1 /*
2 This module implements the classical Rabin-Karp substring search algorithm,
3 with no extra frills. While its use would seem to break our time complexity
4 guarantee of O(m+n) (RK's time complexity is O(mn)), we are careful to only
5 ever use RK on a constant subset of haystacks. The main point here is that
6 RK has good latency properties for small needles/haystacks. It's very quick
7 to compute a needle hash and zip through the haystack when compared to
8 initializing Two-Way, for example. And this is especially useful for cases
9 where the haystack is just too short for vector instructions to do much good.
10 
11 The hashing function used here is the same one recommended by ESMAJ.
12 
13 Another choice instead of Rabin-Karp would be Shift-Or. But its latency
14 isn't quite as good since its preprocessing time is a bit more expensive
15 (both in practice and in theory). However, perhaps Shift-Or has a place
16 somewhere else for short patterns. I think the main problem is that it
17 requires space proportional to the alphabet and the needle. If we, for
18 example, supported needles up to length 16, then the total table size would be
19 len(alphabet)*size_of::<u16>()==512 bytes. Which isn't exactly small, and it's
20 probably bad to put that on the stack. So ideally, we'd throw it on the heap,
21 but we'd really like to write as much code without using alloc/std as possible.
22 But maybe it's worth the special casing. It's a TODO to benchmark.
23 
24 Wikipedia has a decent explanation, if a bit heavy on the theory:
25 https://en.wikipedia.org/wiki/Rabin%E2%80%93Karp_algorithm
26 
27 But ESMAJ provides something a bit more concrete:
28 http://www-igm.univ-mlv.fr/~lecroq/string/node5.html
29 
30 Finally, aho-corasick uses Rabin-Karp for multiple pattern match in some cases:
31 https://github.com/BurntSushi/aho-corasick/blob/3852632f10587db0ff72ef29e88d58bf305a0946/src/packed/rabinkarp.rs
32 */
33 
34 /// Whether RK is believed to be very fast for the given needle/haystack.
is_fast(haystack: &[u8], _needle: &[u8]) -> bool35 pub(crate) fn is_fast(haystack: &[u8], _needle: &[u8]) -> bool {
36     haystack.len() < 16
37 }
38 
39 /// Search for the first occurrence of needle in haystack using Rabin-Karp.
find(haystack: &[u8], needle: &[u8]) -> Option<usize>40 pub(crate) fn find(haystack: &[u8], needle: &[u8]) -> Option<usize> {
41     find_with(&NeedleHash::forward(needle), haystack, needle)
42 }
43 
44 /// Search for the first occurrence of needle in haystack using Rabin-Karp with
45 /// a pre-computed needle hash.
find_with( nhash: &NeedleHash, mut haystack: &[u8], needle: &[u8], ) -> Option<usize>46 pub(crate) fn find_with(
47     nhash: &NeedleHash,
48     mut haystack: &[u8],
49     needle: &[u8],
50 ) -> Option<usize> {
51     if haystack.len() < needle.len() {
52         return None;
53     }
54     let start = haystack.as_ptr() as usize;
55     let mut hash = Hash::from_bytes_fwd(&haystack[..needle.len()]);
56     // N.B. I've experimented with unrolling this loop, but couldn't realize
57     // any obvious gains.
58     loop {
59         if nhash.eq(hash) && is_prefix(haystack, needle) {
60             return Some(haystack.as_ptr() as usize - start);
61         }
62         if needle.len() >= haystack.len() {
63             return None;
64         }
65         hash.roll(&nhash, haystack[0], haystack[needle.len()]);
66         haystack = &haystack[1..];
67     }
68 }
69 
70 /// Search for the last occurrence of needle in haystack using Rabin-Karp.
rfind(haystack: &[u8], needle: &[u8]) -> Option<usize>71 pub(crate) fn rfind(haystack: &[u8], needle: &[u8]) -> Option<usize> {
72     rfind_with(&NeedleHash::reverse(needle), haystack, needle)
73 }
74 
75 /// Search for the last occurrence of needle in haystack using Rabin-Karp with
76 /// a pre-computed needle hash.
rfind_with( nhash: &NeedleHash, mut haystack: &[u8], needle: &[u8], ) -> Option<usize>77 pub(crate) fn rfind_with(
78     nhash: &NeedleHash,
79     mut haystack: &[u8],
80     needle: &[u8],
81 ) -> Option<usize> {
82     if haystack.len() < needle.len() {
83         return None;
84     }
85     let mut hash =
86         Hash::from_bytes_rev(&haystack[haystack.len() - needle.len()..]);
87     loop {
88         if nhash.eq(hash) && is_suffix(haystack, needle) {
89             return Some(haystack.len() - needle.len());
90         }
91         if needle.len() >= haystack.len() {
92             return None;
93         }
94         hash.roll(
95             &nhash,
96             haystack[haystack.len() - 1],
97             haystack[haystack.len() - needle.len() - 1],
98         );
99         haystack = &haystack[..haystack.len() - 1];
100     }
101 }
102 
103 /// A hash derived from a needle.
104 #[derive(Clone, Copy, Debug, Default)]
105 pub(crate) struct NeedleHash {
106     /// The actual hash.
107     hash: Hash,
108     /// The factor needed to multiply a byte by in order to subtract it from
109     /// the hash. It is defined to be 2^(n-1) (using wrapping exponentiation),
110     /// where n is the length of the needle. This is how we "remove" a byte
111     /// from the hash once the hash window rolls past it.
