1 /*
2  * jquant1.c
3  *
4  * Copyright (C) 1991-1996, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains 1-pass color quantization (color mapping) routines.
9  * These routines provide mapping to a fixed color map using equally spaced
10  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
11  */
12 
13 #define JPEG_INTERNALS
14 #include "jinclude.h"
15 #include "jpeglib.h"
16 
17 #ifdef QUANT_1PASS_SUPPORTED
18 
19 
20 /*
21  * The main purpose of 1-pass quantization is to provide a fast, if not very
22  * high quality, colormapped output capability.  A 2-pass quantizer usually
23  * gives better visual quality; however, for quantized grayscale output this
24  * quantizer is perfectly adequate.  Dithering is highly recommended with this
25  * quantizer, though you can turn it off if you really want to.
26  *
27  * In 1-pass quantization the colormap must be chosen in advance of seeing the
28  * image.  We use a map consisting of all combinations of Ncolors[i] color
29  * values for the i'th component.  The Ncolors[] values are chosen so that
30  * their product, the total number of colors, is no more than that requested.
31  * (In most cases, the product will be somewhat less.)
32  *
33  * Since the colormap is orthogonal, the representative value for each color
34  * component can be determined without considering the other components;
35  * then these indexes can be combined into a colormap index by a standard
36  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
37  * can be precalculated and stored in the lookup table colorindex[].
38  * colorindex[i][j] maps pixel value j in component i to the nearest
39  * representative value (grid plane) for that component; this index is
40  * multiplied by the array stride for component i, so that the
41  * index of the colormap entry closest to a given pixel value is just
42  *    sum( colorindex[component-number][pixel-component-value] )
43  * Aside from being fast, this scheme allows for variable spacing between
44  * representative values with no additional lookup cost.
45  *
46  * If gamma correction has been applied in color conversion, it might be wise
47  * to adjust the color grid spacing so that the representative colors are
48  * equidistant in linear space.  At this writing, gamma correction is not
49  * implemented by jdcolor, so nothing is done here.
50  */
51 
52 
53 /* Declarations for ordered dithering.
54  *
55  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
56  * dithering is described in many references, for instance Dale Schumacher's
57  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
58  * In place of Schumacher's comparisons against a "threshold" value, we add a
59  * "dither" value to the input pixel and then round the result to the nearest
60  * output value.  The dither value is equivalent to (0.5 - threshold) times
61  * the distance between output values.  For ordered dithering, we assume that
62  * the output colors are equally spaced; if not, results will probably be
63  * worse, since the dither may be too much or too little at a given point.
64  *
65  * The normal calculation would be to form pixel value + dither, range-limit
66  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
67  * We can skip the separate range-limiting step by extending the colorindex
68  * table in both directions.
69  */
70 
71 #define ODITHER_SIZE  16	/* dimension of dither matrix */
72 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
73 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */
74 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
75 
76 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
77 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
78 
79 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
80   /* Bayer's order-4 dither array.  Generated by the code given in
81    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
82    * The values in this array must range from 0 to ODITHER_CELLS-1.
83    */
84   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
85   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
86   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
87   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
88   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
89   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
90   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
91   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
92   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
93   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
94   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
95   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
96   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
97   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
98   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
99   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
100 };
101 
102 
103 /* Declarations for Floyd-Steinberg dithering.
104  *
105  * Errors are accumulated into the array fserrors[], at a resolution of
106  * 1/16th of a pixel count.  The error at a given pixel is propagated
107  * to its not-yet-processed neighbors using the standard F-S fractions,
108  *		...	(here)	7/16
109  *		3/16	5/16	1/16
110  * We work left-to-right on even rows, right-to-left on odd rows.
111  *
112  * We can get away with a single array (holding one row's worth of errors)
113  * by using it to store the current row's errors at pixel columns not yet
114  * processed, but the next row's errors at columns already processed.  We
115  * need only a few extra variables to hold the errors immediately around the
116  * current column.  (If we are lucky, those variables are in registers, but
117  * even if not, they're probably cheaper to access than array elements are.)
118  *
119  * The fserrors[] array is indexed [component#][position].
120  * We provide (#columns + 2) entries per component; the extra entry at each
121  * end saves us from special-casing the first and last pixels.
122  *
123  * Note: on a wide image, we might not have enough room in a PC's near data
124  * segment to hold the error array; so it is allocated with alloc_large.
