ {
1112			if pp[i] == 0 {
1113				sa.Dev = string(pp[14:i])
1114				break
1115			}
1116		}
1117		return sa, nil
1118	case AF_TIPC:
1119		pp := (*RawSockaddrTIPC)(unsafe.Pointer(rsa))
1120
1121		sa := &SockaddrTIPC{
1122			Scope: int(pp.Scope),
1123		}
1124
1125		// Determine which union variant is present in pp.Addr by checking
1126		// pp.Addrtype.
1127		switch pp.Addrtype {
1128		case TIPC_SERVICE_RANGE:
1129			sa.Addr = (*TIPCServiceRange)(unsafe.Pointer(&pp.Addr))
1130		case TIPC_SERVICE_ADDR:
1131			sa.Addr = (*TIPCServiceName)(unsafe.Pointer(&pp.Addr))
1132		case TIPC_SOCKET_ADDR:
1133			sa.Addr = (*TIPCSocketAddr)(unsafe.Pointer(&pp.Addr))
1134		default:
1135			return nil, EINVAL
1136		}
1137
1138		return sa, nil
1139	case AF_IUCV:
1140		pp := (*RawSockaddrIUCV)(unsafe.Pointer(rsa))
1141
1142		var user [8]byte
1143		var name [8]byte
1144
1145		for i := 0; i < 8; i++ {
1146			user[i] = byte(pp.User_id[i])
1147			name[i] = byte(pp.Name[i])
1148		}
1149
1150		sa := &SockaddrIUCV{
1151			UserID: string(user[:]),
1152			Name:   string(name[:]),
1153		}
1154		return sa, nil
1155
1156	case AF_CAN:
1157		proto, err := socketProtocol(fd)
1158		if err != nil {
1159			return nil, err
1160		}
1161
1162		pp := (*RawSockaddrCAN)(unsafe.Pointer(rsa))
1163
1164		switch proto {
1165		case CAN_J1939:
1166			sa := &SockaddrCANJ1939{
1167				Ifindex: int(pp.Ifindex),
1168			}
1169			name := (*[8]byte)(unsafe.Pointer(&sa.Name))
1170			for i := 0; i < 8; i++ {
1171				name[i] = pp.Addr[i]
1172			}
1173			pgn := (*[4]byte)(unsafe.Pointer(&sa.PGN))
1174			for i := 0; i < 4; i++ {
1175				pgn[i] = pp.Addr[i+8]
1176			}
1177			addr := (*[1]byte)(unsafe.Pointer(&sa.Addr))
1178			addr[0] = pp.Addr[12]
1179			return sa, nil
1180		default:
1181			sa := &SockaddrCAN{
1182				Ifindex: int(pp.Ifindex),
1183			}
1184			rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
1185			for i := 0; i < 4; i++ {
1186				rx[i] = pp.Addr[i]
1187			}
1188			tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
1189			for i := 0; i < 4; i++ {
1190				tx[i] = pp.Addr[i+4]
1191			}
1192			return sa, nil
1193		}
1194	case AF_NFC:
1195		proto, err := socketProtocol(fd)
1196		if err != nil {
1197			return nil, err
1198		}
1199		switch proto {
1200		case NFC_SOCKPROTO_RAW:
1201			pp := (*RawSockaddrNFC)(unsafe.Pointer(rsa))
1202			sa := &SockaddrNFC{
1203				DeviceIdx:   pp.Dev_idx,
1204				TargetIdx:   pp.Target_idx,
1205				NFCProtocol: pp.Nfc_protocol,
1206			}
1207			return sa, nil
1208		case NFC_SOCKPROTO_LLCP:
1209			pp := (*RawSockaddrNFCLLCP)(unsafe.Pointer(rsa))
1210			if uint64(pp.Service_name_len) > uint64(len(pp.Service_name)) {
1211				return nil, EINVAL
1212			}
1213			sa := &SockaddrNFCLLCP{
1214				DeviceIdx:      pp.Dev_idx,
1215				TargetIdx:      pp.Target_idx,
1216				NFCProtocol:    pp.Nfc_protocol,
1217				DestinationSAP: pp.Dsap,
1218				SourceSAP:      pp.Ssap,
1219				ServiceName:    string(pp.Service_name[:pp.Service_name_len]),
1220			}
1221			return sa, nil
1222		default:
1223			return nil, EINVAL
1224		}
1225	}
1226	return nil, EAFNOSUPPORT
1227}
1228
1229func Accept(fd int) (nfd int, sa Sockaddr, err error) {
1230	var rsa RawSockaddrAny
1231	var len _Socklen = SizeofSockaddrAny
1232	// Try accept4 first for Android, then try accept for kernel older than 2.6.28
1233	nfd, err = accept4(fd, &rsa, &len, 0)
1234	if err == ENOSYS {
1235		nfd, err = accept(fd, &rsa, &len)
1236	}
1237	if err != nil {
1238		return
1239	}
1240	sa, err = anyToSockaddr(fd, &rsa)
1241	if err != nil {
1242		Close(nfd)
1243		nfd = 0
1244	}
1245	return
1246}
1247
1248func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
1249	var rsa RawSockaddrAny
1250	var len _Socklen = SizeofSockaddrAny
1251	nfd, err = accept4(fd, &rsa, &len, flags)
1252	if err != nil {
1253		return
1254	}
1255	if len > SizeofSockaddrAny {
1256		panic("RawSockaddrAny too small")
1257	}
1258	sa, err = anyToSockaddr(fd, &rsa)
1259	if err != nil {
1260		Close(nfd)
1261		nfd = 0
1262	}
1263	return
1264}
1265
1266func Getsockname(fd int) (sa Sockaddr, err error) {
1267	var rsa RawSockaddrAny
1268	var len _Socklen = SizeofSockaddrAny
1269	if err = getsockname(fd, &rsa, &len); err != nil {
1270		return
1271	}
1272	return anyToSockaddr(fd, &rsa)
1273}
1274
1275func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
1276	var value IPMreqn
1277	vallen := _Socklen(SizeofIPMreqn)
1278	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1279	return &value, err
1280}
1281
1282func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
1283	var value Ucred
1284	vallen := _Socklen(SizeofUcred)
1285	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1286	return &value, err
1287}
1288
1289func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
1290	var value TCPInfo
1291	vallen := _Socklen(SizeofTCPInfo)
1292	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1293	return &value, err
1294}
1295
1296// GetsockoptString returns the string value of the socket option opt for the
1297// socket associated with fd at the given socket level.
