1 //---------------------------------------------------------------------------------
2 //
3 //  Little Color Management System
4 //  Copyright (c) 1998-2017 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
12 //
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
15 //
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 //
24 //---------------------------------------------------------------------------------
25 //
26 
27 #include "lcms2_internal.h"
28 
29 
30 //----------------------------------------------------------------------------------
31 
32 // Optimization for 8 bits, Shaper-CLUT (3 inputs only)
33 typedef struct {
34 
35     cmsContext ContextID;
36 
37     const cmsInterpParams* p;   // Tetrahedrical interpolation parameters. This is a not-owned pointer.
38 
39     cmsUInt16Number rx[256], ry[256], rz[256];
40     cmsUInt32Number X0[256], Y0[256], Z0[256];  // Precomputed nodes and offsets for 8-bit input data
41 
42 
43 } Prelin8Data;
44 
45 
46 // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
47 typedef struct {
48 
49     cmsContext ContextID;
50 
51     // Number of channels
52     cmsUInt32Number nInputs;
53     cmsUInt32Number nOutputs;
54 
55     _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS];       // The maximum number of input channels is known in advance
56     cmsInterpParams*  ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
57 
58     _cmsInterpFn16 EvalCLUT;            // The evaluator for 3D grid
59     const cmsInterpParams* CLUTparams;  // (not-owned pointer)
60 
61 
62     _cmsInterpFn16* EvalCurveOut16;       // Points to an array of curve evaluators in 16 bits (not-owned pointer)
63     cmsInterpParams**  ParamsCurveOut16;  // Points to an array of references to interpolation params (not-owned pointer)
64 
65 
66 } Prelin16Data;
67 
68 
69 // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
70 
71 typedef cmsInt32Number cmsS1Fixed14Number;   // Note that this may hold more than 16 bits!
72 
73 #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
74 
75 typedef struct {
76 
77     cmsContext ContextID;
78 
79     cmsS1Fixed14Number Shaper1R[256];  // from 0..255 to 1.14  (0.0...1.0)
80     cmsS1Fixed14Number Shaper1G[256];
81     cmsS1Fixed14Number Shaper1B[256];
82 
83     cmsS1Fixed14Number Mat[3][3];     // n.14 to n.14 (needs a saturation after that)
84     cmsS1Fixed14Number Off[3];
85 
86     cmsUInt16Number Shaper2R[16385];    // 1.14 to 0..255
87     cmsUInt16Number Shaper2G[16385];
88     cmsUInt16Number Shaper2B[16385];
89 
90 } MatShaper8Data;
91 
92 // Curves, optimization is shared between 8 and 16 bits
93 typedef struct {
94     cmsUInt32Number nCurves;      // Number of curves
95     cmsUInt32Number nElements;    // Elements in curves
96     cmsUInt16Number** Curves;     // Points to a dynamically  allocated array
97 
98 } Curves16Data;
99 
100 
101 // Simple optimizations ----------------------------------------------------------------------------------------------------------
102 
103 
104 // Remove an element in linked chain
105 static
_RemoveElement(cmsContext ContextID,cmsStage ** head)106 void _RemoveElement(cmsContext ContextID, cmsStage** head)
107 {
108     cmsStage* mpe = *head;
109     cmsStage* next = mpe ->Next;
110     *head = next;
111     cmsStageFree(ContextID, mpe);
112 }
113 
114 // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
115 static
_Remove1Op(cmsContext ContextID,cmsPipeline * Lut,cmsStageSignature UnaryOp)116 cmsBool _Remove1Op(cmsContext ContextID, cmsPipeline* Lut, cmsStageSignature UnaryOp)
117 {
118     cmsStage** pt = &Lut ->Elements;
119     cmsBool AnyOpt = FALSE;
120 
121     while (*pt != NULL) {
122 
123         if ((*pt) ->Implements == UnaryOp) {
124             _RemoveElement(ContextID, pt);
125             AnyOpt = TRUE;
126         }
127         else
128             pt = &((*pt) -> Next);
129     }
130 
131     return AnyOpt;
132 }
133 
134 // Same, but only if two adjacent elements are found
135 static
_Remove2Op(cmsContext ContextID,cmsPipeline * Lut,cmsStageSignature Op1,cmsStageSignature Op2)136 cmsBool _Remove2Op(cmsContext ContextID, cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
137 {
138     cmsStage** pt1;
139     cmsStage** pt2;
140     cmsBool AnyOpt = FALSE;
141 
142     pt1 = &Lut ->Elements;
143     if (*pt1 == NULL) return AnyOpt;
144 
145     while (*pt1 != NULL) {
146 
147         pt2 = &((*pt1) -> Next);
148         if (*pt2 == NULL) return AnyOpt;
149 
150         if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
151             _RemoveElement(ContextID, pt2);
152             _RemoveElement(ContextID, pt1);
153             AnyOpt = TRUE;
154         }
155         else
156             pt1 = &((*pt1) -> Next);
157     }
158 
159     return AnyOpt;
160 }
161 
162 
163 static
CloseEnoughFloat(cmsFloat64Number a,cmsFloat64Number b)164 cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
165 {
166        return fabs(b - a) < 0.00001f;
167 }
168 
169 static
isFloatMatrixIdentity(cmsContext ContextID,const cmsMAT3 * a)170 cmsBool  isFloatMatrixIdentity(cmsContext ContextID, const cmsMAT3* a)
171 {
172        cmsMAT3 Identity;
173        int i, j;
174 
175        _cmsMAT3identity(ContextID, &Identity);
176 
177        for (i = 0; i < 3; i++)
178               for (j = 0; j < 3; j++)
179                      if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
180 
181        return TRUE;
182 }
183 // if two adjacent matrices are found, multiply them.
184 static
_MultiplyMatrix(cmsContext ContextID,cmsPipeline * Lut)185 cmsBool _MultiplyMatrix(cmsContext ContextID, cmsPipeline* Lut)
186 {
187        cmsStage** pt1;
188        cmsStage** pt2;
189        cmsStage*  chain;
190        cmsBool AnyOpt = FALSE;
191 
192        pt1 = &Lut->Elements;
193        if (*pt1 == NULL) return AnyOpt;
194 
195        while (*pt1 != NULL) {
196 
197               pt2 = &((*pt1)->Next);
198               if (*pt2 == NULL) return AnyOpt;
199 
200               if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
201 
202                      // Get both matrices
203                      _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(ContextID, *pt1);
204                      _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(ContextID, *pt2);
205                      cmsMAT3 res;
206 
207                      // Input offset and output offset should be zero to use this optimization
208                      if (m1->Offset != NULL || m2 ->Offset != NULL ||
209                             cmsStageInputChannels(ContextID, *pt1) != 3 || cmsStageOutputChannels(ContextID, *pt1) != 3 ||
210                             cmsStageInputChannels(ContextID, *pt2) != 3 || cmsStageOutputChannels(ContextID, *pt2) != 3)
211                             return FALSE;
212 
213                      // Multiply both matrices to get the result
214                      _cmsMAT3per(ContextID, &res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
215 
216                      // Get the next in chain after the matrices
217                      chain = (*pt2)->Next;
218 
219                      // Remove both matrices
220                      _RemoveElement(ContextID, pt2);
221                      _RemoveElement(ContextID, pt1);
222 
223                      // Now what if the result is a plain identity?
224                      if (!isFloatMatrixIdentity(ContextID, &res)) {
225 
226                             // We can not get rid of full matrix
227                             cmsStage* Multmat = cmsStageAllocMatrix(ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
228                             if (Multmat == NULL) return FALSE;  // Should never happen
229 
230                             // Recover the chain
231                             Multmat->Next = chain;
232                             *pt1 = Multmat;
233                      }
234 
235                      AnyOpt = TRUE;
236               }
237               else
238                      pt1 = &((*pt1)->Next);
239        }
240 
241        return AnyOpt;
242 }
243 
244 
245 // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
246 // by a v4 to v2 and vice-versa. The elements are then discarded.
247 static
PreOptimize(cmsContext ContextID,cmsPipeline * Lut)248 cmsBool PreOptimize(cmsContext ContextID, cmsPipeline* Lut)
249 {
250     cmsBool AnyOpt = FALSE, Opt;
251 
252     do {
253 
254         Opt = FALSE;
255 
256         // Remove all identities
257         Opt |= _Remove1Op(ContextID, Lut, cmsSigIdentityElemType);
258 
259         // Remove XYZ2Lab followed by Lab2XYZ
260         Opt |= _Remove2Op(ContextID, Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
261 
262         // Remove Lab2XYZ followed by XYZ2Lab
263         Opt |= _Remove2Op(ContextID, Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
264 
265         // Remove V4 to V2 followed by V2 to V4
266         Opt |= _Remove2Op(ContextID, Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
267 
268         // Remove V2 to V4 followed by V4 to V2
269         Opt |= _Remove2Op(ContextID, Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
270 
271         // Remove float pcs Lab conversions
272         Opt |= _Remove2Op(ContextID, Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
273 
274         // Remove float pcs Lab conversions
275         Opt |= _Remove2Op(ContextID, Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
276 
277         // Simplify matrix.
