1 #![deny(unsafe_code)]
2 
3 //! Caching handle into the [ArcSwapAny].
4 //!
5 //! The [Cache] keeps a copy of the internal [Arc] for faster access.
6 //!
7 //! [Arc]: std::sync::Arc
8 
9 use std::ops::Deref;
10 use std::sync::atomic::Ordering;
11 
12 use super::ref_cnt::RefCnt;
13 use super::strategy::Strategy;
14 use super::ArcSwapAny;
15 
16 /// Generalization of caches providing access to `T`.
17 ///
18 /// This abstracts over all kinds of caches that can provide a cheap access to values of type `T`.
19 /// This is useful in cases where some code doesn't care if the `T` is the whole structure or just
20 /// a part of it.
21 ///
22 /// See the example at [`Cache::map`].
23 pub trait Access<T> {
24     /// Loads the value from cache.
25     ///
26     /// This revalidates the value in the cache, then provides the access to the cached value.
load(&mut self) -> &T27     fn load(&mut self) -> &T;
28 }
29 
30 /// Caching handle for [`ArcSwapAny`][ArcSwapAny].
31 ///
32 /// Instead of loading the [`Arc`][Arc] on every request from the shared storage, this keeps
33 /// another copy inside itself. Upon request it only cheaply revalidates it is up to
34 /// date. If it is, access is significantly faster. If it is stale, the [load_full] is done and the
35 /// cache value is replaced. Under a read-heavy loads, the measured speedup are 10-25 times,
36 /// depending on the architecture.
37 ///
38 /// There are, however, downsides:
39 ///
40 /// * The handle needs to be kept around by the caller (usually, one per thread). This is fine if
41 ///   there's one global `ArcSwapAny`, but starts being tricky with eg. data structures build from
42 ///   them.
43 /// * As it keeps a copy of the [Arc] inside the cache, the old value may be kept alive for longer
44 ///   period of time ‒ it is replaced by the new value on [load][Cache::load]. You may not want to
45 ///   use this if dropping the old value in timely manner is important (possibly because of
46 ///   releasing large amount of RAM or because of closing file handles).
47 ///
48 /// # Examples
49 ///
50 /// ```rust
51 /// # fn do_something<V>(_v: V) { }
52 /// use std::sync::Arc;
53 /// use std::sync::atomic::{AtomicBool, Ordering};
54 ///
55 /// use arc_swap::{ArcSwap, Cache};
56 ///
57 /// let shared = Arc::new(ArcSwap::from_pointee(42));
58 /// # let mut threads = Vec::new();
59 /// let terminate = Arc::new(AtomicBool::new(false));
60 /// // Start 10 worker threads...
61 /// for _ in 0..10 {
62 ///     let mut cache = Cache::new(Arc::clone(&shared));
63 ///     let terminate = Arc::clone(&terminate);
64 ///     # let thread =
65 ///     std::thread::spawn(move || {
66 ///         // Keep loading it like mad..
67 ///         while !terminate.load(Ordering::Relaxed) {
68 ///             let value = cache.load();
69 ///             do_something(value);
70 ///         }
71 ///     });
72 ///     # threads.push(thread);
73 /// }
74 /// shared.store(Arc::new(12));
75 /// # terminate.store(true, Ordering::Relaxed);
76 /// # for thread in threads { thread.join().unwrap() }
77 /// ```
78 ///
79 /// [Arc]: std::sync::Arc
80 /// [load_full]: ArcSwapAny::load_full
81 #[derive(Clone, Debug)]
82 pub struct Cache<A, T> {
83     arc_swap: A,
84     cached: T,
85 }
86 
87 impl<A, T, S> Cache<A, T>
88 where
89     A: Deref<Target = ArcSwapAny<T, S>>,
90     T: RefCnt,
91     S: Strategy<T>,
92 {
93     /// Creates a new caching handle.
94     ///
95     /// The parameter is something dereferencing into an [`ArcSwapAny`] (eg. either to [`ArcSwap`]
96     /// or [`ArcSwapOption`]). That can be [`ArcSwapAny`] itself, but that's not very useful. But
97     /// it also can be a reference to it or `Arc`, which makes it possible to share the
98     /// [`ArcSwapAny`] with multiple caches or access it in non-cached way too.