1298func GetsockoptString(fd, level, opt int) (string, error) {
1299	buf := make([]byte, 256)
1300	vallen := _Socklen(len(buf))
1301	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1302	if err != nil {
1303		if err == ERANGE {
1304			buf = make([]byte, vallen)
1305			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
1306		}
1307		if err != nil {
1308			return "", err
1309		}
1310	}
1311	return string(buf[:vallen-1]), nil
1312}
1313
1314func GetsockoptTpacketStats(fd, level, opt int) (*TpacketStats, error) {
1315	var value TpacketStats
1316	vallen := _Socklen(SizeofTpacketStats)
1317	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1318	return &value, err
1319}
1320
1321func GetsockoptTpacketStatsV3(fd, level, opt int) (*TpacketStatsV3, error) {
1322	var value TpacketStatsV3
1323	vallen := _Socklen(SizeofTpacketStatsV3)
1324	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
1325	return &value, err
1326}
1327
1328func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
1329	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1330}
1331
1332func SetsockoptPacketMreq(fd, level, opt int, mreq *PacketMreq) error {
1333	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
1334}
1335
1336// SetsockoptSockFprog attaches a classic BPF or an extended BPF program to a
1337// socket to filter incoming packets.  See 'man 7 socket' for usage information.
1338func SetsockoptSockFprog(fd, level, opt int, fprog *SockFprog) error {
1339	return setsockopt(fd, level, opt, unsafe.Pointer(fprog), unsafe.Sizeof(*fprog))
1340}
1341
1342func SetsockoptCanRawFilter(fd, level, opt int, filter []CanFilter) error {
1343	var p unsafe.Pointer
1344	if len(filter) > 0 {
1345		p = unsafe.Pointer(&filter[0])
1346	}
1347	return setsockopt(fd, level, opt, p, uintptr(len(filter)*SizeofCanFilter))
1348}
1349
1350func SetsockoptTpacketReq(fd, level, opt int, tp *TpacketReq) error {
1351	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1352}
1353
1354func SetsockoptTpacketReq3(fd, level, opt int, tp *TpacketReq3) error {
1355	return setsockopt(fd, level, opt, unsafe.Pointer(tp), unsafe.Sizeof(*tp))
1356}
1357
1358func SetsockoptTCPRepairOpt(fd, level, opt int, o []TCPRepairOpt) (err error) {
1359	if len(o) == 0 {
1360		return EINVAL
1361	}
1362	return setsockopt(fd, level, opt, unsafe.Pointer(&o[0]), uintptr(SizeofTCPRepairOpt*len(o)))
1363}
1364
1365// Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
1366
1367// KeyctlInt calls keyctl commands in which each argument is an int.
1368// These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
1369// KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
1370// KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
1371// KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
1372//sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
1373
1374// KeyctlBuffer calls keyctl commands in which the third and fourth
1375// arguments are a buffer and its length, respectively.
1376// These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
1377//sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
1378
1379// KeyctlString calls keyctl commands which return a string.
1380// These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
1381func KeyctlString(cmd int, id int) (string, error) {
1382	// We must loop as the string data may change in between the syscalls.
1383	// We could allocate a large buffer here to reduce the chance that the
1384	// syscall needs to be called twice; however, this is unnecessary as
1385	// the performance loss is negligible.
1386	var buffer []byte
1387	for {
1388		// Try to fill the buffer with data
1389		length, err := KeyctlBuffer(cmd, id, buffer, 0)
1390		if err != nil {
1391			return "", err
1392		}
1393
1394		// Check if the data was written
1395		if length <= len(buffer) {
1396			// Exclude the null terminator
1397			return string(buffer[:length-1]), nil
1398		}
1399
1400		// Make a bigger buffer if needed
1401		buffer = make([]byte, length)
1402	}
1403}
1404
1405// Keyctl commands with special signatures.
1406
1407// KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
1408// See the full documentation at:
1409// http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
1410func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
1411	createInt := 0
1412	if create {
1413		createInt = 1
1414	}
1415	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
1416}
1417
1418// KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
1419// key handle permission mask as described in the "keyctl setperm" section of
1420// http://man7.org/linux/man-pages/man1/keyctl.1.html.
1421// See the full documentation at:
1422// http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
1423func KeyctlSetperm(id int, perm uint32) error {
1424	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
1425	return err
1426}
1427
1428//sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
1429
1430// KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
1431// See the full documentation at:
1432// http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
1433func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
1434	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
1435}
1436
1437//sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
1438
1439// KeyctlSearch implements the KEYCTL_SEARCH command.