278         Opt |= _MultiplyMatrix(ContextID, Lut);
279 
280         if (Opt) AnyOpt = TRUE;
281 
282     } while (Opt);
283 
284     return AnyOpt;
285 }
286 
287 static
Eval16nop1D(cmsContext ContextID,register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const struct _cms_interp_struc * p)288 void Eval16nop1D(cmsContext ContextID, register const cmsUInt16Number Input[],
289                  register cmsUInt16Number Output[],
290                  register const struct _cms_interp_struc* p)
291 {
292     cmsUNUSED_PARAMETER(ContextID);
293     Output[0] = Input[0];
294 
295     cmsUNUSED_PARAMETER(p);
296 }
297 
298 static
PrelinEval16(cmsContext ContextID,register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const void * D)299 void PrelinEval16(cmsContext ContextID, register const cmsUInt16Number Input[],
300                   register cmsUInt16Number Output[],
301                   register const void* D)
302 {
303     Prelin16Data* p16 = (Prelin16Data*) D;
304     cmsUInt16Number  StageABC[MAX_INPUT_DIMENSIONS];
305     cmsUInt16Number  StageDEF[cmsMAXCHANNELS];
306     cmsUInt32Number i;
307 
308     for (i=0; i < p16 ->nInputs; i++) {
309 
310         p16 ->EvalCurveIn16[i](ContextID, &Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
311     }
312 
313     p16 ->EvalCLUT(ContextID, StageABC, StageDEF, p16 ->CLUTparams);
314 
315     for (i=0; i < p16 ->nOutputs; i++) {
316 
317         p16 ->EvalCurveOut16[i](ContextID, &StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
318     }
319 }
320 
321 
322 static
PrelinOpt16free(cmsContext ContextID,void * ptr)323 void PrelinOpt16free(cmsContext ContextID, void* ptr)
324 {
325     Prelin16Data* p16 = (Prelin16Data*) ptr;
326 
327     _cmsFree(ContextID, p16 ->EvalCurveOut16);
328     _cmsFree(ContextID, p16 ->ParamsCurveOut16);
329 
330     _cmsFree(ContextID, p16);
331 }
332 
333 static
Prelin16dup(cmsContext ContextID,const void * ptr)334 void* Prelin16dup(cmsContext ContextID, const void* ptr)
335 {
336     Prelin16Data* p16 = (Prelin16Data*) ptr;
337     Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
338 
339     if (Duped == NULL) return NULL;
340 
341     Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
342     Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
343 
344     return Duped;
345 }
346 
347 
348 static
PrelinOpt16alloc(cmsContext ContextID,const cmsInterpParams * ColorMap,cmsUInt32Number nInputs,cmsToneCurve ** In,cmsUInt32Number nOutputs,cmsToneCurve ** Out)349 Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
350                                const cmsInterpParams* ColorMap,
351                                cmsUInt32Number nInputs, cmsToneCurve** In,
352                                cmsUInt32Number nOutputs, cmsToneCurve** Out )
353 {
354     cmsUInt32Number i;
355     Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
356     if (p16 == NULL) return NULL;
357 
358     p16 ->nInputs = nInputs;
359     p16 ->nOutputs = nOutputs;
360 
361 
362     for (i=0; i < nInputs; i++) {
363 
364         if (In == NULL) {
365             p16 -> ParamsCurveIn16[i] = NULL;
366             p16 -> EvalCurveIn16[i] = Eval16nop1D;
367 
368         }
369         else {
370             p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
371             p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
372         }
373     }
374 
375     p16 ->CLUTparams = ColorMap;
376     p16 ->EvalCLUT   = ColorMap ->Interpolation.Lerp16;
377 
378 
379     p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
380     p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
381 
382     for (i=0; i < nOutputs; i++) {
383 
384         if (Out == NULL) {
385             p16 ->ParamsCurveOut16[i] = NULL;
386             p16 -> EvalCurveOut16[i] = Eval16nop1D;
387         }
388         else {
389 
390             p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
391             p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
392         }
393     }
394 
395     return p16;
396 }
397 
398 
399 
400 // Resampling ---------------------------------------------------------------------------------
401 
402 #define PRELINEARIZATION_POINTS 4096
403 
404 // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
405 // almost any transform. We use floating point precision and then convert from floating point to 16 bits.
406 static
XFormSampler16(cmsContext ContextID,register const cmsUInt16Number In[],register cmsUInt16Number Out[],register void * Cargo)407 cmsInt32Number XFormSampler16(cmsContext ContextID, register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void* Cargo)
408 {
409     cmsPipeline* Lut = (cmsPipeline*) Cargo;
410     cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
411     cmsUInt32Number i;
412 
413     _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
414     _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
415 
416     // From 16 bit to floating point
417     for (i=0; i < Lut ->InputChannels; i++)
418         InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
419 
420     // Evaluate in floating point
421     cmsPipelineEvalFloat(ContextID, InFloat, OutFloat, Lut);
422 
423     // Back to 16 bits representation
424     for (i=0; i < Lut ->OutputChannels; i++)
425         Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
426 
427     // Always succeed
428     return TRUE;
429 }
430 
431 // Try to see if the curves of a given MPE are linear
432 static
AllCurvesAreLinear(cmsContext ContextID,cmsStage * mpe)433 cmsBool AllCurvesAreLinear(cmsContext ContextID, cmsStage* mpe)
434 {
435     cmsToneCurve** Curves;
436     cmsUInt32Number i, n;
437 
438     Curves = _cmsStageGetPtrToCurveSet(mpe);
439     if (Curves == NULL) return FALSE;
440 
441     n = cmsStageOutputChannels(ContextID, mpe);
442 
443     for (i=0; i < n; i++) {
444         if (!cmsIsToneCurveLinear(ContextID, Curves[i])) return FALSE;
445     }
446 
447     return TRUE;
448 }
449 
450 // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
451 // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
452 static
PatchLUT(cmsContext ContextID,cmsStage * CLUT,cmsUInt16Number At[],cmsUInt16Number Value[],cmsUInt32Number nChannelsOut,cmsUInt32Number nChannelsIn)453 cmsBool  PatchLUT(cmsContext ContextID, cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
454                   cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
455 {
456     _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
457     cmsInterpParams* p16  = Grid ->Params;
458     cmsFloat64Number px, py, pz, pw;
459     int        x0, y0, z0, w0;
460     int        i, index;
461 
462     if (CLUT -> Type != cmsSigCLutElemType) {
463         cmsSignalError(ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
464         return FALSE;
465     }
466 
467     if (nChannelsIn == 4) {
468 
469         px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
470         py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
471         pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
472         pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
473 
474         x0 = (int) floor(px);
475         y0 = (int) floor(py);
476         z0 = (int) floor(pz);
477         w0 = (int) floor(pw);
478 
479         if (((px - x0) != 0) ||
480             ((py - y0) != 0) ||
481             ((pz - z0) != 0) ||
482             ((pw - w0) != 0)) return FALSE; // Not on exact node
483 
484         index = (int) p16 -> opta[3] * x0 +
485                 (int) p16 -> opta[2] * y0 +
486                 (int) p16 -> opta[1] * z0 +
487                 (int) p16 -> opta[0] * w0;
488     }
489     else
490         if (nChannelsIn == 3) {
491 
492             px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
493             py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
494             pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
495 
496             x0 = (int) floor(px);
497             y0 = (int) floor(py);
498             z0 = (int) floor(pz);
499 
500             if (((px - x0) != 0) ||
501                 ((py - y0) != 0) ||
502                 ((pz - z0) != 0)) return FALSE;  // Not on exact node
503 
504             index = (int) p16 -> opta[2] * x0 +
505                     (int) p16 -> opta[1] * y0 +
506                     (int) p16 -> opta[0] * z0;
507         }
508         else
509             if (nChannelsIn == 1) {
510 
511                 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
512 
513                 x0 = (int) floor(px);
514 
515                 if (((px - x0) != 0)) return FALSE; // Not on exact node
516 
517                 index = (int) p16 -> opta[0] * x0;
518             }
519             else {
520                 cmsSignalError(ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
521                 return FALSE;
522             }
523 
524     for (i = 0; i < (int) nChannelsOut; i++)
525         Grid->Tab.T[index + i] = Value[i];
526 
527     return TRUE;
528 }
529 
530 // Auxiliary, to see if two values are equal or very different
531 static
WhitesAreEqual(cmsUInt32Number n,cmsUInt16Number White1[],cmsUInt16Number White2[])532 cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
533 {
534     cmsUInt32Number i;
535 
536     for (i=0; i < n; i++) {
537 
538         if (abs(White1[i] - White2[i]) > 0xf000) return TRUE;  // Values are so extremely different that the fixup should be avoided
539         if (White1[i] != White2[i]) return FALSE;
540     }
541     return TRUE;
542 }
543 
544 
545 // Locate the node for the white point and fix it to pure white in order to avoid scum dot.
