1// Copyright 2014 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package sha3
6
7// spongeDirection indicates the direction bytes are flowing through the sponge.
8type spongeDirection int
9
10const (
11	// spongeAbsorbing indicates that the sponge is absorbing input.
12	spongeAbsorbing spongeDirection = iota
13	// spongeSqueezing indicates that the sponge is being squeezed.
14	spongeSqueezing
15)
16
17const (
18	// maxRate is the maximum size of the internal buffer. SHAKE-256
19	// currently needs the largest buffer.
20	maxRate = 168
21)
22
23type state struct {
24	// Generic sponge components.
25	a    [25]uint64 // main state of the hash
26	buf  []byte     // points into storage
27	rate int        // the number of bytes of state to use
28
29	// dsbyte contains the "domain separation" bits and the first bit of
30	// the padding. Sections 6.1 and 6.2 of [1] separate the outputs of the
31	// SHA-3 and SHAKE functions by appending bitstrings to the message.
32	// Using a little-endian bit-ordering convention, these are "01" for SHA-3
33	// and "1111" for SHAKE, or 00000010b and 00001111b, respectively. Then the
34	// padding rule from section 5.1 is applied to pad the message to a multiple
35	// of the rate, which involves adding a "1" bit, zero or more "0" bits, and
36	// a final "1" bit. We merge the first "1" bit from the padding into dsbyte,
37	// giving 00000110b (0x06) and 00011111b (0x1f).
38	// [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
39	//     "Draft FIPS 202: SHA-3 Standard: Permutation-Based Hash and
40	//      Extendable-Output Functions (May 2014)"
41	dsbyte byte
42
43	storage storageBuf
44
45	// Specific to SHA-3 and SHAKE.
46	outputLen int             // the default output size in bytes
47	state     spongeDirection // whether the sponge is absorbing or squeezing
48}
49
50// BlockSize returns the rate of sponge underlying this hash function.
51func (d *state) BlockSize() int { return d.rate }
52
53// Size returns the output size of the hash function in bytes.
54func (d *state) Size() int { return d.outputLen }
55
56// Reset clears the internal state by zeroing the sponge state and
57// the byte buffer, and setting Sponge.state to absorbing.
58func (d *state) Reset() {
59	// Zero the permutation's state.
60	for i := range d.a {
61		d.a[i] = 0
62	}
63	d.state = spongeAbsorbing
64	d.buf = d.storage.asBytes()[:0]
65}
66
67func (d *state) clone() *state {
68	ret := *d
69	if ret.state == spongeAbsorbing {
70		ret.buf = ret.storage.asBytes()[:len(ret.buf)]
71	} else {
72		ret.buf = ret.storage.asBytes()[d.rate-cap(d.buf) : d.rate]
73	}
74
75	return &ret
76}
77
78// permute applies the KeccakF-1600 permutation. It handles
79// any input-output buffering.
80func (d *state) permute() {
81	switch d.state {
82	case spongeAbsorbing:
83		// If we're absorbing, we need to xor the input into the state
84		// before applying the permutation.
85		xorIn(d, d.buf)
86		d.buf = d.storage.asBytes()[:0]
87		keccakF1600(&d.a)
88	case spongeSqueezing:
89		// If we're squeezing, we need to apply the permutatin before
90		// copying more output.
91		keccakF1600(&d.a)
92		d.buf = d.storage.asBytes()[:d.rate]
93		copyOut(d, d.buf)
94	}
95}
96
97// pads appends the domain separation bits in dsbyte, applies
98// the multi-bitrate 10..1 padding rule, and permutes the state.
99func (d *state) padAndPermute(dsbyte byte) {
100	if d.buf == nil {
101		d.buf = d.storage.asBytes()[:0]
102	}
103	// Pad with this instance's domain-separator bits. We know that there's
104	// at least one byte of space in d.buf because, if it were full,
105	// permute would have been called to empty it. dsbyte also contains the
106	// first one bit for the padding. See the comment in the state struct.
107	d.buf = append(d.buf, dsbyte)
108	zerosStart := len(d.buf)
109	d.buf = d.storage.asBytes()[:d.rate]
110	for i := zerosStart; i < d.rate; i++ {
111		d.buf[i] = 0
112	}
113	// This adds the final one bit for the padding. Because of the way that
114	// bits are numbered from the LSB upwards, the final bit is the MSB of
115	// the last byte.
116	d.buf[d.rate-1] ^= 0x80
117	// Apply the permutation
118	d.permute()
119	d.state = spongeSqueezing
120	d.buf = d.storage.asBytes()[:d.rate]
121	copyOut(d, d.buf)
122}
123
124// Write absorbs more data into the hash's state. It produces an error
125// if more data is written to the ShakeHash after writing
126func (d *state) Write(p []byte) (written int, err error) {
127	if d.state != spongeAbsorbing {
128		panic("sha3: write to sponge after read")
129	}
130	if d.buf == nil {
131		d.buf = d.storage.asBytes()[:0]
132	}
133	written = len(p)
134
135	for len(p) > 0 {
136		if len(d.buf) == 0 && len(p) >= d.rate {
137			// The fast path; absorb a full "rate" bytes of input and apply the permutation.
138			xorIn(d, p[:d.rate])
139			p = p[d.rate:]
140			keccakF1600(&d.a)
141		} else {
142			// The slow path; buffer the input until we can fill the sponge, and then xor it in.
143			todo := d.rate - len(d.buf)
144			if todo > len(p) {
145				todo = len(p)
146			}
147			d.buf = append(d.buf, p[:todo]...)
148			p = p[todo:]
149
150			// If the sponge is full, apply the permutation.
151			if len(d.buf) == d.rate {
152				d.permute()
153			}
154		}
155	}
156
157	return
158}
159
160// Read squeezes an arbitrary number of bytes from the sponge.
161func (d *state) Read(out []byte) (n int, err error) {
162	// If we're still absorbing, pad and apply the permutation.
163	if d.state == spongeAbsorbing {
164		d.padAndPermute(d.dsbyte)
165	}
166
167	n = len(out)
168
169	// Now, do the squeezing.
170	for len(out) > 0 {
171		n := copy(out, d.buf)
172		d.buf = d.buf[n:]
173		out = out[n:]
174
175		// Apply the permutation if we've squeezed the sponge dry.
176		if len(d.buf) == 0 {
177			d.permute()
178		}
179	}
180
181	return
182}
183
184// Sum applies padding to the hash state and then squeezes out the desired
185// number of output bytes.
186func (d *state) Sum(in []byte) []byte {
187	// Make a copy of the original hash so that caller can keep writing
188	// and summing.
189	dup := d.clone()
190	hash := make([]byte, dup.outputLen)
191	dup.Read(hash)
192	return append(in, hash...)
193}
194