1440// See the full documentation at:
1441// http://man7.org/linux/man-pages/man3/keyctl_search.3.html
1442func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
1443	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
1444}
1445
1446//sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
1447
1448// KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
1449// command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
1450// of Iovec (each of which represents a buffer) instead of a single buffer.
1451// See the full documentation at:
1452// http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
1453func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
1454	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
1455}
1456
1457//sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
1458
1459// KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
1460// computes a Diffie-Hellman shared secret based on the provide params. The
1461// secret is written to the provided buffer and the returned size is the number
1462// of bytes written (returning an error if there is insufficient space in the
1463// buffer). If a nil buffer is passed in, this function returns the minimum
1464// buffer length needed to store the appropriate data. Note that this differs
1465// from KEYCTL_READ's behavior which always returns the requested payload size.
1466// See the full documentation at:
1467// http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
1468func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
1469	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
1470}
1471
1472// KeyctlRestrictKeyring implements the KEYCTL_RESTRICT_KEYRING command. This
1473// command limits the set of keys that can be linked to the keyring, regardless
1474// of keyring permissions. The command requires the "setattr" permission.
1475//
1476// When called with an empty keyType the command locks the keyring, preventing
1477// any further keys from being linked to the keyring.
1478//
1479// The "asymmetric" keyType defines restrictions requiring key payloads to be
1480// DER encoded X.509 certificates signed by keys in another keyring. Restrictions
1481// for "asymmetric" include "builtin_trusted", "builtin_and_secondary_trusted",
1482// "key_or_keyring:<key>", and "key_or_keyring:<key>:chain".
1483//
1484// As of Linux 4.12, only the "asymmetric" keyType defines type-specific
1485// restrictions.
1486//
1487// See the full documentation at:
1488// http://man7.org/linux/man-pages/man3/keyctl_restrict_keyring.3.html
1489// http://man7.org/linux/man-pages/man2/keyctl.2.html
1490func KeyctlRestrictKeyring(ringid int, keyType string, restriction string) error {
1491	if keyType == "" {
1492		return keyctlRestrictKeyring(KEYCTL_RESTRICT_KEYRING, ringid)
1493	}
1494	return keyctlRestrictKeyringByType(KEYCTL_RESTRICT_KEYRING, ringid, keyType, restriction)
1495}
1496
1497//sys	keyctlRestrictKeyringByType(cmd int, arg2 int, keyType string, restriction string) (err error) = SYS_KEYCTL
1498//sys	keyctlRestrictKeyring(cmd int, arg2 int) (err error) = SYS_KEYCTL
1499
1500func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
1501	var msg Msghdr
1502	var rsa RawSockaddrAny
1503	msg.Name = (*byte)(unsafe.Pointer(&rsa))
1504	msg.Namelen = uint32(SizeofSockaddrAny)
1505	var iov Iovec
1506	if len(p) > 0 {
1507		iov.Base = &p[0]
1508		iov.SetLen(len(p))
1509	}
1510	var dummy byte
1511	if len(oob) > 0 {
1512		if len(p) == 0 {
1513			var sockType int
1514			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1515			if err != nil {
1516				return
1517			}
1518			// receive at least one normal byte
1519			if sockType != SOCK_DGRAM {
1520				iov.Base = &dummy
1521				iov.SetLen(1)
1522			}
1523		}
1524		msg.Control = &oob[0]
1525		msg.SetControllen(len(oob))
1526	}
1527	msg.Iov = &iov
1528	msg.Iovlen = 1
1529	if n, err = recvmsg(fd, &msg, flags); err != nil {
1530		return
1531	}
1532	oobn = int(msg.Controllen)
1533	recvflags = int(msg.Flags)
1534	// source address is only specified if the socket is unconnected
1535	if rsa.Addr.Family != AF_UNSPEC {
1536		from, err = anyToSockaddr(fd, &rsa)
1537	}
1538	return
1539}
1540
1541func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
1542	_, err = SendmsgN(fd, p, oob, to, flags)
1543	return
1544}
1545
1546func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
1547	var ptr unsafe.Pointer
1548	var salen _Socklen
1549	if to != nil {
1550		var err error
1551		ptr, salen, err = to.sockaddr()
1552		if err != nil {
1553			return 0, err
1554		}
1555	}
1556	var msg Msghdr
1557	msg.Name = (*byte)(ptr)
1558	msg.Namelen = uint32(salen)
1559	var iov Iovec
1560	if len(p) > 0 {
1561		iov.Base = &p[0]
1562		iov.SetLen(len(p))
1563	}
1564	var dummy byte
1565	if len(oob) > 0 {
1566		if len(p) == 0 {
1567			var sockType int
1568			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
1569			if err != nil {
1570				return 0, err
1571			}
1572			// send at least one normal byte
1573			if sockType != SOCK_DGRAM {
1574				iov.Base = &dummy
1575				iov.SetLen(1)
1576			}
1577		}
1578		msg.Control = &oob[0]
1579		msg.SetControllen(len(oob))
1580	}
1581	msg.Iov = &iov
1582	msg.Iovlen = 1
1583	if n, err = sendmsg(fd, &msg, flags); err != nil {
1584		return 0, err
1585	}
1586	if len(oob) > 0 && len(p) == 0 {
1587		n = 0
1588	}
1589	return n, nil
1590}
1591
1592// BindToDevice binds the socket associated with fd to device.
1593func BindToDevice(fd int, device string) (err error) {
1594	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
1595}
1596
1597//sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
1598
1599func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
1600	// The peek requests are machine-size oriented, so we wrap it
1601	// to retrieve arbitrary-length data.