546 static
FixWhiteMisalignment(cmsContext ContextID,cmsPipeline * Lut,cmsColorSpaceSignature EntryColorSpace,cmsColorSpaceSignature ExitColorSpace)547 cmsBool FixWhiteMisalignment(cmsContext ContextID, cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
548 {
549     cmsUInt16Number *WhitePointIn, *WhitePointOut;
550     cmsUInt16Number  WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
551     cmsUInt32Number i, nOuts, nIns;
552     cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
553 
554     if (!_cmsEndPointsBySpace(EntryColorSpace,
555         &WhitePointIn, NULL, &nIns)) return FALSE;
556 
557     if (!_cmsEndPointsBySpace(ExitColorSpace,
558         &WhitePointOut, NULL, &nOuts)) return FALSE;
559 
560     // It needs to be fixed?
561     if (Lut ->InputChannels != nIns) return FALSE;
562     if (Lut ->OutputChannels != nOuts) return FALSE;
563 
564     cmsPipelineEval16(ContextID, WhitePointIn, ObtainedOut, Lut);
565 
566     if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
567 
568     // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
569     if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
570         if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
571             if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
572                 if (!cmsPipelineCheckAndRetreiveStages(ContextID, Lut, 1, cmsSigCLutElemType, &CLUT))
573                     return FALSE;
574 
575     // We need to interpolate white points of both, pre and post curves
576     if (PreLin) {
577 
578         cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
579 
580         for (i=0; i < nIns; i++) {
581             WhiteIn[i] = cmsEvalToneCurve16(ContextID, Curves[i], WhitePointIn[i]);
582         }
583     }
584     else {
585         for (i=0; i < nIns; i++)
586             WhiteIn[i] = WhitePointIn[i];
587     }
588 
589     // If any post-linearization, we need to find how is represented white before the curve, do
590     // a reverse interpolation in this case.
591     if (PostLin) {
592 
593         cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
594 
595         for (i=0; i < nOuts; i++) {
596 
597             cmsToneCurve* InversePostLin = cmsReverseToneCurve(ContextID, Curves[i]);
598             if (InversePostLin == NULL) {
599                 WhiteOut[i] = WhitePointOut[i];
600 
601             } else {
602 
603                 WhiteOut[i] = cmsEvalToneCurve16(ContextID, InversePostLin, WhitePointOut[i]);
604                 cmsFreeToneCurve(ContextID, InversePostLin);
605             }
606         }
607     }
608     else {
609         for (i=0; i < nOuts; i++)
610             WhiteOut[i] = WhitePointOut[i];
611     }
612 
613     // Ok, proceed with patching. May fail and we don't care if it fails
614     PatchLUT(ContextID, CLUT, WhiteIn, WhiteOut, nOuts, nIns);
615 
616     return TRUE;
617 }
618 
619 // -----------------------------------------------------------------------------------------------------------------------------------------------
620 // This function creates simple LUT from complex ones. The generated LUT has an optional set of
621 // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
622 // These curves have to exist in the original LUT in order to be used in the simplified output.
623 // Caller may also use the flags to allow this feature.
624 // LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
625 // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
626 // -----------------------------------------------------------------------------------------------------------------------------------------------
627 
628 static
OptimizeByResampling(cmsContext ContextID,cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)629 cmsBool OptimizeByResampling(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
630 {
631     cmsPipeline* Src = NULL;
632     cmsPipeline* Dest = NULL;
633     cmsStage* mpe;
634     cmsStage* CLUT;
635     cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
636     cmsUInt32Number nGridPoints;
637     cmsColorSpaceSignature ColorSpace, OutputColorSpace;
638     cmsStage *NewPreLin = NULL;
639     cmsStage *NewPostLin = NULL;
640     _cmsStageCLutData* DataCLUT;
641     cmsToneCurve** DataSetIn;
642     cmsToneCurve** DataSetOut;
643     Prelin16Data* p16;
644 
645     // This is a lossy optimization! does not apply in floating-point cases
646     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
647 
648     ColorSpace       = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*InputFormat));
649     OutputColorSpace = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*OutputFormat));
650 
651     // Color space must be specified
652     if (ColorSpace == (cmsColorSpaceSignature)0 ||
653         OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
654 
655     nGridPoints      = _cmsReasonableGridpointsByColorspace(ContextID, ColorSpace, *dwFlags);
656 
657     // For empty LUTs, 2 points are enough
658     if (cmsPipelineStageCount(ContextID, *Lut) == 0)
659         nGridPoints = 2;
660 
661     Src = *Lut;
662 
663     // Named color pipelines cannot be optimized either
664     for (mpe = cmsPipelineGetPtrToFirstStage(ContextID, Src);
665         mpe != NULL;
666         mpe = cmsStageNext(ContextID, mpe)) {
667             if (cmsStageType(ContextID, mpe) == cmsSigNamedColorElemType) return FALSE;
668     }
669 
670     // Allocate an empty LUT
671     Dest =  cmsPipelineAlloc(ContextID, Src ->InputChannels, Src ->OutputChannels);
672     if (!Dest) return FALSE;
673 
674     // Prelinearization tables are kept unless indicated by flags
675     if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
676 
677         // Get a pointer to the prelinearization element
678         cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(ContextID, Src);
679 
680         // Check if suitable
681         if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
682 
683             // Maybe this is a linear tram, so we can avoid the whole stuff
684             if (!AllCurvesAreLinear(ContextID, PreLin)) {
685 
686                 // All seems ok, proceed.
687                 NewPreLin = cmsStageDup(ContextID, PreLin);
688                 if(!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, NewPreLin))
689                     goto Error;
690 
691                 // Remove prelinearization. Since we have duplicated the curve
692                 // in destination LUT, the sampling should be applied after this stage.
693                 cmsPipelineUnlinkStage(ContextID, Src, cmsAT_BEGIN, &KeepPreLin);
694             }
695         }
696     }
697 
698     ContextID->dwFlags = *dwFlags;
699     // Allocate the CLUT
700     CLUT = cmsStageAllocCLut16bit(ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
701     ContextID->dwFlags = 0;
702     if (CLUT == NULL) goto Error;
703 
704     // Add the CLUT to the destination LUT
705     if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, CLUT)) {
706         goto Error;
707     }
708 
709     // Postlinearization tables are kept unless indicated by flags
710     if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
711 
712         // Get a pointer to the postlinearization if present
713         cmsStage* PostLin = cmsPipelineGetPtrToLastStage(ContextID, Src);
714 
715         // Check if suitable
716         if (PostLin && cmsStageType(ContextID, PostLin) == cmsSigCurveSetElemType) {
717 
718             // Maybe this is a linear tram, so we can avoid the whole stuff
719             if (!AllCurvesAreLinear(ContextID, PostLin)) {
720 
721                 // All seems ok, proceed.
722                 NewPostLin = cmsStageDup(ContextID, PostLin);
723                 if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, NewPostLin))
724                     goto Error;
725 
726                 // In destination LUT, the sampling should be applied after this stage.
727                 cmsPipelineUnlinkStage(ContextID, Src, cmsAT_END, &KeepPostLin);
728             }
729         }
730     }
731 
732     // Now its time to do the sampling. We have to ignore pre/post linearization
733     // The source LUT without pre/post curves is passed as parameter.
734     if (!cmsStageSampleCLut16bit(ContextID, CLUT, XFormSampler16, (void*) Src, 0)) {
735 Error:
736         // Ops, something went wrong, Restore stages
737         if (KeepPreLin != NULL) {
738             if (!cmsPipelineInsertStage(ContextID, Src, cmsAT_BEGIN, KeepPreLin)) {
739                 _cmsAssert(0); // This never happens
740             }
741         }
742         if (KeepPostLin != NULL) {
743             if (!cmsPipelineInsertStage(ContextID, Src, cmsAT_END,   KeepPostLin)) {
744                 _cmsAssert(0); // This never happens
745             }
746         }
747         cmsPipelineFree(ContextID, Dest);
748         return FALSE;
749     }
750 
751     // Done.