125  */
126 
127 #if BITS_IN_JSAMPLE == 8
128 typedef INT16 FSERROR;		/* 16 bits should be enough */
129 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
130 #else
131 typedef INT32 FSERROR;		/* may need more than 16 bits */
132 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
133 #endif
134 
135 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
136 
137 
138 /* Private subobject */
139 
140 #define MAX_Q_COMPS 4		/* max components I can handle */
141 
142 typedef struct {
143   struct jpeg_color_quantizer pub; /* public fields */
144 
145   /* Initially allocated colormap is saved here */
146   JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */
147   int sv_actual;		/* number of entries in use */
148 
149   JSAMPARRAY colorindex;	/* Precomputed mapping for speed */
150   /* colorindex[i][j] = index of color closest to pixel value j in component i,
151    * premultiplied as described above.  Since colormap indexes must fit into
152    * JSAMPLEs, the entries of this array will too.
153    */
154   boolean is_padded;		/* is the colorindex padded for odither? */
155 
156   int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */
157 
158   /* Variables for ordered dithering */
159   int row_index;		/* cur row's vertical index in dither matrix */
160   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
161 
162   /* Variables for Floyd-Steinberg dithering */
163   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
164   boolean on_odd_row;		/* flag to remember which row we are on */
165 } my_cquantizer;
166 
167 typedef my_cquantizer * my_cquantize_ptr;
168 
169 
170 /*
171  * Policy-making subroutines for create_colormap and create_colorindex.
172  * These routines determine the colormap to be used.  The rest of the module
173  * only assumes that the colormap is orthogonal.
174  *
175  *  * select_ncolors decides how to divvy up the available colors
176  *    among the components.
177  *  * output_value defines the set of representative values for a component.
178  *  * largest_input_value defines the mapping from input values to
179  *    representative values for a component.
180  * Note that the latter two routines may impose different policies for
181  * different components, though this is not currently done.
182  */
183 
184 
185 LOCAL(int)
select_ncolors(j_decompress_ptr cinfo,int Ncolors[])186 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
187 /* Determine allocation of desired colors to components, */
188 /* and fill in Ncolors[] array to indicate choice. */
189 /* Return value is total number of colors (product of Ncolors[] values). */
190 {
191   int nc = cinfo->out_color_components; /* number of color components */
192   int max_colors = cinfo->desired_number_of_colors;
193   int total_colors, iroot, i, j;
194   boolean changed;
195   long temp;
196   static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
197 
198   /* We can allocate at least the nc'th root of max_colors per component. */
199   /* Compute floor(nc'th root of max_colors). */
200   iroot = 1;
201   do {
202     iroot++;
203     temp = iroot;		/* set temp = iroot ** nc */
204     for (i = 1; i < nc; i++)
205       temp *= iroot;
206   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
207   iroot--;			/* now iroot = floor(root) */
208 
209   /* Must have at least 2 color values per component */
210   if (iroot < 2)
211     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
212 
213   /* Initialize to iroot color values for each component */
214   total_colors = 1;
215   for (i = 0; i < nc; i++) {
216     Ncolors[i] = iroot;
217     total_colors *= iroot;
218   }
219   /* We may be able to increment the count for one or more components without
220    * exceeding max_colors, though we know not all can be incremented.
221    * Sometimes, the first component can be incremented more than once!
222    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
223    * In RGB colorspace, try to increment G first, then R, then B.
224    */
225   do {
226     changed = FALSE;
227     for (i = 0; i < nc; i++) {
228       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
229       /* calculate new total_colors if Ncolors[j] is incremented */
230       temp = total_colors / Ncolors[j];
231       temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */
232       if (temp > (long) max_colors)
233 	break;			/* won't fit, done with this pass */
234       Ncolors[j]++;		/* OK, apply the increment */
235       total_colors = (int) temp;
236       changed = TRUE;
237     }
238   } while (changed);
239 
240   return total_colors;
241 }
242 
243 
244 LOCAL(int)
output_value(j_decompress_ptr cinfo,int ci,int j,int maxj)245 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
246 /* Return j'th output value, where j will range from 0 to maxj */
247 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
248 {
249   /* We always provide values 0 and MAXJSAMPLE for each component;
250    * any additional values are equally spaced between these limits.