1602
1603	// The ptrace syscall differs from glibc's ptrace.
1604	// Peeks returns the word in *data, not as the return value.
1605
1606	var buf [SizeofPtr]byte
1607
1608	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
1609	// access (PEEKUSER warns that it might), but if we don't
1610	// align our reads, we might straddle an unmapped page
1611	// boundary and not get the bytes leading up to the page
1612	// boundary.
1613	n := 0
1614	if addr%SizeofPtr != 0 {
1615		err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1616		if err != nil {
1617			return 0, err
1618		}
1619		n += copy(out, buf[addr%SizeofPtr:])
1620		out = out[n:]
1621	}
1622
1623	// Remainder.
1624	for len(out) > 0 {
1625		// We use an internal buffer to guarantee alignment.
1626		// It's not documented if this is necessary, but we're paranoid.
1627		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1628		if err != nil {
1629			return n, err
1630		}
1631		copied := copy(out, buf[0:])
1632		n += copied
1633		out = out[copied:]
1634	}
1635
1636	return n, nil
1637}
1638
1639func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
1640	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
1641}
1642
1643func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
1644	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
1645}
1646
1647func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
1648	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
1649}
1650
1651func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
1652	// As for ptracePeek, we need to align our accesses to deal
1653	// with the possibility of straddling an invalid page.
1654
1655	// Leading edge.
1656	n := 0
1657	if addr%SizeofPtr != 0 {
1658		var buf [SizeofPtr]byte
1659		err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
1660		if err != nil {
1661			return 0, err
1662		}
1663		n += copy(buf[addr%SizeofPtr:], data)
1664		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1665		err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
1666		if err != nil {
1667			return 0, err
1668		}
1669		data = data[n:]
1670	}
1671
1672	// Interior.
1673	for len(data) > SizeofPtr {
1674		word := *((*uintptr)(unsafe.Pointer(&data[0])))
1675		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1676		if err != nil {
1677			return n, err
1678		}
1679		n += SizeofPtr
1680		data = data[SizeofPtr:]
1681	}
1682
1683	// Trailing edge.
1684	if len(data) > 0 {
1685		var buf [SizeofPtr]byte
1686		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
1687		if err != nil {
1688			return n, err
1689		}
1690		copy(buf[0:], data)
1691		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
1692		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
1693		if err != nil {
1694			return n, err
1695		}
1696		n += len(data)
1697	}
1698
1699	return n, nil
1700}
1701
1702func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
1703	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
1704}
1705
1706func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
1707	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
1708}
1709
1710func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
1711	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
1712}
1713
1714func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
1715	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
1716}
1717
1718func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
1719	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
1720}
1721
1722func PtraceSetOptions(pid int, options int) (err error) {
1723	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
1724}
1725
1726func PtraceGetEventMsg(pid int) (msg uint, err error) {
1727	var data _C_long
1728	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
1729	msg = uint(data)
1730	return
1731}
1732
1733func PtraceCont(pid int, signal int) (err error) {
1734	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
1735}
1736
1737func PtraceSyscall(pid int, signal int) (err error) {
1738	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
1739}
1740
1741func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
1742
1743func PtraceInterrupt(pid int) (err error) { return ptrace(PTRACE_INTERRUPT, pid, 0, 0) }
1744
1745func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
1746
1747func PtraceSeize(pid int) (err error) { return ptrace(PTRACE_SEIZE, pid, 0, 0) }
1748
1749func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
1750
1751//sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
1752
1753func Reboot(cmd int) (err error) {
1754	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
1755}
1756
1757func direntIno(buf []byte) (uint64, bool) {
1758	return readInt(buf, unsafe.Offsetof(Dirent{}.Ino), unsafe.Sizeof(Dirent{}.Ino))
1759}
1760
1761func direntReclen(buf []byte) (uint64, bool) {
1762	return readInt(buf, unsafe.Offsetof(Dirent{}.Reclen), unsafe.Sizeof(Dirent{}.Reclen))
1763}
1764
1765func direntNamlen(buf []byte) (uint64, bool) {
1766	reclen, ok := direntReclen(buf)
1767	if !ok {
1768		return 0, false
1769	}
1770	return reclen - uint64(unsafe.Offsetof(Dirent{}.Name)), true
1771}
1772
1773//sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
1774
1775func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
1776	// Certain file systems get rather angry and EINVAL if you give
1777	// them an empty string of data, rather than NULL.
1778	if data == "" {
1779		return mount(source, target, fstype, flags, nil)
1780	}
1781	datap, err := BytePtrFromString(data)
1782	if err != nil {
1783		return err
1784	}
1785	return mount(source, target, fstype, flags, datap)
1786}
1787
1788func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
1789	if raceenabled {
1790		raceReleaseMerge(unsafe.Pointer(&ioSync))
1791	}
1792	return sendfile(outfd, infd, offset, count)
1793}
1794
1795// Sendto
1796// Recvfrom
1797// Socketpair
1798
1799/*
1800 * Direct access
1801 */
1802//sys	Acct(path string) (err error)
1803//sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
1804//sys	Adjtimex(buf *Timex) (state int, err error)
1805//sysnb	Capget(hdr *CapUserHeader, data *CapUserData) (err error)
1806//sysnb	Capset(hdr *CapUserHeader, data *CapUserData) (err error)
1807//sys	Chdir(path string) (err error)
1808//sys	Chroot(path string) (err error)
1809//sys	ClockGetres(clockid int32, res *Timespec) (err error)
1810//sys	ClockGettime(clockid int32, time *Timespec) (err error)
1811//sys	ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
1812//sys	Close(fd int) (err error)
1813//sys	CloseRange(first uint, last uint, flags uint) (err error)
1814//sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
1815//sys	DeleteModule(name string, flags int) (err error)
1816//sys	Dup(oldfd int) (fd int, err error)
1817
1818func Dup2(oldfd, newfd int) error {
1819	// Android O and newer blocks dup2; riscv and arm64 don't implement dup2.