752 
753     if (KeepPreLin != NULL) cmsStageFree(ContextID, KeepPreLin);
754     if (KeepPostLin != NULL) cmsStageFree(ContextID, KeepPostLin);
755     cmsPipelineFree(ContextID, Src);
756 
757     DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
758 
759     if (NewPreLin == NULL) DataSetIn = NULL;
760     else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
761 
762     if (NewPostLin == NULL) DataSetOut = NULL;
763     else  DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
764 
765 
766     if (DataSetIn == NULL && DataSetOut == NULL) {
767 
768         _cmsPipelineSetOptimizationParameters(ContextID, Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
769     }
770     else {
771 
772         p16 = PrelinOpt16alloc(ContextID,
773             DataCLUT ->Params,
774             Dest ->InputChannels,
775             DataSetIn,
776             Dest ->OutputChannels,
777             DataSetOut);
778 
779         _cmsPipelineSetOptimizationParameters(ContextID, Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
780     }
781 
782 
783     // Don't fix white on absolute colorimetric
784     if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
785         *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
786 
787     if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
788 
789         FixWhiteMisalignment(ContextID, Dest, ColorSpace, OutputColorSpace);
790     }
791 
792     *Lut = Dest;
793     return TRUE;
794 
795     cmsUNUSED_PARAMETER(Intent);
796 }
797 
798 
799 // -----------------------------------------------------------------------------------------------------------------------------------------------
800 // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
801 // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
802 // for RGB transforms. See the paper for more details
803 // -----------------------------------------------------------------------------------------------------------------------------------------------
804 
805 
806 // Normalize endpoints by slope limiting max and min. This assures endpoints as well.
807 // Descending curves are handled as well.
808 static
SlopeLimiting(cmsContext ContextID,cmsToneCurve * g)809 void SlopeLimiting(cmsContext ContextID, cmsToneCurve* g)
810 {
811     int BeginVal, EndVal;
812     int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5);   // Cutoff at 2%
813     int AtEnd   = (int) g ->nEntries - AtBegin - 1;                                  // And 98%
814     cmsFloat64Number Val, Slope, beta;
815     int i;
816 
817     if (cmsIsToneCurveDescending(ContextID, g)) {
818         BeginVal = 0xffff; EndVal = 0;
819     }
820     else {
821         BeginVal = 0; EndVal = 0xffff;
822     }
823 
824     // Compute slope and offset for begin of curve
825     Val   = g ->Table16[AtBegin];
826     Slope = (Val - BeginVal) / AtBegin;
827     beta  = Val - Slope * AtBegin;
828 
829     for (i=0; i < AtBegin; i++)
830         g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
831 
832     // Compute slope and offset for the end
833     Val   = g ->Table16[AtEnd];
834     Slope = (EndVal - Val) / AtBegin;   // AtBegin holds the X interval, which is same in both cases
835     beta  = Val - Slope * AtEnd;
836 
837     for (i = AtEnd; i < (int) g ->nEntries; i++)
838         g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
839 }
840 
841 
842 // Precomputes tables for 8-bit on input devicelink.
843 static
PrelinOpt8alloc(cmsContext ContextID,const cmsInterpParams * p,cmsToneCurve * G[3])844 Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
845 {
846     int i;
847     cmsUInt16Number Input[3];
848     cmsS15Fixed16Number v1, v2, v3;
849     Prelin8Data* p8;
850 
851     p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
852     if (p8 == NULL) return NULL;
853 
854     // Since this only works for 8 bit input, values comes always as x * 257,
855     // we can safely take msb byte (x << 8 + x)
856 
857     for (i=0; i < 256; i++) {
858 
859         if (G != NULL) {
860 
861             // Get 16-bit representation
862             Input[0] = cmsEvalToneCurve16(ContextID, G[0], FROM_8_TO_16(i));
863             Input[1] = cmsEvalToneCurve16(ContextID, G[1], FROM_8_TO_16(i));
864             Input[2] = cmsEvalToneCurve16(ContextID, G[2], FROM_8_TO_16(i));
865         }
866         else {
867             Input[0] = FROM_8_TO_16(i);
868             Input[1] = FROM_8_TO_16(i);
869             Input[2] = FROM_8_TO_16(i);
870         }
871 
872 
873         // Move to 0..1.0 in fixed domain
874         v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
875         v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
876         v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
877 
878         // Store the precalculated table of nodes
879         p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
880         p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
881         p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
882 
883         // Store the precalculated table of offsets
884         p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
885         p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
886         p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
887     }
888 
889     p8 ->ContextID = ContextID;
890     p8 ->p = p;
891 
892     return p8;
893 }
894 
895 static
Prelin8free(cmsContext ContextID,void * ptr)896 void Prelin8free(cmsContext ContextID, void* ptr)
897 {
898     _cmsFree(ContextID, ptr);
899 }
900 
901 static
Prelin8dup(cmsContext ContextID,const void * ptr)902 void* Prelin8dup(cmsContext ContextID, const void* ptr)
903 {
904     return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
905 }
906 
907 
908 
909 // A optimized interpolation for 8-bit input.
910 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
911 static CMS_NO_SANITIZE
PrelinEval8(cmsContext ContextID,register const cmsUInt16Number Input[],register cmsUInt16Number Output[],register const void * D)912 void PrelinEval8(cmsContext ContextID, register const cmsUInt16Number Input[],
913                   register cmsUInt16Number Output[],
914                   register const void* D)
915 {
916     cmsUInt8Number         r, g, b;
917     cmsS15Fixed16Number    rx, ry, rz;
918     cmsS15Fixed16Number    c0, c1, c2, c3, Rest;
919     int                    OutChan;
920     register cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
921     Prelin8Data* p8 = (Prelin8Data*) D;
922     register const cmsInterpParams* p = p8 ->p;
923     int                    TotalOut = (int) p -> nOutputs;
924     const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
925     cmsUNUSED_PARAMETER(ContextID);
926 
927     r = (cmsUInt8Number) (Input[0] >> 8);
928     g = (cmsUInt8Number) (Input[1] >> 8);
929     b = (cmsUInt8Number) (Input[2] >> 8);
930 
931     X0 = X1 = (cmsS15Fixed16Number) p8->X0[r];
932     Y0 = Y1 = (cmsS15Fixed16Number) p8->Y0[g];
933     Z0 = Z1 = (cmsS15Fixed16Number) p8->Z0[b];
934 
935     rx = p8 ->rx[r];
936     ry = p8 ->ry[g];
937     rz = p8 ->rz[b];
938 
939     X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 :  p ->opta[2]);
940     Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 :  p ->opta[1]);
941     Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 :  p ->opta[0]);
942 
943 
944     // These are the 6 Tetrahedral
945     for (OutChan=0; OutChan < TotalOut; OutChan++) {
946 
947         c0 = DENS(X0, Y0, Z0);
948 
949         if (rx >= ry && ry >= rz)
950         {
951             c1 = DENS(X1, Y0, Z0) - c0;
952             c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
953             c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
954         }
955         else
956             if (rx >= rz && rz >= ry)
957             {
958                 c1 = DENS(X1, Y0, Z0) - c0;
959                 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
960                 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
961             }
962             else
963                 if (rz >= rx && rx >= ry)
964                 {
965                     c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
966                     c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
967                     c3 = DENS(X0, Y0, Z1) - c0;
968                 }
969                 else
970                     if (ry >= rx && rx >= rz)
971                     {
972                         c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
973                         c2 = DENS(X0, Y1, Z0) - c0;
974                         c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
975                     }
976                     else
977                         if (ry >= rz && rz >= rx)
978                         {
979                             c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
980                             c2 = DENS(X0, Y1, Z0) - c0;
981                             c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
982                         }
983                         else
984                             if (rz >= ry && ry >= rx)
985                             {
986                                 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
987                                 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
988                                 c3 = DENS(X0, Y0, Z1) - c0;
989                             }
990                             else  {
991                                 c1 = c2 = c3 = 0;
992                             }
993 
994         Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
995         Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
996 
997     }
998 }
999 
1000 #undef DENS
1001 
1002 
1003 // Curves that contain wide empty areas are not optimizeable
1004 static
IsDegenerated(const cmsToneCurve * g)1005 cmsBool IsDegenerated(const cmsToneCurve* g)
1006 {
1007     cmsUInt32Number i, Zeros = 0, Poles = 0;
1008     cmsUInt32Number nEntries = g ->nEntries;
1009 
1010     for (i=0; i < nEntries; i++) {
1011 
1012         if (g ->Table16[i] == 0x0000) Zeros++;
1013         if (g ->Table16[i] == 0xffff) Poles++;
1014     }
1015 
1016     if (Zeros == 1 && Poles == 1) return FALSE;  // For linear tables