99     ///
100     /// [`ArcSwapOption`]: crate::ArcSwapOption
101     /// [`ArcSwap`]: crate::ArcSwap
new(arc_swap: A) -> Self102     pub fn new(arc_swap: A) -> Self {
103         let cached = arc_swap.load_full();
104         Self { arc_swap, cached }
105     }
106 
107     /// Gives access to the (possibly shared) cached [`ArcSwapAny`].
arc_swap(&self) -> &A::Target108     pub fn arc_swap(&self) -> &A::Target {
109         &self.arc_swap
110     }
111 
112     /// Loads the currently held value.
113     ///
114     /// This first checks if the cached value is up to date. This check is very cheap.
115     ///
116     /// If it is up to date, the cached value is simply returned without additional costs. If it is
117     /// outdated, a load is done on the underlying shared storage. The newly loaded value is then
118     /// stored in the cache and returned.
119     #[inline]
load(&mut self) -> &T120     pub fn load(&mut self) -> &T {
121         self.revalidate();
122         self.load_no_revalidate()
123     }
124 
125     #[inline]
load_no_revalidate(&self) -> &T126     fn load_no_revalidate(&self) -> &T {
127         &self.cached
128     }
129 
130     #[inline]
revalidate(&mut self)131     fn revalidate(&mut self) {
132         let cached_ptr = RefCnt::as_ptr(&self.cached);
133         // Node: Relaxed here is fine. We do not synchronize any data through this, we already have
134         // it synchronized in self.cache. We just want to check if it changed, if it did, the
135         // load_full will be responsible for any synchronization needed.
136         let shared_ptr = self.arc_swap.ptr.load(Ordering::Relaxed);
137         if cached_ptr != shared_ptr {
138             self.cached = self.arc_swap.load_full();
139         }
140     }
141 
142     /// Turns this cache into a cache with a projection inside the cached value.
143     ///
144     /// You'd use this in case when some part of code needs access to fresh values of `U`, however
145     /// a bigger structure containing `U` is provided by this cache. The possibility of giving the
146     /// whole structure to the part of the code falls short in terms of reusability (the part of
147     /// the code could be used within multiple contexts, each with a bigger different structure
148     /// containing `U`) and code separation (the code shouldn't needs to know about the big
149     /// structure).
150     ///
151     /// # Warning
152     ///
153     /// As the provided `f` is called inside every [`load`][Access::load], this one should be
154     /// cheap. Most often it is expected to be just a closure taking reference of some inner field.
155     ///
156     /// For the same reasons, it should not have side effects and should never panic (these will
157     /// not break Rust's safety rules, but might produce behaviour you don't expect).
158     ///
159     /// # Examples
160     ///
161     /// ```rust
162     /// use arc_swap::ArcSwap;
163     /// use arc_swap::cache::{Access, Cache};
164     ///
165     /// struct InnerCfg {
166     ///     answer: usize,
167     /// }
168     ///
169     /// struct FullCfg {
170     ///     inner: InnerCfg,
171     /// }
172     ///
173     /// fn use_inner<A: Access<InnerCfg>>(cache: &mut A) {
174     ///     let value = cache.load();
175     ///     println!("The answer is: {}", value.answer);
176     /// }
177     ///
178     /// let full_cfg = ArcSwap::from_pointee(FullCfg {
179     ///     inner: InnerCfg {
180     ///         answer: 42,
181     ///     }
182     /// });
183     /// let cache = Cache::new(&full_cfg);
184     /// use_inner(&mut cache.map(|full| &full.inner));
185     ///
186     /// let inner_cfg = ArcSwap::from_pointee(InnerCfg { answer: 24 });
187     /// let mut inner_cache = Cache::new(&inner_cfg);
188     /// use_inner(&mut inner_cache);
189     /// ```
map<F, U>(self, f: F) -> MapCache<A, T, F> where F: FnMut(&T) -> &U,190     pub fn map<F, U>(self, f: F) -> MapCache<A, T, F>
191     where
192         F: FnMut(&T) -> &U,
193     {
194         MapCache {
195             inner: self,
196             projection: f,
197         }
198     }
199 }
200 
201 impl<A, T, S> Access<T::Target> for Cache<A, T>
202 where
203     A: Deref<Target = ArcSwapAny<T, S>>,
204     T: Deref<Target = <T as RefCnt>::Base> + RefCnt,
205     S: Strategy<T>,
206 {
load(&mut self) -> &T::Target207     fn load(&mut self) -> &T::Target {
208         self.load().deref()
209     }
210 }
211 
212 impl<A, T, S> From<A> for Cache<A, T>
213 where
214     A: Deref<Target = ArcSwapAny<T, S>>,
215     T: RefCnt,
216     S: Strategy<T>,
217 {
from(arc_swap: A) -> Self218     fn from(arc_swap: A) -> Self {
219         Self::new(arc_swap)
220     }
221 }
222 
223 /// An implementation of a cache with a projection into the accessed value.