1820	if runtime.GOOS == "android" || runtime.GOARCH == "riscv64" || runtime.GOARCH == "arm64" {
1821		return Dup3(oldfd, newfd, 0)
1822	}
1823	return dup2(oldfd, newfd)
1824}
1825
1826//sys	Dup3(oldfd int, newfd int, flags int) (err error)
1827//sysnb	EpollCreate1(flag int) (fd int, err error)
1828//sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
1829//sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
1830//sys	Exit(code int) = SYS_EXIT_GROUP
1831//sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
1832//sys	Fchdir(fd int) (err error)
1833//sys	Fchmod(fd int, mode uint32) (err error)
1834//sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
1835//sys	Fdatasync(fd int) (err error)
1836//sys	Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
1837//sys	FinitModule(fd int, params string, flags int) (err error)
1838//sys	Flistxattr(fd int, dest []byte) (sz int, err error)
1839//sys	Flock(fd int, how int) (err error)
1840//sys	Fremovexattr(fd int, attr string) (err error)
1841//sys	Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
1842//sys	Fsync(fd int) (err error)
1843//sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
1844//sysnb	Getpgid(pid int) (pgid int, err error)
1845
1846func Getpgrp() (pid int) {
1847	pid, _ = Getpgid(0)
1848	return
1849}
1850
1851//sysnb	Getpid() (pid int)
1852//sysnb	Getppid() (ppid int)
1853//sys	Getpriority(which int, who int) (prio int, err error)
1854//sys	Getrandom(buf []byte, flags int) (n int, err error)
1855//sysnb	Getrusage(who int, rusage *Rusage) (err error)
1856//sysnb	Getsid(pid int) (sid int, err error)
1857//sysnb	Gettid() (tid int)
1858//sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
1859//sys	InitModule(moduleImage []byte, params string) (err error)
1860//sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
1861//sysnb	InotifyInit1(flags int) (fd int, err error)
1862//sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
1863//sysnb	Kill(pid int, sig syscall.Signal) (err error)
1864//sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
1865//sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
1866//sys	Listxattr(path string, dest []byte) (sz int, err error)
1867//sys	Llistxattr(path string, dest []byte) (sz int, err error)
1868//sys	Lremovexattr(path string, attr string) (err error)
1869//sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
1870//sys	MemfdCreate(name string, flags int) (fd int, err error)
1871//sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
1872//sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
1873//sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
1874//sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
1875//sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
1876//sysnb	Prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
1877//sys	Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
1878//sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
1879//sys	read(fd int, p []byte) (n int, err error)
1880//sys	Removexattr(path string, attr string) (err error)
1881//sys	Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
1882//sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
1883//sys	Setdomainname(p []byte) (err error)
1884//sys	Sethostname(p []byte) (err error)
1885//sysnb	Setpgid(pid int, pgid int) (err error)
1886//sysnb	Setsid() (pid int, err error)
1887//sysnb	Settimeofday(tv *Timeval) (err error)
1888//sys	Setns(fd int, nstype int) (err error)
1889
1890// PrctlRetInt performs a prctl operation specified by option and further
1891// optional arguments arg2 through arg5 depending on option. It returns a
1892// non-negative integer that is returned by the prctl syscall.
1893func PrctlRetInt(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (int, error) {
1894	ret, _, err := Syscall6(SYS_PRCTL, uintptr(option), uintptr(arg2), uintptr(arg3), uintptr(arg4), uintptr(arg5), 0)
1895	if err != 0 {
1896		return 0, err
1897	}
1898	return int(ret), nil
1899}
1900
1901// issue 1435.
1902// On linux Setuid and Setgid only affects the current thread, not the process.
1903// This does not match what most callers expect so we must return an error
1904// here rather than letting the caller think that the call succeeded.
1905
1906func Setuid(uid int) (err error) {
1907	return EOPNOTSUPP
1908}
1909
1910func Setgid(uid int) (err error) {
1911	return EOPNOTSUPP
1912}
1913
1914// SetfsgidRetGid sets fsgid for current thread and returns previous fsgid set.
1915// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability.
1916// If the call fails due to other reasons, current fsgid will be returned.
1917func SetfsgidRetGid(gid int) (int, error) {
1918	return setfsgid(gid)
1919}
1920
1921// SetfsuidRetUid sets fsuid for current thread and returns previous fsuid set.
1922// setfsgid(2) will return a non-nil error only if its caller lacks CAP_SETUID capability
1923// If the call fails due to other reasons, current fsuid will be returned.