1017     if (Zeros > (nEntries / 20)) return TRUE;  // Degenerated, many zeros
1018     if (Poles > (nEntries / 20)) return TRUE;  // Degenerated, many poles
1019 
1020     return FALSE;
1021 }
1022 
1023 // --------------------------------------------------------------------------------------------------------------
1024 // We need xput over here
1025 
1026 static
OptimizeByComputingLinearization(cmsContext ContextID,cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1027 cmsBool OptimizeByComputingLinearization(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1028 {
1029     cmsPipeline* OriginalLut;
1030     cmsUInt32Number nGridPoints;
1031     cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1032     cmsUInt32Number t, i;
1033     cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1034     cmsBool lIsSuitable, lIsLinear;
1035     cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1036     cmsStage* OptimizedCLUTmpe;
1037     cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1038     cmsStage* OptimizedPrelinMpe;
1039     cmsStage* mpe;
1040     cmsToneCurve** OptimizedPrelinCurves;
1041     _cmsStageCLutData* OptimizedPrelinCLUT;
1042 
1043 
1044     // This is a lossy optimization! does not apply in floating-point cases
1045     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1046 
1047     // Only on chunky RGB
1048     if (T_COLORSPACE(*InputFormat)  != PT_RGB) return FALSE;
1049     if (T_PLANAR(*InputFormat)) return FALSE;
1050 
1051     if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1052     if (T_PLANAR(*OutputFormat)) return FALSE;
1053 
1054     // On 16 bits, user has to specify the feature
1055     if (!_cmsFormatterIs8bit(*InputFormat)) {
1056         if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1057     }
1058 
1059     OriginalLut = *Lut;
1060 
1061    // Named color pipelines cannot be optimized either
1062    for (mpe = cmsPipelineGetPtrToFirstStage(ContextID, OriginalLut);
1063          mpe != NULL;
1064          mpe = cmsStageNext(ContextID, mpe)) {
1065             if (cmsStageType(ContextID, mpe) == cmsSigNamedColorElemType) return FALSE;
1066     }
1067 
1068     ColorSpace       = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*InputFormat));
1069     OutputColorSpace = _cmsICCcolorSpace(ContextID, (int) T_COLORSPACE(*OutputFormat));
1070 
1071     // Color space must be specified
1072     if (ColorSpace == (cmsColorSpaceSignature)0 ||
1073         OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
1074 
1075     nGridPoints      = _cmsReasonableGridpointsByColorspace(ContextID, ColorSpace, *dwFlags);
1076 
1077     // Empty gamma containers
1078     memset(Trans, 0, sizeof(Trans));
1079     memset(TransReverse, 0, sizeof(TransReverse));
1080 
1081     // If the last stage of the original lut are curves, and those curves are
1082     // degenerated, it is likely the transform is squeezing and clipping
1083     // the output from previous CLUT. We cannot optimize this case
1084     {
1085         cmsStage* last = cmsPipelineGetPtrToLastStage(ContextID, OriginalLut);
1086 
1087         if (cmsStageType(ContextID, last) == cmsSigCurveSetElemType) {
1088 
1089             _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(ContextID, last);
1090             for (i = 0; i < Data->nCurves; i++) {
1091                 if (IsDegenerated(Data->TheCurves[i]))
1092                     goto Error;
1093             }
1094         }
1095     }
1096 
1097     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1098         Trans[t] = cmsBuildTabulatedToneCurve16(ContextID, PRELINEARIZATION_POINTS, NULL);
1099         if (Trans[t] == NULL) goto Error;
1100     }
1101 
1102     // Populate the curves
1103     for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1104 
1105         v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1106 
1107         // Feed input with a gray ramp
1108         for (t=0; t < OriginalLut ->InputChannels; t++)
1109             In[t] = v;
1110 
1111         // Evaluate the gray value
1112         cmsPipelineEvalFloat(ContextID, In, Out, OriginalLut);
1113 
1114         // Store result in curve
1115         for (t=0; t < OriginalLut ->InputChannels; t++)
1116             Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1117     }
1118 
1119     // Slope-limit the obtained curves
1120     for (t = 0; t < OriginalLut ->InputChannels; t++)
1121         SlopeLimiting(ContextID, Trans[t]);
1122 
1123     // Check for validity
1124     lIsSuitable = TRUE;
1125     lIsLinear   = TRUE;
1126     for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1127 
1128         // Exclude if already linear
1129         if (!cmsIsToneCurveLinear(ContextID, Trans[t]))
1130             lIsLinear = FALSE;
1131 
1132         // Exclude if non-monotonic
1133         if (!cmsIsToneCurveMonotonic(ContextID, Trans[t]))
1134             lIsSuitable = FALSE;
1135 
1136         if (IsDegenerated(Trans[t]))
1137             lIsSuitable = FALSE;
1138     }
1139 
1140     // If it is not suitable, just quit
1141     if (!lIsSuitable) goto Error;
1142 
1143     // Invert curves if possible
1144     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1145         TransReverse[t] = cmsReverseToneCurveEx(ContextID, PRELINEARIZATION_POINTS, Trans[t]);
1146         if (TransReverse[t] == NULL) goto Error;
1147     }
1148 
1149     // Now inset the reversed curves at the begin of transform
1150     LutPlusCurves = cmsPipelineDup(ContextID, OriginalLut);
1151     if (LutPlusCurves == NULL) goto Error;
1152 
1153     if (!cmsPipelineInsertStage(ContextID, LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(ContextID, OriginalLut ->InputChannels, TransReverse)))
1154         goto Error;
1155 
1156     // Create the result LUT
1157     OptimizedLUT = cmsPipelineAlloc(ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1158     if (OptimizedLUT == NULL) goto Error;
1159 
1160     OptimizedPrelinMpe = cmsStageAllocToneCurves(ContextID, OriginalLut ->InputChannels, Trans);
1161 
1162     // Create and insert the curves at the beginning
1163     if (!cmsPipelineInsertStage(ContextID, OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1164         goto Error;
1165 
1166     // Allocate the CLUT for result
1167     OptimizedCLUTmpe = cmsStageAllocCLut16bit(ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1168 
1169     // Add the CLUT to the destination LUT
1170     if (!cmsPipelineInsertStage(ContextID, OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1171         goto Error;
1172 
1173     // Resample the LUT
1174     if (!cmsStageSampleCLut16bit(ContextID, OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1175 
1176     // Free resources
1177     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1178 
1179         if (Trans[t]) cmsFreeToneCurve(ContextID, Trans[t]);
1180         if (TransReverse[t]) cmsFreeToneCurve(ContextID, TransReverse[t]);
1181     }
1182 
1183     cmsPipelineFree(ContextID, LutPlusCurves);
1184 
1185 
1186     OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1187     OptimizedPrelinCLUT   = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1188 
1189     // Set the evaluator if 8-bit
1190     if (_cmsFormatterIs8bit(*InputFormat)) {
1191 
1192         Prelin8Data* p8 = PrelinOpt8alloc(ContextID,
1193                                                 OptimizedPrelinCLUT ->Params,
1194                                                 OptimizedPrelinCurves);
1195         if (p8 == NULL) return FALSE;
1196 
1197         _cmsPipelineSetOptimizationParameters(ContextID, OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1198 
1199     }
1200     else
1201     {
1202         Prelin16Data* p16 = PrelinOpt16alloc(ContextID,
1203             OptimizedPrelinCLUT ->Params,
1204             3, OptimizedPrelinCurves, 3, NULL);
1205         if (p16 == NULL) return FALSE;
1206 
1207         _cmsPipelineSetOptimizationParameters(ContextID, OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1208 
1209     }
1210 
1211     // Don't fix white on absolute colorimetric
1212     if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1213         *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1214 
1215     if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1216 
1217         if (!FixWhiteMisalignment(ContextID, OptimizedLUT, ColorSpace, OutputColorSpace)) {
1218 
1219             return FALSE;
1220         }
1221     }
1222 
1223     // And return the obtained LUT
1224 
1225     cmsPipelineFree(ContextID, OriginalLut);
1226     *Lut = OptimizedLUT;
1227     return TRUE;
1228 
1229 Error:
1230 
1231     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1232 
1233         if (Trans[t]) cmsFreeToneCurve(ContextID, Trans[t]);
1234         if (TransReverse[t]) cmsFreeToneCurve(ContextID, TransReverse[t]);
1235     }
1236 
1237     if (LutPlusCurves != NULL) cmsPipelineFree(ContextID, LutPlusCurves);
1238     if (OptimizedLUT != NULL) cmsPipelineFree(ContextID, OptimizedLUT);
1239 
1240     return FALSE;
1241 
1242     cmsUNUSED_PARAMETER(Intent);
1243     cmsUNUSED_PARAMETER(lIsLinear);
1244 }
1245 
1246 
1247 // Curves optimizer ------------------------------------------------------------------------------------------------------------------
1248 
1249 static
CurvesFree(cmsContext ContextID,void * ptr)1250 void CurvesFree(cmsContext ContextID, void* ptr)
1251 {
1252      Curves16Data* Data = (Curves16Data*) ptr;
1253      cmsUInt32Number i;
1254 
1255      for (i=0; i < Data -> nCurves; i++) {
1256 
1257          _cmsFree(ContextID, Data ->Curves[i]);
1258      }
1259 
1260      _cmsFree(ContextID, Data ->Curves);
1261      _cmsFree(ContextID, ptr);
1262 }
1263 
1264 static
CurvesDup(cmsContext ContextID,const void * ptr)1265 void* CurvesDup(cmsContext ContextID, const void* ptr)
1266 {
1267     Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1268     cmsUInt32Number i;
1269 
1270     if (Data == NULL) return NULL;
1271 
1272     Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1273 
1274     for (i=0; i < Data -> nCurves; i++) {
1275         Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1276     }
1277 
1278     return (void*) Data;
1279 }
1280 
1281 // Precomputes tables for 8-bit on input devicelink.