112     hash_2pow: u32,
113 }
114 
115 impl NeedleHash {
116     /// Create a new Rabin-Karp hash for the given needle for use in forward
117     /// searching.
forward(needle: &[u8]) -> NeedleHash118     pub(crate) fn forward(needle: &[u8]) -> NeedleHash {
119         let mut nh = NeedleHash { hash: Hash::new(), hash_2pow: 1 };
120         if needle.is_empty() {
121             return nh;
122         }
123         nh.hash.add(needle[0]);
124         for &b in needle.iter().skip(1) {
125             nh.hash.add(b);
126             nh.hash_2pow = nh.hash_2pow.wrapping_shl(1);
127         }
128         nh
129     }
130 
131     /// Create a new Rabin-Karp hash for the given needle for use in reverse
132     /// searching.
reverse(needle: &[u8]) -> NeedleHash133     pub(crate) fn reverse(needle: &[u8]) -> NeedleHash {
134         let mut nh = NeedleHash { hash: Hash::new(), hash_2pow: 1 };
135         if needle.is_empty() {
136             return nh;
137         }
138         nh.hash.add(needle[needle.len() - 1]);
139         for &b in needle.iter().rev().skip(1) {
140             nh.hash.add(b);
141             nh.hash_2pow = nh.hash_2pow.wrapping_shl(1);
142         }
143         nh
144     }
145 
146     /// Return true if the hashes are equivalent.
eq(&self, hash: Hash) -> bool147     fn eq(&self, hash: Hash) -> bool {
148         self.hash == hash
149     }
150 }
151 
152 /// A Rabin-Karp hash. This might represent the hash of a needle, or the hash
153 /// of a rolling window in the haystack.
154 #[derive(Clone, Copy, Debug, Default, Eq, PartialEq)]
155 pub(crate) struct Hash(u32);
156 
157 impl Hash {
158     /// Create a new hash that represents the empty string.
new() -> Hash159     pub(crate) fn new() -> Hash {
160         Hash(0)
161     }
162 
163     /// Create a new hash from the bytes given for use in forward searches.
from_bytes_fwd(bytes: &[u8]) -> Hash164     pub(crate) fn from_bytes_fwd(bytes: &[u8]) -> Hash {
165         let mut hash = Hash::new();
166         for &b in bytes {
167             hash.add(b);
168         }
169         hash
170     }
171 
172     /// Create a new hash from the bytes given for use in reverse searches.
from_bytes_rev(bytes: &[u8]) -> Hash173     fn from_bytes_rev(bytes: &[u8]) -> Hash {
174         let mut hash = Hash::new();
175         for &b in bytes.iter().rev() {
176             hash.add(b);
177         }
178         hash
179     }
180 
181     /// Add 'new' and remove 'old' from this hash. The given needle hash should
182     /// correspond to the hash computed for the needle being searched for.
183     ///
184     /// This is meant to be used when the rolling window of the haystack is
185     /// advanced.
roll(&mut self, nhash: &NeedleHash, old: u8, new: u8)186     fn roll(&mut self, nhash: &NeedleHash, old: u8, new: u8) {
187         self.del(nhash, old);
188         self.add(new);
189     }
190 
191     /// Add a byte to this hash.
add(&mut self, byte: u8)192     fn add(&mut self, byte: u8) {
193         self.0 = self.0.wrapping_shl(1).wrapping_add(byte as u32);
194     }
195 
196     /// Remove a byte from this hash. The given needle hash should correspond
197     /// to the hash computed for the needle being searched for.
del(&mut self, nhash: &NeedleHash, byte: u8)198     fn del(&mut self, nhash: &NeedleHash, byte: u8) {
199         let factor = nhash.hash_2pow;
200         self.0 = self.0.wrapping_sub((byte as u32).wrapping_mul(factor));
201     }
202 }
203 
204 /// Returns true if the given needle is a prefix of the given haystack.
205 ///
206 /// We forcefully don't inline the is_prefix call and hint at the compiler that
207 /// it is unlikely to be called. This causes the inner rabinkarp loop above
208 /// to be a bit tighter and leads to some performance improvement. See the
209 /// memmem/krate/prebuilt/sliceslice-words/words benchmark.
210 #[cold]
211 #[inline(never)]
is_prefix(haystack: &[u8], needle: &[u8]) -> bool212 fn is_prefix(haystack: &[u8], needle: &[u8]) -> bool {
213     crate::memmem::util::is_prefix(haystack, needle)
214 }
215 
216 /// Returns true if the given needle is a suffix of the given haystack.
217 ///
218 /// See is_prefix for why this is forcefully not inlined.
219 #[cold]
220 #[inline(never)]
is_suffix(haystack: &[u8], needle: &[u8]) -> bool221 fn is_suffix(haystack: &[u8], needle: &[u8]) -> bool {
222     crate::memmem::util::is_suffix(haystack, needle)
223 }
224 
225 #[cfg(test)]
226 mod simpletests {
227     define_memmem_simple_tests!(super::find, super::rfind);
228 }
229 
230 #[cfg(all(test, feature = "std", not(miri)))]
231 mod proptests {
232     define_memmem_quickcheck_tests!(super::find, super::rfind);
233 }
234