1924func SetfsuidRetUid(uid int) (int, error) {
1925	return setfsuid(uid)
1926}
1927
1928func Setfsgid(gid int) error {
1929	_, err := setfsgid(gid)
1930	return err
1931}
1932
1933func Setfsuid(uid int) error {
1934	_, err := setfsuid(uid)
1935	return err
1936}
1937
1938func Signalfd(fd int, sigmask *Sigset_t, flags int) (newfd int, err error) {
1939	return signalfd(fd, sigmask, _C__NSIG/8, flags)
1940}
1941
1942//sys	Setpriority(which int, who int, prio int) (err error)
1943//sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
1944//sys	signalfd(fd int, sigmask *Sigset_t, maskSize uintptr, flags int) (newfd int, err error) = SYS_SIGNALFD4
1945//sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
1946//sys	Sync()
1947//sys	Syncfs(fd int) (err error)
1948//sysnb	Sysinfo(info *Sysinfo_t) (err error)
1949//sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
1950//sysnb	TimerfdCreate(clockid int, flags int) (fd int, err error)
1951//sysnb	TimerfdGettime(fd int, currValue *ItimerSpec) (err error)
1952//sysnb	TimerfdSettime(fd int, flags int, newValue *ItimerSpec, oldValue *ItimerSpec) (err error)
1953//sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
1954//sysnb	Times(tms *Tms) (ticks uintptr, err error)
1955//sysnb	Umask(mask int) (oldmask int)
1956//sysnb	Uname(buf *Utsname) (err error)
1957//sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
1958//sys	Unshare(flags int) (err error)
1959//sys	write(fd int, p []byte) (n int, err error)
1960//sys	exitThread(code int) (err error) = SYS_EXIT
1961//sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
1962//sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
1963//sys	readv(fd int, iovs []Iovec) (n int, err error) = SYS_READV
1964//sys	writev(fd int, iovs []Iovec) (n int, err error) = SYS_WRITEV
1965//sys	preadv(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PREADV
1966//sys	pwritev(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr) (n int, err error) = SYS_PWRITEV
1967//sys	preadv2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PREADV2
1968//sys	pwritev2(fd int, iovs []Iovec, offs_l uintptr, offs_h uintptr, flags int) (n int, err error) = SYS_PWRITEV2
1969
1970func bytes2iovec(bs [][]byte) []Iovec {
1971	iovecs := make([]Iovec, len(bs))
1972	for i, b := range bs {
1973		iovecs[i].SetLen(len(b))
1974		if len(b) > 0 {
1975			iovecs[i].Base = &b[0]
1976		} else {
1977			iovecs[i].Base = (*byte)(unsafe.Pointer(&_zero))
1978		}
1979	}
1980	return iovecs
1981}
1982
1983// offs2lohi splits offs into its lower and upper unsigned long. On 64-bit
1984// systems, hi will always be 0. On 32-bit systems, offs will be split in half.
1985// preadv/pwritev chose this calling convention so they don't need to add a
1986// padding-register for alignment on ARM.
1987func offs2lohi(offs int64) (lo, hi uintptr) {
1988	return uintptr(offs), uintptr(uint64(offs) >> SizeofLong)
1989}
1990
1991func Readv(fd int, iovs [][]byte) (n int, err error) {
1992	iovecs := bytes2iovec(iovs)
1993	n, err = readv(fd, iovecs)
1994	readvRacedetect(iovecs, n, err)
1995	return n, err
1996}
1997
1998func Preadv(fd int, iovs [][]byte, offset int64) (n int, err error) {
1999	iovecs := bytes2iovec(iovs)
2000	lo, hi := offs2lohi(offset)
2001	n, err = preadv(fd, iovecs, lo, hi)
2002	readvRacedetect(iovecs, n, err)
2003	return n, err
2004}
2005
2006func Preadv2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2007	iovecs := bytes2iovec(iovs)
2008	lo, hi := offs2lohi(offset)
2009	n, err = preadv2(fd, iovecs, lo, hi, flags)
2010	readvRacedetect(iovecs, n, err)
2011	return n, err
2012}
2013
2014func readvRacedetect(iovecs []Iovec, n int, err error) {
2015	if !raceenabled {
2016		return
2017	}
2018	for i := 0; n > 0 && i < len(iovecs); i++ {
2019		m := int(iovecs[i].Len)
2020		if m > n {
2021			m = n
2022		}
2023		n -= m
2024		if m > 0 {
2025			raceWriteRange(unsafe.Pointer(iovecs[i].Base), m)
2026		}
2027	}
2028	if err == nil {
2029		raceAcquire(unsafe.Pointer(&ioSync))
2030	}
2031}
2032
2033func Writev(fd int, iovs [][]byte) (n int, err error) {
2034	iovecs := bytes2iovec(iovs)
2035	if raceenabled {
2036		raceReleaseMerge(unsafe.Pointer(&ioSync))
2037	}
2038	n, err = writev(fd, iovecs)
2039	writevRacedetect(iovecs, n)
2040	return n, err
2041}
2042
2043func Pwritev(fd int, iovs [][]byte, offset int64) (n int, err error) {
2044	iovecs := bytes2iovec(iovs)
2045	if raceenabled {
2046		raceReleaseMerge(unsafe.Pointer(&ioSync))
2047	}
2048	lo, hi := offs2lohi(offset)
2049	n, err = pwritev(fd, iovecs, lo, hi)
2050	writevRacedetect(iovecs, n)
2051	return n, err
2052}
2053
2054func Pwritev2(fd int, iovs [][]byte, offset int64, flags int) (n int, err error) {
2055	iovecs := bytes2iovec(iovs)
2056	if raceenabled {
2057		raceReleaseMerge(unsafe.Pointer(&ioSync))
2058	}
2059	lo, hi := offs2lohi(offset)
2060	n, err = pwritev2(fd, iovecs, lo, hi, flags)
2061	writevRacedetect(iovecs, n)
2062	return n, err
2063}
2064
2065func writevRacedetect(iovecs []Iovec, n int) {
2066	if !raceenabled {
2067		return
2068	}
2069	for i := 0; n > 0 && i < len(iovecs); i++ {
2070		m := int(iovecs[i].Len)
2071		if m > n {
2072			m = n
2073		}
2074		n -= m
2075		if m > 0 {
2076			raceReadRange(unsafe.Pointer(iovecs[i].Base), m)
2077		}
2078	}
2079}
2080
2081// mmap varies by architecture; see syscall_linux_*.go.