1282 static
CurvesAlloc(cmsContext ContextID,cmsUInt32Number nCurves,cmsUInt32Number nElements,cmsToneCurve ** G)1283 Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
1284 {
1285     cmsUInt32Number i, j;
1286     Curves16Data* c16;
1287 
1288     c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1289     if (c16 == NULL) return NULL;
1290 
1291     c16 ->nCurves = nCurves;
1292     c16 ->nElements = nElements;
1293 
1294     c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1295     if (c16->Curves == NULL) {
1296         _cmsFree(ContextID, c16);
1297         return NULL;
1298     }
1299 
1300     for (i=0; i < nCurves; i++) {
1301 
1302         c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1303 
1304         if (c16->Curves[i] == NULL) {
1305 
1306             for (j=0; j < i; j++) {
1307                 _cmsFree(ContextID, c16->Curves[j]);
1308             }
1309             _cmsFree(ContextID, c16->Curves);
1310             _cmsFree(ContextID, c16);
1311             return NULL;
1312         }
1313 
1314         if (nElements == 256U) {
1315 
1316             for (j=0; j < nElements; j++) {
1317 
1318                 c16 ->Curves[i][j] = cmsEvalToneCurve16(ContextID, G[i], FROM_8_TO_16(j));
1319             }
1320         }
1321         else {
1322 
1323             for (j=0; j < nElements; j++) {
1324                 c16 ->Curves[i][j] = cmsEvalToneCurve16(ContextID, G[i], (cmsUInt16Number) j);
1325             }
1326         }
1327     }
1328 
1329     return c16;
1330 }
1331 
1332 static
FastEvaluateCurves8(cmsContext ContextID,register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1333 void FastEvaluateCurves8(cmsContext ContextID, register const cmsUInt16Number In[],
1334                           register cmsUInt16Number Out[],
1335                           register const void* D)
1336 {
1337     Curves16Data* Data = (Curves16Data*) D;
1338     int x;
1339     cmsUInt32Number i;
1340     cmsUNUSED_PARAMETER(ContextID);
1341 
1342     for (i=0; i < Data ->nCurves; i++) {
1343 
1344          x = (In[i] >> 8);
1345          Out[i] = Data -> Curves[i][x];
1346     }
1347 }
1348 
1349 
1350 static
FastEvaluateCurves16(cmsContext ContextID,register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1351 void FastEvaluateCurves16(cmsContext ContextID, register const cmsUInt16Number In[],
1352                           register cmsUInt16Number Out[],
1353                           register const void* D)
1354 {
1355     Curves16Data* Data = (Curves16Data*) D;
1356     cmsUInt32Number i;
1357     cmsUNUSED_PARAMETER(ContextID);
1358 
1359     for (i=0; i < Data ->nCurves; i++) {
1360          Out[i] = Data -> Curves[i][In[i]];
1361     }
1362 }
1363 
1364 
1365 static
FastIdentity16(cmsContext ContextID,register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1366 void FastIdentity16(cmsContext ContextID, register const cmsUInt16Number In[],
1367                     register cmsUInt16Number Out[],
1368                     register const void* D)
1369 {
1370     cmsPipeline* Lut = (cmsPipeline*) D;
1371     cmsUInt32Number i;
1372     cmsUNUSED_PARAMETER(ContextID);
1373 
1374     for (i=0; i < Lut ->InputChannels; i++) {
1375          Out[i] = In[i];
1376     }
1377 }
1378 
1379 
1380 // If the target LUT holds only curves, the optimization procedure is to join all those
1381 // curves together. That only works on curves and does not work on matrices.
1382 static
OptimizeByJoiningCurves(cmsContext ContextID,cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1383 cmsBool OptimizeByJoiningCurves(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1384 {
1385     cmsToneCurve** GammaTables = NULL;
1386     cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1387     cmsUInt32Number i, j;
1388     cmsPipeline* Src = *Lut;
1389     cmsPipeline* Dest = NULL;
1390     cmsStage* mpe;
1391     cmsStage* ObtainedCurves = NULL;
1392 
1393 
1394     // This is a lossy optimization! does not apply in floating-point cases
1395     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1396 
1397     //  Only curves in this LUT?
1398     for (mpe = cmsPipelineGetPtrToFirstStage(ContextID, Src);
1399          mpe != NULL;
1400          mpe = cmsStageNext(ContextID, mpe)) {
1401             if (cmsStageType(ContextID, mpe) != cmsSigCurveSetElemType) return FALSE;
1402     }
1403 
1404     // Allocate an empty LUT
1405     Dest =  cmsPipelineAlloc(ContextID, Src ->InputChannels, Src ->OutputChannels);
1406     if (Dest == NULL) return FALSE;
1407 
1408     // Create target curves
1409     GammaTables = (cmsToneCurve**) _cmsCalloc(ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1410     if (GammaTables == NULL) goto Error;
1411 
1412     for (i=0; i < Src ->InputChannels; i++) {
1413         GammaTables[i] = cmsBuildTabulatedToneCurve16(ContextID, PRELINEARIZATION_POINTS, NULL);
1414         if (GammaTables[i] == NULL) goto Error;
1415     }
1416 
1417     // Compute 16 bit result by using floating point
1418     for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1419 
1420         for (j=0; j < Src ->InputChannels; j++)
1421             InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1422 
1423         cmsPipelineEvalFloat(ContextID, InFloat, OutFloat, Src);
1424 
1425         for (j=0; j < Src ->InputChannels; j++)
1426             GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1427     }
1428 
1429     ObtainedCurves = cmsStageAllocToneCurves(ContextID, Src ->InputChannels, GammaTables);
1430     if (ObtainedCurves == NULL) goto Error;
1431 
1432     for (i=0; i < Src ->InputChannels; i++) {
1433         cmsFreeToneCurve(ContextID, GammaTables[i]);
1434         GammaTables[i] = NULL;
1435     }
1436 
1437     if (GammaTables != NULL) {
1438         _cmsFree(ContextID, GammaTables);
1439         GammaTables = NULL;
1440     }
1441 
1442     // Maybe the curves are linear at the end
1443     if (!AllCurvesAreLinear(ContextID, ObtainedCurves)) {
1444        _cmsStageToneCurvesData* Data;
1445 
1446         if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, ObtainedCurves))
1447             goto Error;
1448         Data = (_cmsStageToneCurvesData*) cmsStageData(ContextID, ObtainedCurves);
1449         ObtainedCurves = NULL;
1450 
1451         // If the curves are to be applied in 8 bits, we can save memory
1452         if (_cmsFormatterIs8bit(*InputFormat)) {
1453              Curves16Data* c16 = CurvesAlloc(ContextID, Data ->nCurves, 256, Data ->TheCurves);
1454 
1455              if (c16 == NULL) goto Error;
1456              *dwFlags |= cmsFLAGS_NOCACHE;
1457             _cmsPipelineSetOptimizationParameters(ContextID, Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1458 
1459         }
1460         else {
1461              Curves16Data* c16 = CurvesAlloc(ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1462 
1463              if (c16 == NULL) goto Error;
1464              *dwFlags |= cmsFLAGS_NOCACHE;
1465             _cmsPipelineSetOptimizationParameters(ContextID, Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1466         }
1467     }
1468     else {
1469 
1470         // LUT optimizes to nothing. Set the identity LUT
1471         cmsStageFree(ContextID, ObtainedCurves);
1472         ObtainedCurves = NULL;
1473 
1474         if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, cmsStageAllocIdentity(ContextID, Src ->InputChannels)))
1475             goto Error;
1476 
1477         *dwFlags |= cmsFLAGS_NOCACHE;
1478         _cmsPipelineSetOptimizationParameters(ContextID, Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1479     }
1480 
1481     // We are done.