251    * (Forcing the upper and lower values to the limits ensures that
252    * dithering can't produce a color outside the selected gamut.)
253    */
254   (void) cinfo;
255   (void) ci;
256 
257   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
258 }
259 
260 
261 LOCAL(int)
largest_input_value(j_decompress_ptr cinfo,int ci,int j,int maxj)262 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
263 /* Return largest input value that should map to j'th output value */
264 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
265 {
266   (void) cinfo;
267   (void) ci;
268 
269   /* Breakpoints are halfway between values returned by output_value */
270   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
271 }
272 
273 
274 /*
275  * Create the colormap.
276  */
277 
278 LOCAL(void)
create_colormap(j_decompress_ptr cinfo)279 create_colormap (j_decompress_ptr cinfo)
280 {
281   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
282   JSAMPARRAY colormap;		/* Created colormap */
283   int total_colors;		/* Number of distinct output colors */
284   int i,j,k, nci, blksize, blkdist, ptr, val;
285 
286   /* Select number of colors for each component */
287   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
288 
289   /* Report selected color counts */
290   if (cinfo->out_color_components == 3)
291     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
292 	     total_colors, cquantize->Ncolors[0],
293 	     cquantize->Ncolors[1], cquantize->Ncolors[2]);
294   else
295     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
296 
297   /* Allocate and fill in the colormap. */
298   /* The colors are ordered in the map in standard row-major order, */
299   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
300 
301   colormap = (*cinfo->mem->alloc_sarray)
302     ((j_common_ptr) cinfo, JPOOL_IMAGE,
303      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
304 
305   /* blksize is number of adjacent repeated entries for a component */
306   /* blkdist is distance between groups of identical entries for a component */
307   blkdist = total_colors;
308 
309   for (i = 0; i < cinfo->out_color_components; i++) {
310     /* fill in colormap entries for i'th color component */
311     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
312     blksize = blkdist / nci;
313     for (j = 0; j < nci; j++) {
314       /* Compute j'th output value (out of nci) for component */
315       val = output_value(cinfo, i, j, nci-1);
316       /* Fill in all colormap entries that have this value of this component */
317       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
318 	/* fill in blksize entries beginning at ptr */
319 	for (k = 0; k < blksize; k++)
320 	  colormap[i][ptr+k] = (JSAMPLE) val;
321       }
322     }
323     blkdist = blksize;		/* blksize of this color is blkdist of next */
324   }
325 
326   /* Save the colormap in private storage,
327    * where it will survive color quantization mode changes.
328    */
329   cquantize->sv_colormap = colormap;
330   cquantize->sv_actual = total_colors;
331 }
332 
333 
334 /*
335  * Create the color index table.
336  */
337 
338 LOCAL(void)
create_colorindex(j_decompress_ptr cinfo)339 create_colorindex (j_decompress_ptr cinfo)
340 {
341   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
342   JSAMPROW indexptr;
343   int i,j,k, nci, blksize, val, pad;
344 
345   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
346    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
347    * This is not necessary in the other dithering modes.  However, we
348    * flag whether it was done in case user changes dithering mode.
349    */
350   if (cinfo->dither_mode == JDITHER_ORDERED) {
351     pad = MAXJSAMPLE*2;
352     cquantize->is_padded = TRUE;
353   } else {
354     pad = 0;
355     cquantize->is_padded = FALSE;
356   }
357 
358   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
359     ((j_common_ptr) cinfo, JPOOL_IMAGE,
360      (JDIMENSION) (MAXJSAMPLE+1 + pad),
361      (JDIMENSION) cinfo->out_color_components);
362 
363   /* blksize is number of adjacent repeated entries for a component */
364   blksize = cquantize->sv_actual;
365 
366   for (i = 0; i < cinfo->out_color_components; i++) {
367     /* fill in colorindex entries for i'th color component */
368     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
369     blksize = blksize / nci;
370 
371     /* adjust colorindex pointers to provide padding at negative indexes. */
372     if (pad)
373       cquantize->colorindex[i] += MAXJSAMPLE;
374 
375     /* in loop, val = index of current output value, */
376     /* and k = largest j that maps to current val */
377     indexptr = cquantize->colorindex[i];
378     val = 0;
379     k = largest_input_value(cinfo, i, 0, nci-1);
380     for (j = 0; j <= MAXJSAMPLE; j++) {
381       while (j > k)		/* advance val if past boundary */
382 	k = largest_input_value(cinfo, i, ++val, nci-1);
383       /* premultiply so that no multiplication needed in main processing */
384       indexptr[j] = (JSAMPLE) (val * blksize);
385     }
386     /* Pad at both ends if necessary */
387     if (pad)
388       for (j = 1; j <= MAXJSAMPLE; j++) {
389 	indexptr[-j] = indexptr[0];
390 	indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
391       }
392   }
393 }
394 
395 
396 /*
397  * Create an ordered-dither array for a component having ncolors
398  * distinct output values.