2082//sys	munmap(addr uintptr, length uintptr) (err error)
2083
2084var mapper = &mmapper{
2085	active: make(map[*byte][]byte),
2086	mmap:   mmap,
2087	munmap: munmap,
2088}
2089
2090func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
2091	return mapper.Mmap(fd, offset, length, prot, flags)
2092}
2093
2094func Munmap(b []byte) (err error) {
2095	return mapper.Munmap(b)
2096}
2097
2098//sys	Madvise(b []byte, advice int) (err error)
2099//sys	Mprotect(b []byte, prot int) (err error)
2100//sys	Mlock(b []byte) (err error)
2101//sys	Mlockall(flags int) (err error)
2102//sys	Msync(b []byte, flags int) (err error)
2103//sys	Munlock(b []byte) (err error)
2104//sys	Munlockall() (err error)
2105
2106// Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
2107// using the specified flags.
2108func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
2109	var p unsafe.Pointer
2110	if len(iovs) > 0 {
2111		p = unsafe.Pointer(&iovs[0])
2112	}
2113
2114	n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
2115	if errno != 0 {
2116		return 0, syscall.Errno(errno)
2117	}
2118
2119	return int(n), nil
2120}
2121
2122func isGroupMember(gid int) bool {
2123	groups, err := Getgroups()
2124	if err != nil {
2125		return false
2126	}
2127
2128	for _, g := range groups {
2129		if g == gid {
2130			return true
2131		}
2132	}
2133	return false
2134}
2135
2136//sys	faccessat(dirfd int, path string, mode uint32) (err error)
2137//sys	Faccessat2(dirfd int, path string, mode uint32, flags int) (err error)
2138
2139func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
2140	if flags == 0 {
2141		return faccessat(dirfd, path, mode)
2142	}
2143
2144	if err := Faccessat2(dirfd, path, mode, flags); err != ENOSYS && err != EPERM {
2145		return err
2146	}
2147
2148	// The Linux kernel faccessat system call does not take any flags.
2149	// The glibc faccessat implements the flags itself; see
2150	// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
2151	// Because people naturally expect syscall.Faccessat to act
2152	// like C faccessat, we do the same.
2153
2154	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
2155		return EINVAL
2156	}
2157
2158	var st Stat_t
2159	if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
2160		return err
2161	}
2162
2163	mode &= 7
2164	if mode == 0 {
2165		return nil
2166	}
2167
2168	var uid int
2169	if flags&AT_EACCESS != 0 {
2170		uid = Geteuid()
2171	} else {
2172		uid = Getuid()
2173	}
2174
2175	if uid == 0 {
2176		if mode&1 == 0 {
2177			// Root can read and write any file.
2178			return nil
2179		}
2180		if st.Mode&0111 != 0 {
2181			// Root can execute any file that anybody can execute.
2182			return nil
2183		}
2184		return EACCES
2185	}
2186
2187	var fmode uint32
2188	if uint32(uid) == st.Uid {
2189		fmode = (st.Mode >> 6) & 7
2190	} else {
2191		var gid int
2192		if flags&AT_EACCESS != 0 {
2193			gid = Getegid()
2194		} else {
2195			gid = Getgid()
2196		}
2197
2198		if uint32(gid) == st.Gid || isGroupMember(gid) {
2199			fmode = (st.Mode >> 3) & 7
2200		} else {
2201			fmode = st.Mode & 7
2202		}
2203	}
2204
2205	if fmode&mode == mode {
2206		return nil
2207	}
2208
2209	return EACCES
2210}
2211
2212//sys	nameToHandleAt(dirFD int, pathname string, fh *fileHandle, mountID *_C_int, flags int) (err error) = SYS_NAME_TO_HANDLE_AT
2213//sys	openByHandleAt(mountFD int, fh *fileHandle, flags int) (fd int, err error) = SYS_OPEN_BY_HANDLE_AT
2214
2215// fileHandle is the argument to nameToHandleAt and openByHandleAt. We
2216// originally tried to generate it via unix/linux/types.go with "type
2217// fileHandle C.struct_file_handle" but that generated empty structs
2218// for mips64 and mips64le. Instead, hard code it for now (it's the
2219// same everywhere else) until the mips64 generator issue is fixed.
2220type fileHandle struct {
2221	Bytes uint32
2222	Type  int32
2223}
2224
2225// FileHandle represents the C struct file_handle used by
2226// name_to_handle_at (see NameToHandleAt) and open_by_handle_at (see
2227// OpenByHandleAt).
2228type FileHandle struct {
2229	*fileHandle
2230}
2231
2232// NewFileHandle constructs a FileHandle.