1482     cmsPipelineFree(ContextID, Src);
1483     *Lut = Dest;
1484     return TRUE;
1485 
1486 Error:
1487 
1488     if (ObtainedCurves != NULL) cmsStageFree(ContextID, ObtainedCurves);
1489     if (GammaTables != NULL) {
1490         for (i=0; i < Src ->InputChannels; i++) {
1491             if (GammaTables[i] != NULL) cmsFreeToneCurve(ContextID, GammaTables[i]);
1492         }
1493 
1494         _cmsFree(ContextID, GammaTables);
1495     }
1496 
1497     if (Dest != NULL) cmsPipelineFree(ContextID, Dest);
1498     return FALSE;
1499 
1500     cmsUNUSED_PARAMETER(Intent);
1501     cmsUNUSED_PARAMETER(InputFormat);
1502     cmsUNUSED_PARAMETER(OutputFormat);
1503     cmsUNUSED_PARAMETER(dwFlags);
1504 }
1505 
1506 // -------------------------------------------------------------------------------------------------------------------------------------
1507 // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1508 
1509 
1510 static
FreeMatShaper(cmsContext ContextID,void * Data)1511 void  FreeMatShaper(cmsContext ContextID, void* Data)
1512 {
1513     if (Data != NULL) _cmsFree(ContextID, Data);
1514 }
1515 
1516 static
DupMatShaper(cmsContext ContextID,const void * Data)1517 void* DupMatShaper(cmsContext ContextID, const void* Data)
1518 {
1519     return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1520 }
1521 
1522 
1523 // A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
1524 // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1525 // in total about 50K, and the performance boost is huge!
1526 static
MatShaperEval16(cmsContext ContextID,register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1527 void MatShaperEval16(cmsContext ContextID, register const cmsUInt16Number In[],
1528                      register cmsUInt16Number Out[],
1529                      register const void* D)
1530 {
1531     MatShaper8Data* p = (MatShaper8Data*) D;
1532     cmsS1Fixed14Number l1, l2, l3, r, g, b;
1533     cmsUInt32Number ri, gi, bi;
1534     cmsUNUSED_PARAMETER(ContextID);
1535 
1536     // In this case (and only in this case!) we can use this simplification since
1537     // In[] is assured to come from a 8 bit number. (a << 8 | a)
1538     ri = In[0] & 0xFFU;
1539     gi = In[1] & 0xFFU;
1540     bi = In[2] & 0xFFU;
1541 
1542     // Across first shaper, which also converts to 1.14 fixed point
1543     r = p->Shaper1R[ri];
1544     g = p->Shaper1G[gi];
1545     b = p->Shaper1B[bi];
1546 
1547     // Evaluate the matrix in 1.14 fixed point
1548     l1 =  (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1549     l2 =  (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1550     l3 =  (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1551 
1552     // Now we have to clip to 0..1.0 range
1553     ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
1554     gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
1555     bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
1556 
1557     // And across second shaper,
1558     Out[0] = p->Shaper2R[ri];
1559     Out[1] = p->Shaper2G[gi];
1560     Out[2] = p->Shaper2B[bi];
1561 
1562 }
1563 
1564 // This table converts from 8 bits to 1.14 after applying the curve
1565 static
FillFirstShaper(cmsContext ContextID,cmsS1Fixed14Number * Table,cmsToneCurve * Curve)1566 void FillFirstShaper(cmsContext ContextID, cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1567 {
1568     int i;
1569     cmsFloat32Number R, y;
1570 
1571     for (i=0; i < 256; i++) {
1572 
1573         R   = (cmsFloat32Number) (i / 255.0);
1574         y   = cmsEvalToneCurveFloat(ContextID, Curve, R);
1575 
1576         if (y < 131072.0)
1577             Table[i] = DOUBLE_TO_1FIXED14(y);
1578         else
1579             Table[i] = 0x7fffffff;
1580     }
1581 }
1582 
1583 // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1584 static
FillSecondShaper(cmsContext ContextID,cmsUInt16Number * Table,cmsToneCurve * Curve,cmsBool Is8BitsOutput)1585 void FillSecondShaper(cmsContext ContextID, cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1586 {
1587     int i;
1588     cmsFloat32Number R, Val;
1589 
1590     for (i=0; i < 16385; i++) {
1591 
1592         R   = (cmsFloat32Number) (i / 16384.0);
1593         Val = cmsEvalToneCurveFloat(ContextID, Curve, R);    // Val comes 0..1.0
1594 
1595         if (Val < 0)
1596             Val = 0;
1597 
1598         if (Val > 1.0)
1599             Val = 1.0;
1600 
1601         if (Is8BitsOutput) {
1602 
1603             // If 8 bits output, we can optimize further by computing the / 257 part.
1604             // first we compute the resulting byte and then we store the byte times
1605             // 257. This quantization allows to round very quick by doing a >> 8, but
1606             // since the low byte is always equal to msb, we can do a & 0xff and this works!
1607             cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1608             cmsUInt8Number  b = FROM_16_TO_8(w);
1609 
1610             Table[i] = FROM_8_TO_16(b);
1611         }
1612         else Table[i]  = _cmsQuickSaturateWord(Val * 65535.0);
1613     }
1614 }
1615 
1616 // Compute the matrix-shaper structure
1617 static
SetMatShaper(cmsContext ContextID,cmsPipeline * Dest,cmsToneCurve * Curve1[3],cmsMAT3 * Mat,cmsVEC3 * Off,cmsToneCurve * Curve2[3],cmsUInt32Number * OutputFormat)1618 cmsBool SetMatShaper(cmsContext ContextID, cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1619 {
1620     MatShaper8Data* p;
1621     int i, j;
1622     cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1623 
1624     // Allocate a big chuck of memory to store precomputed tables
1625     p = (MatShaper8Data*) _cmsMalloc(ContextID, sizeof(MatShaper8Data));
1626     if (p == NULL) return FALSE;
1627 
1628     // Precompute tables
1629     FillFirstShaper(ContextID, p ->Shaper1R, Curve1[0]);
1630     FillFirstShaper(ContextID, p ->Shaper1G, Curve1[1]);
1631     FillFirstShaper(ContextID, p ->Shaper1B, Curve1[2]);
1632 
1633     FillSecondShaper(ContextID, p ->Shaper2R, Curve2[0], Is8Bits);
1634     FillSecondShaper(ContextID, p ->Shaper2G, Curve2[1], Is8Bits);
1635     FillSecondShaper(ContextID, p ->Shaper2B, Curve2[2], Is8Bits);
1636 
1637     // Convert matrix to nFixed14. Note that those values may take more than 16 bits
1638     for (i=0; i < 3; i++) {
1639         for (j=0; j < 3; j++) {
1640             p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1641         }
1642     }
1643 
1644     for (i=0; i < 3; i++) {
1645 
1646         if (Off == NULL) {
1647             p ->Off[i] = 0;
1648         }
1649         else {
1650             p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1651         }
1652     }
1653 
1654     // Mark as optimized for faster formatter
1655     if (Is8Bits)
1656         *OutputFormat |= OPTIMIZED_SH(1);
1657 
1658     // Fill function pointers
1659     _cmsPipelineSetOptimizationParameters(ContextID, Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1660     return TRUE;
1661 }
1662 
1663 //  8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1664 static
OptimizeMatrixShaper(cmsContext ContextID,cmsPipeline ** Lut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1665 cmsBool OptimizeMatrixShaper(cmsContext ContextID, cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1666 {
1667        cmsStage* Curve1, *Curve2;
1668        cmsStage* Matrix1, *Matrix2;
1669        cmsMAT3 res;
1670        cmsBool IdentityMat;
1671        cmsPipeline* Dest, *Src;
1672        cmsFloat64Number* Offset;
1673 
1674        // Only works on RGB to RGB
1675        if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1676 
1677        // Only works on 8 bit input
1678        if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1679 
1680        // Seems suitable, proceed
1681        Src = *Lut;
1682 
1683        // Check for:
1684        //
1685        //    shaper-matrix-matrix-shaper
1686        //    shaper-matrix-shaper
1687        //
1688        // Both of those constructs are possible (first because abs. colorimetric).
1689        // additionally, In the first case, the input matrix offset should be zero.