399  */
400 
401 LOCAL(ODITHER_MATRIX_PTR)
make_odither_array(j_decompress_ptr cinfo,int ncolors)402 make_odither_array (j_decompress_ptr cinfo, int ncolors)
403 {
404   ODITHER_MATRIX_PTR odither;
405   int j,k;
406   INT32 num,den;
407 
408   odither = (ODITHER_MATRIX_PTR)
409     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
410 				SIZEOF(ODITHER_MATRIX));
411   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
412    * Hence the dither value for the matrix cell with fill order f
413    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
414    * On 16-bit-int machine, be careful to avoid overflow.
415    */
416   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
417   for (j = 0; j < ODITHER_SIZE; j++) {
418     for (k = 0; k < ODITHER_SIZE; k++) {
419       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
420 	    * MAXJSAMPLE;
421       /* Ensure round towards zero despite C's lack of consistency
422        * about rounding negative values in integer division...
423        */
424       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
425     }
426   }
427   return odither;
428 }
429 
430 
431 /*
432  * Create the ordered-dither tables.
433  * Components having the same number of representative colors may
434  * share a dither table.
435  */
436 
437 LOCAL(void)
create_odither_tables(j_decompress_ptr cinfo)438 create_odither_tables (j_decompress_ptr cinfo)
439 {
440   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
441   ODITHER_MATRIX_PTR odither;
442   int i, j, nci;
443 
444   for (i = 0; i < cinfo->out_color_components; i++) {
445     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
446     odither = NULL;		/* search for matching prior component */
447     for (j = 0; j < i; j++) {
448       if (nci == cquantize->Ncolors[j]) {
449 	odither = cquantize->odither[j];
450 	break;
451       }
452     }
453     if (odither == NULL)	/* need a new table? */
454       odither = make_odither_array(cinfo, nci);
455     cquantize->odither[i] = odither;
456   }
457 }
458 
459 
460 /*
461  * Map some rows of pixels to the output colormapped representation.
462  */
463 
464 METHODDEF(void)
color_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)465 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
466 		JSAMPARRAY output_buf, int num_rows)
467 /* General case, no dithering */
468 {
469   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
470   JSAMPARRAY colorindex = cquantize->colorindex;
471   register int pixcode, ci;
472   register JSAMPROW ptrin, ptrout;
473   int row;
474   JDIMENSION col;
475   JDIMENSION width = cinfo->output_width;
476   register int nc = cinfo->out_color_components;
477 
478   for (row = 0; row < num_rows; row++) {
479     ptrin = input_buf[row];
480     ptrout = output_buf[row];
481     for (col = width; col > 0; col--) {
482       pixcode = 0;
483       for (ci = 0; ci < nc; ci++) {
484 	pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
485       }
486       *ptrout++ = (JSAMPLE) pixcode;
487     }
488   }
489 }
490 
491 
492 METHODDEF(void)
color_quantize3(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)493 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
494 		 JSAMPARRAY output_buf, int num_rows)
495 /* Fast path for out_color_components==3, no dithering */
496 {
497   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
498   register int pixcode;
499   register JSAMPROW ptrin, ptrout;
500   JSAMPROW colorindex0 = cquantize->colorindex[0];
501   JSAMPROW colorindex1 = cquantize->colorindex[1];
502   JSAMPROW colorindex2 = cquantize->colorindex[2];
503   int row;
504   JDIMENSION col;
505   JDIMENSION width = cinfo->output_width;
506 
507   for (row = 0; row < num_rows; row++) {
508     ptrin = input_buf[row];
509     ptrout = output_buf[row];
510     for (col = width; col > 0; col--) {
511       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
512       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
513       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
514       *ptrout++ = (JSAMPLE) pixcode;
515     }
516   }
517 }
518 
519 
520 METHODDEF(void)
quantize_ord_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)521 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
522 		     JSAMPARRAY output_buf, int num_rows)
523 /* General case, with ordered dithering */
524 {
525   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
526   register JSAMPROW input_ptr;
527   register JSAMPROW output_ptr;
528   JSAMPROW colorindex_ci;
529   int * dither;			/* points to active row of dither matrix */
530   int row_index, col_index;	/* current indexes into dither matrix */
531   int nc = cinfo->out_color_components;
532   int ci;
533   int row;
534   JDIMENSION col;
535   JDIMENSION width = cinfo->output_width;
536 
537   for (row = 0; row < num_rows; row++) {
538     /* Initialize output values to 0 so can process components separately */
539     jzero_far((void FAR *) output_buf[row],
540 	      (size_t) (width * SIZEOF(JSAMPLE)));
541     row_index = cquantize->row_index;
542     for (ci = 0; ci < nc; ci++) {
543       input_ptr = input_buf[row] + ci;
544       output_ptr = output_buf[row];
545       colorindex_ci = cquantize->colorindex[ci];
546       dither = cquantize->odither[ci][row_index];
547       col_index = 0;
548 
549       for (col = width; col > 0; col--) {
550 	/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
551 	 * select output value, accumulate into output code for this pixel.