2233func NewFileHandle(handleType int32, handle []byte) FileHandle {
2234	const hdrSize = unsafe.Sizeof(fileHandle{})
2235	buf := make([]byte, hdrSize+uintptr(len(handle)))
2236	copy(buf[hdrSize:], handle)
2237	fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2238	fh.Type = handleType
2239	fh.Bytes = uint32(len(handle))
2240	return FileHandle{fh}
2241}
2242
2243func (fh *FileHandle) Size() int   { return int(fh.fileHandle.Bytes) }
2244func (fh *FileHandle) Type() int32 { return fh.fileHandle.Type }
2245func (fh *FileHandle) Bytes() []byte {
2246	n := fh.Size()
2247	if n == 0 {
2248		return nil
2249	}
2250	return (*[1 << 30]byte)(unsafe.Pointer(uintptr(unsafe.Pointer(&fh.fileHandle.Type)) + 4))[:n:n]
2251}
2252
2253// NameToHandleAt wraps the name_to_handle_at system call; it obtains
2254// a handle for a path name.
2255func NameToHandleAt(dirfd int, path string, flags int) (handle FileHandle, mountID int, err error) {
2256	var mid _C_int
2257	// Try first with a small buffer, assuming the handle will
2258	// only be 32 bytes.
2259	size := uint32(32 + unsafe.Sizeof(fileHandle{}))
2260	didResize := false
2261	for {
2262		buf := make([]byte, size)
2263		fh := (*fileHandle)(unsafe.Pointer(&buf[0]))
2264		fh.Bytes = size - uint32(unsafe.Sizeof(fileHandle{}))
2265		err = nameToHandleAt(dirfd, path, fh, &mid, flags)
2266		if err == EOVERFLOW {
2267			if didResize {
2268				// We shouldn't need to resize more than once
2269				return
2270			}
2271			didResize = true
2272			size = fh.Bytes + uint32(unsafe.Sizeof(fileHandle{}))
2273			continue
2274		}
2275		if err != nil {
2276			return
2277		}
2278		return FileHandle{fh}, int(mid), nil
2279	}
2280}
2281
2282// OpenByHandleAt wraps the open_by_handle_at system call; it opens a
2283// file via a handle as previously returned by NameToHandleAt.
2284func OpenByHandleAt(mountFD int, handle FileHandle, flags int) (fd int, err error) {
2285	return openByHandleAt(mountFD, handle.fileHandle, flags)
2286}
2287
2288// Klogset wraps the sys_syslog system call; it sets console_loglevel to
2289// the value specified by arg and passes a dummy pointer to bufp.
2290func Klogset(typ int, arg int) (err error) {
2291	var p unsafe.Pointer
2292	_, _, errno := Syscall(SYS_SYSLOG, uintptr(typ), uintptr(p), uintptr(arg))
2293	if errno != 0 {
2294		return errnoErr(errno)
2295	}
2296	return nil
2297}
2298
2299// RemoteIovec is Iovec with the pointer replaced with an integer.
2300// It is used for ProcessVMReadv and ProcessVMWritev, where the pointer
2301// refers to a location in a different process' address space, which
2302// would confuse the Go garbage collector.
2303type RemoteIovec struct {
2304	Base uintptr
2305	Len  int
2306}
2307
2308//sys	ProcessVMReadv(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_READV
2309//sys	ProcessVMWritev(pid int, localIov []Iovec, remoteIov []RemoteIovec, flags uint) (n int, err error) = SYS_PROCESS_VM_WRITEV
2310
2311/*
2312 * Unimplemented
2313 */
2314// AfsSyscall
2315// Alarm
2316// ArchPrctl
2317// Brk
2318// ClockNanosleep
2319// ClockSettime
2320// Clone
2321// EpollCtlOld
2322// EpollPwait
2323// EpollWaitOld
2324// Execve
2325// Fork
2326// Futex
2327// GetKernelSyms
2328// GetMempolicy
2329// GetRobustList
2330// GetThreadArea
2331// Getitimer
2332// Getpmsg
2333// IoCancel
2334// IoDestroy
2335// IoGetevents
2336// IoSetup
2337// IoSubmit
2338// IoprioGet
2339// IoprioSet
2340// KexecLoad
2341// LookupDcookie
2342// Mbind
2343// MigratePages
2344// Mincore
2345// ModifyLdt
2346// Mount
2347// MovePages
2348// MqGetsetattr
2349// MqNotify
2350// MqOpen
2351// MqTimedreceive
2352// MqTimedsend
2353// MqUnlink
2354// Mremap
2355// Msgctl
2356// Msgget
2357// Msgrcv
2358// Msgsnd
2359// Nfsservctl
2360// Personality
2361// Pselect6
2362// Ptrace
2363// Putpmsg
2364// Quotactl
2365// Readahead
2366// Readv
2367// RemapFilePages
2368// RestartSyscall
2369// RtSigaction
2370// RtSigpending
2371// RtSigprocmask
2372// RtSigqueueinfo
2373// RtSigreturn
2374// RtSigsuspend
2375// RtSigtimedwait
2376// SchedGetPriorityMax
2377// SchedGetPriorityMin
2378// SchedGetparam
2379// SchedGetscheduler
2380// SchedRrGetInterval
2381// SchedSetparam
2382// SchedYield
2383// Security
2384// Semctl
2385// Semget
2386// Semop
2387// Semtimedop
2388// SetMempolicy
2389// SetRobustList
2390// SetThreadArea
2391// SetTidAddress
2392// Shmat
2393// Shmctl
2394// Shmdt
2395// Shmget
2396// Sigaltstack
2397// Swapoff
2398// Swapon
2399// Sysfs
2400// TimerCreate
2401// TimerDelete
2402// TimerGetoverrun
2403// TimerGettime
2404// TimerSettime
2405// Tkill (obsolete)
2406// Tuxcall
2407// Umount2
2408// Uselib
2409// Utimensat
2410// Vfork
2411// Vhangup
2412// Vserver
2413// Waitid
2414// _Sysctl
2415