1690 
1691        IdentityMat = FALSE;
1692        if (cmsPipelineCheckAndRetreiveStages(ContextID, Src, 4,
1693               cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1694               &Curve1, &Matrix1, &Matrix2, &Curve2)) {
1695 
1696               // Get both matrices
1697               _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(ContextID, Matrix1);
1698               _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(ContextID, Matrix2);
1699 
1700               // Input offset should be zero
1701               if (Data1->Offset != NULL) return FALSE;
1702 
1703               // Multiply both matrices to get the result
1704               _cmsMAT3per(ContextID, &res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1705 
1706               // Only 2nd matrix has offset, or it is zero
1707               Offset = Data2->Offset;
1708 
1709               // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1710               if (_cmsMAT3isIdentity(ContextID, &res) && Offset == NULL) {
1711 
1712                      // We can get rid of full matrix
1713                      IdentityMat = TRUE;
1714               }
1715 
1716        }
1717        else {
1718 
1719               if (cmsPipelineCheckAndRetreiveStages(ContextID, Src, 3,
1720                      cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1721                      &Curve1, &Matrix1, &Curve2)) {
1722 
1723                      _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(ContextID, Matrix1);
1724 
1725                      // Copy the matrix to our result
1726                      memcpy(&res, Data->Double, sizeof(res));
1727 
1728                      // Preserve the Odffset (may be NULL as a zero offset)
1729                      Offset = Data->Offset;
1730 
1731                      if (_cmsMAT3isIdentity(ContextID, &res) && Offset == NULL) {
1732 
1733                             // We can get rid of full matrix
1734                             IdentityMat = TRUE;
1735                      }
1736               }
1737               else
1738                      return FALSE; // Not optimizeable this time
1739 
1740        }
1741 
1742       // Allocate an empty LUT
1743     Dest =  cmsPipelineAlloc(ContextID, Src ->InputChannels, Src ->OutputChannels);
1744     if (!Dest) return FALSE;
1745 
1746     // Assamble the new LUT
1747     if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_BEGIN, cmsStageDup(ContextID, Curve1)))
1748         goto Error;
1749 
1750     if (!IdentityMat) {
1751 
1752            if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, cmsStageAllocMatrix(ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1753                   goto Error;
1754     }
1755 
1756     if (!cmsPipelineInsertStage(ContextID, Dest, cmsAT_END, cmsStageDup(ContextID, Curve2)))
1757         goto Error;
1758 
1759     // If identity on matrix, we can further optimize the curves, so call the join curves routine
1760     if (IdentityMat) {
1761 
1762         OptimizeByJoiningCurves(ContextID, &Dest, Intent, InputFormat, OutputFormat, dwFlags);
1763     }
1764     else {
1765         _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(ContextID, Curve1);
1766         _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(ContextID, Curve2);
1767 
1768         // In this particular optimization, cache does not help as it takes more time to deal with
1769         // the cache that with the pixel handling
1770         *dwFlags |= cmsFLAGS_NOCACHE;
1771 
1772         // Setup the optimizarion routines
1773         SetMatShaper(ContextID, Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1774     }
1775 
1776     cmsPipelineFree(ContextID, Src);
1777     *Lut = Dest;
1778     return TRUE;
1779 Error:
1780     // Leave Src unchanged
1781     cmsPipelineFree(ContextID, Dest);
1782     return FALSE;
1783 }
1784 
1785 
1786 // -------------------------------------------------------------------------------------------------------------------------------------
1787 // Optimization plug-ins
1788 
1789 // List of optimizations
1790 typedef struct _cmsOptimizationCollection_st {
1791 
1792     _cmsOPToptimizeFn  OptimizePtr;
1793 
1794     struct _cmsOptimizationCollection_st *Next;
1795 
1796 } _cmsOptimizationCollection;
1797 
1798 
1799 // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1800 static _cmsOptimizationCollection DefaultOptimization[] = {
1801 
1802     { OptimizeByJoiningCurves,            &DefaultOptimization[1] },
1803     { OptimizeMatrixShaper,               &DefaultOptimization[2] },
1804     { OptimizeByComputingLinearization,   &DefaultOptimization[3] },
1805     { OptimizeByResampling,               NULL }
1806 };
1807 
1808 // The linked list head
1809 _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1810 
1811 
1812 // Duplicates the zone of memory used by the plug-in in the new context
1813 static
DupPluginOptimizationList(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)1814 void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1815                                const struct _cmsContext_struct* src)
1816 {
1817    _cmsOptimizationPluginChunkType newHead = { NULL };
1818    _cmsOptimizationCollection*  entry;
1819    _cmsOptimizationCollection*  Anterior = NULL;
1820    _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1821 
1822     _cmsAssert(ctx != NULL);
1823     _cmsAssert(head != NULL);
1824 
1825     // Walk the list copying all nodes
1826    for (entry = head->OptimizationCollection;
1827         entry != NULL;
1828         entry = entry ->Next) {
1829 
1830             _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1831 
1832             if (newEntry == NULL)
1833                 return;
1834 
1835             // We want to keep the linked list order, so this is a little bit tricky
1836             newEntry -> Next = NULL;
1837             if (Anterior)
1838                 Anterior -> Next = newEntry;
1839 
1840             Anterior = newEntry;
1841 
1842             if (newHead.OptimizationCollection == NULL)
1843                 newHead.OptimizationCollection = newEntry;
1844     }
1845 
1846   ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1847 }
1848 
_cmsAllocOptimizationPluginChunk(struct _cmsContext_struct * ctx,const struct _cmsContext_struct * src)1849 void  _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1850                                          const struct _cmsContext_struct* src)
1851 {
1852   if (src != NULL) {
1853 
1854         // Copy all linked list
1855        DupPluginOptimizationList(ctx, src);
1856     }
1857     else {
1858         static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1859         ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1860     }
1861 }
1862 
1863 
1864 // Register new ways to optimize
_cmsRegisterOptimizationPlugin(cmsContext ContextID,cmsPluginBase * Data)1865 cmsBool  _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1866 {
1867     cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1868     _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1869     _cmsOptimizationCollection* fl;
1870 
1871     if (Data == NULL) {
1872 
1873         ctx->OptimizationCollection = NULL;
1874         return TRUE;
1875     }
1876 
1877     // Optimizer callback is required
1878     if (Plugin ->OptimizePtr == NULL) return FALSE;
1879 
1880     fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1881     if (fl == NULL) return FALSE;
1882 
1883     // Copy the parameters
1884     fl ->OptimizePtr = Plugin ->OptimizePtr;
1885 
1886     // Keep linked list
1887     fl ->Next = ctx->OptimizationCollection;
1888 
1889     // Set the head
1890     ctx ->OptimizationCollection = fl;
1891 
1892     // All is ok
1893     return TRUE;
1894 }
1895 
1896 // The entry point for LUT optimization
_cmsOptimizePipeline(cmsContext ContextID,cmsPipeline ** PtrLut,cmsUInt32Number Intent,cmsUInt32Number * InputFormat,cmsUInt32Number * OutputFormat,cmsUInt32Number * dwFlags)1897 cmsBool _cmsOptimizePipeline(cmsContext ContextID,
1898                              cmsPipeline**    PtrLut,
1899                              cmsUInt32Number  Intent,
1900                              cmsUInt32Number* InputFormat,
1901                              cmsUInt32Number* OutputFormat,
1902                              cmsUInt32Number* dwFlags)
1903 {
1904     _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1905     _cmsOptimizationCollection* Opts;
1906     cmsBool AnySuccess = FALSE;
1907 
1908     // A CLUT is being asked, so force this specific optimization
1909     if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1910 
1911         PreOptimize(ContextID, *PtrLut);
1912         return OptimizeByResampling(ContextID, PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1913     }
1914 
1915     // Anything to optimize?
1916     if ((*PtrLut) ->Elements == NULL) {
1917         _cmsPipelineSetOptimizationParameters(ContextID, *PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1918         return TRUE;
1919     }
1920 
1921     // Try to get rid of identities and trivial conversions.
1922     AnySuccess = PreOptimize(ContextID, *PtrLut);
1923 
1924     // After removal do we end with an identity?
1925     if ((*PtrLut) ->Elements == NULL) {
1926         _cmsPipelineSetOptimizationParameters(ContextID, *PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1927         return TRUE;
1928     }
1929 
1930     // Do not optimize, keep all precision
1931     if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1932         return FALSE;
1933 
1934     // Try plug-in optimizations
1935     for (Opts = ctx->OptimizationCollection;
1936          Opts != NULL;
1937          Opts = Opts ->Next) {
1938 
1939             // If one schema succeeded, we are done
1940             if (Opts ->OptimizePtr(ContextID, PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1941 
1942                 return TRUE;    // Optimized!
1943             }
1944     }
1945 
1946    // Try built-in optimizations
1947     for (Opts = DefaultOptimization;
1948          Opts != NULL;
1949          Opts = Opts ->Next) {
1950 
1951             if (Opts ->OptimizePtr(ContextID, PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1952 
1953                 return TRUE;
1954             }
1955     }
1956 
1957     // Only simple optimizations succeeded
1958     return AnySuccess;
1959 }
1960 
_cmsLutIsIdentity(cmsPipeline * PtrLut)1961 cmsBool _cmsLutIsIdentity(cmsPipeline *PtrLut)
1962 {
1963     return !PtrLut || PtrLut->Eval16Fn == FastIdentity16;
1964 }
1965