552 	 * Range-limiting need not be done explicitly, as we have extended
553 	 * the colorindex table to produce the right answers for out-of-range
554 	 * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
555 	 * required amount of padding.
556 	 */
557 	*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
558 	input_ptr += nc;
559 	output_ptr++;
560 	col_index = (col_index + 1) & ODITHER_MASK;
561       }
562     }
563     /* Advance row index for next row */
564     row_index = (row_index + 1) & ODITHER_MASK;
565     cquantize->row_index = row_index;
566   }
567 }
568 
569 
570 METHODDEF(void)
quantize3_ord_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)571 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
572 		      JSAMPARRAY output_buf, int num_rows)
573 /* Fast path for out_color_components==3, with ordered dithering */
574 {
575   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
576   register int pixcode;
577   register JSAMPROW input_ptr;
578   register JSAMPROW output_ptr;
579   JSAMPROW colorindex0 = cquantize->colorindex[0];
580   JSAMPROW colorindex1 = cquantize->colorindex[1];
581   JSAMPROW colorindex2 = cquantize->colorindex[2];
582   int * dither0;		/* points to active row of dither matrix */
583   int * dither1;
584   int * dither2;
585   int row_index, col_index;	/* current indexes into dither matrix */
586   int row;
587   JDIMENSION col;
588   JDIMENSION width = cinfo->output_width;
589 
590   for (row = 0; row < num_rows; row++) {
591     row_index = cquantize->row_index;
592     input_ptr = input_buf[row];
593     output_ptr = output_buf[row];
594     dither0 = cquantize->odither[0][row_index];
595     dither1 = cquantize->odither[1][row_index];
596     dither2 = cquantize->odither[2][row_index];
597     col_index = 0;
598 
599     for (col = width; col > 0; col--) {
600       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
601 					dither0[col_index]]);
602       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
603 					dither1[col_index]]);
604       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
605 					dither2[col_index]]);
606       *output_ptr++ = (JSAMPLE) pixcode;
607       col_index = (col_index + 1) & ODITHER_MASK;
608     }
609     row_index = (row_index + 1) & ODITHER_MASK;
610     cquantize->row_index = row_index;
611   }
612 }
613 
614 
615 METHODDEF(void)
quantize_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)616 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
617 		    JSAMPARRAY output_buf, int num_rows)
618 /* General case, with Floyd-Steinberg dithering */
619 {
620   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
621   register LOCFSERROR cur;	/* current error or pixel value */
622   LOCFSERROR belowerr;		/* error for pixel below cur */
623   LOCFSERROR bpreverr;		/* error for below/prev col */
624   LOCFSERROR bnexterr;		/* error for below/next col */
625   LOCFSERROR delta;
626   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
627   register JSAMPROW input_ptr;
628   register JSAMPROW output_ptr;
629   JSAMPROW colorindex_ci;
630   JSAMPROW colormap_ci;
631   int pixcode;
632   int nc = cinfo->out_color_components;
633   int dir;			/* 1 for left-to-right, -1 for right-to-left */
634   int dirnc;			/* dir * nc */
635   int ci;
636   int row;
637   JDIMENSION col;
638   JDIMENSION width = cinfo->output_width;
639   JSAMPLE *range_limit = cinfo->sample_range_limit;
640   SHIFT_TEMPS
641 
642   for (row = 0; row < num_rows; row++) {
643     /* Initialize output values to 0 so can process components separately */
644     jzero_far((void FAR *) output_buf[row],
645 	      (size_t) (width * SIZEOF(JSAMPLE)));
646     for (ci = 0; ci < nc; ci++) {
647       input_ptr = input_buf[row] + ci;
648       output_ptr = output_buf[row];
649       if (cquantize->on_odd_row) {