224 ///
225 /// This is the implementation structure for [`Cache::map`]. It can't be created directly and it
226 /// should be used through the [`Access`] trait.
227 #[derive(Clone, Debug)]
228 pub struct MapCache<A, T, F> {
229     inner: Cache<A, T>,
230     projection: F,
231 }
232 
233 impl<A, T, S, F, U> Access<U> for MapCache<A, T, F>
234 where
235     A: Deref<Target = ArcSwapAny<T, S>>,
236     T: RefCnt,
237     S: Strategy<T>,
238     F: FnMut(&T) -> &U,
239 {
load(&mut self) -> &U240     fn load(&mut self) -> &U {
241         (self.projection)(self.inner.load())
242     }
243 }
244 
245 #[cfg(test)]
246 mod tests {
247     use std::sync::Arc;
248 
249     use super::*;
250     use crate::{ArcSwap, ArcSwapOption};
251 
252     #[test]
cached_value()253     fn cached_value() {
254         let a = ArcSwap::from_pointee(42);
255         let mut c1 = Cache::new(&a);
256         let mut c2 = Cache::new(&a);
257 
258         assert_eq!(42, **c1.load());
259         assert_eq!(42, **c2.load());
260 
261         a.store(Arc::new(43));
262         assert_eq!(42, **c1.load_no_revalidate());
263         assert_eq!(43, **c1.load());
264     }
265 
266     #[test]
cached_through_arc()267     fn cached_through_arc() {
268         let a = Arc::new(ArcSwap::from_pointee(42));
269         let mut c = Cache::new(Arc::clone(&a));
270         assert_eq!(42, **c.load());
271         a.store(Arc::new(0));
272         drop(a); // A is just one handle, the ArcSwap is kept alive by the cache.
273     }
274 
275     #[test]
cache_option()276     fn cache_option() {
277         let a = ArcSwapOption::from_pointee(42);
278         let mut c = Cache::new(&a);
279 
280         assert_eq!(42, **c.load().as_ref().unwrap());
281         a.store(None);
282         assert!(c.load().is_none());
283     }
284 
285     struct Inner {
286         answer: usize,
287     }
288 
289     struct Outer {
290         inner: Inner,
291     }
292 
293     #[test]
map_cache()294     fn map_cache() {
295         let a = ArcSwap::from_pointee(Outer {
296             inner: Inner { answer: 42 },
297         });
298 
299         let mut cache = Cache::new(&a);
300         let mut inner = cache.clone().map(|outer| &outer.inner);
301         let mut answer = cache.clone().map(|outer| &outer.inner.answer);
302 
303         assert_eq!(42, cache.load().inner.answer);
304         assert_eq!(42, inner.load().answer);
305         assert_eq!(42, *answer.load());
306 
307         a.store(Arc::new(Outer {
308             inner: Inner { answer: 24 },
309         }));
310 
311         assert_eq!(24, cache.load().inner.answer);
312         assert_eq!(24, inner.load().answer);
313         assert_eq!(24, *answer.load());
314     }
315 }
316