650 	/* work right to left in this row */
651 	input_ptr += (width-1) * nc; /* so point to rightmost pixel */
652 	output_ptr += width-1;
653 	dir = -1;
654 	dirnc = -nc;
655 	/* => entry after last column */
656 	errorptr = cquantize->fserrors[ci] + (width+1);
657       } else {
658 	/* work left to right in this row */
659 	dir = 1;
660 	dirnc = nc;
661 	errorptr = cquantize->fserrors[ci]; /* => entry before first column */
662       }
663       colorindex_ci = cquantize->colorindex[ci];
664       colormap_ci = cquantize->sv_colormap[ci];
665       /* Preset error values: no error propagated to first pixel from left */
666       cur = 0;
667       /* and no error propagated to row below yet */
668       belowerr = bpreverr = 0;
669 
670       for (col = width; col > 0; col--) {
671 	/* cur holds the error propagated from the previous pixel on the
672 	 * current line.  Add the error propagated from the previous line
673 	 * to form the complete error correction term for this pixel, and
674 	 * round the error term (which is expressed * 16) to an integer.
675 	 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
676 	 * for either sign of the error value.
677 	 * Note: errorptr points to *previous* column's array entry.
678 	 */
679 	cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
680 	/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
681 	 * The maximum error is +- MAXJSAMPLE; this sets the required size
682 	 * of the range_limit array.
683 	 */
684 	cur += GETJSAMPLE(*input_ptr);
685 	cur = GETJSAMPLE(range_limit[cur]);
686 	/* Select output value, accumulate into output code for this pixel */
687 	pixcode = GETJSAMPLE(colorindex_ci[cur]);
688 	*output_ptr += (JSAMPLE) pixcode;
689 	/* Compute actual representation error at this pixel */
690 	/* Note: we can do this even though we don't have the final */
691 	/* pixel code, because the colormap is orthogonal. */
692 	cur -= GETJSAMPLE(colormap_ci[pixcode]);
693 	/* Compute error fractions to be propagated to adjacent pixels.
694 	 * Add these into the running sums, and simultaneously shift the
695 	 * next-line error sums left by 1 column.
696 	 */
697 	bnexterr = cur;
698 	delta = cur * 2;
699 	cur += delta;		/* form error * 3 */
700 	errorptr[0] = (FSERROR) (bpreverr + cur);
701 	cur += delta;		/* form error * 5 */
702 	bpreverr = belowerr + cur;
703 	belowerr = bnexterr;
704 	cur += delta;		/* form error * 7 */
705 	/* At this point cur contains the 7/16 error value to be propagated
706 	 * to the next pixel on the current line, and all the errors for the
707 	 * next line have been shifted over. We are therefore ready to move on.
708 	 */
709 	input_ptr += dirnc;	/* advance input ptr to next column */
710 	output_ptr += dir;	/* advance output ptr to next column */
711 	errorptr += dir;	/* advance errorptr to current column */
712       }
713       /* Post-loop cleanup: we must unload the final error value into the
714        * final fserrors[] entry.  Note we need not unload belowerr because
715        * it is for the dummy column before or after the actual array.
716        */
717       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
718     }
719     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
720   }
721 }
722 
723 
724 /*
725  * Allocate workspace for Floyd-Steinberg errors.
726  */
727 
728 LOCAL(void)
alloc_fs_workspace(j_decompress_ptr cinfo)729 alloc_fs_workspace (j_decompress_ptr cinfo)
730 {
731   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
732   size_t arraysize;
733   int i;
734 
735   arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
736   for (i = 0; i < cinfo->out_color_components; i++) {
737     cquantize->fserrors[i] = (FSERRPTR)
738       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
739   }
740 }
741 
742 
743 /*
744  * Initialize for one-pass color quantization.
745  */
746 
747 METHODDEF(void)
start_pass_1_quant(j_decompress_ptr cinfo,boolean is_pre_scan)748 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
749 {
750   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
751   size_t arraysize;
752   int i;
753 
754   (void) is_pre_scan;
755 
756   /* Install my colormap. */
757   cinfo->colormap = cquantize->sv_colormap;
758   cinfo->actual_number_of_colors = cquantize->sv_actual;
759 
760   /* Initialize for desired dithering mode. */
761   switch (cinfo->dither_mode) {
762   case JDITHER_NONE:
763     if (cinfo->out_color_components == 3)
764       cquantize->pub.color_quantize = color_quantize3;
765     else
766       cquantize->pub.color_quantize = color_quantize;
767     break;
768   case JDITHER_ORDERED:
769     if (cinfo->out_color_components == 3)
770       cquantize->pub.color_quantize = quantize3_ord_dither;
771     else
772       cquantize->pub.color_quantize = quantize_ord_dither;
773     cquantize->row_index = 0;	/* initialize state for ordered dither */
774     /* If user changed to ordered dither from another mode,
775      * we must recreate the color index table with padding.
776      * This will cost extra space, but probably isn't very likely.
777      */
778     if (! cquantize->is_padded)
779       create_colorindex(cinfo);
780     /* Create ordered-dither tables if we didn't already. */
781     if (cquantize->odither[0] == NULL)
782       create_odither_tables(cinfo);
783     break;
784   case JDITHER_FS:
785     cquantize->pub.color_quantize = quantize_fs_dither;
786     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
787     /* Allocate Floyd-Steinberg workspace if didn't already. */
788     if (cquantize->fserrors[0] == NULL)
789       alloc_fs_workspace(cinfo);
790     /* Initialize the propagated errors to zero. */
791     arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
792     for (i = 0; i < cinfo->out_color_components; i++)
793       jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
794     break;
795   default:
796     ERREXIT(cinfo, JERR_NOT_COMPILED);
797     break;
798   }
799 }
800 
801 
802 /*
803  * Finish up at the end of the pass.
804  */
805 
806 METHODDEF(void)
finish_pass_1_quant(j_decompress_ptr cinfo)807 finish_pass_1_quant (j_decompress_ptr cinfo)
808 {
809   (void) cinfo;
810 
811   /* no work in 1-pass case */
812 }
813 
814 
815 /*
816  * Switch to a new external colormap between output passes.
817  * Shouldn't get to this module!
818  */
819 
820 METHODDEF(void)
new_color_map_1_quant(j_decompress_ptr cinfo)821 new_color_map_1_quant (j_decompress_ptr cinfo)
822 {
823   ERREXIT(cinfo, JERR_MODE_CHANGE);
824 }
825 
826 
827 /*
828  * Module initialization routine for 1-pass color quantization.
829  */
830 
831 GLOBAL(void)
jinit_1pass_quantizer(j_decompress_ptr cinfo)832 jinit_1pass_quantizer (j_decompress_ptr cinfo)
833 {
834   my_cquantize_ptr cquantize;
835 
836   cquantize = (my_cquantize_ptr)
837     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
838 				SIZEOF(my_cquantizer));
839   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
840   cquantize->pub.start_pass = start_pass_1_quant;
841   cquantize->pub.finish_pass = finish_pass_1_quant;
842   cquantize->pub.new_color_map = new_color_map_1_quant;
843   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
844   cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */
845 
846   /* Make sure my internal arrays won't overflow */
847   if (cinfo->out_color_components > MAX_Q_COMPS)
848     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
849   /* Make sure colormap indexes can be represented by JSAMPLEs */
850   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
851     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
852 
853   /* Create the colormap and color index table. */
854   create_colormap(cinfo);
855   create_colorindex(cinfo);
856 
857   /* Allocate Floyd-Steinberg workspace now if requested.
858    * We do this now since it is FAR storage and may affect the memory
859    * manager's space calculations.  If the user changes to FS dither
860    * mode in a later pass, we will allocate the space then, and will
861    * possibly overrun the max_memory_to_use setting.
862    */
863   if (cinfo->dither_mode == JDITHER_FS)
864     alloc_fs_workspace(cinfo);
865 }
866 
867 #endif /* QUANT_1PASS_SUPPORTED */
868