1 /* PDFlib GmbH cvsid:
2  * $Id: tif_pixarlog.c,v 1.11 2005/12/21 14:12:52 rjs Exp $ */
3 /*
4  * Copyright (c) 1996-1997 Sam Leffler
5  * Copyright (c) 1996 Pixar
6  *
7  * Permission to use, copy, modify, distribute, and sell this software and
8  * its documentation for any purpose is hereby granted without fee, provided
9  * that (i) the above copyright notices and this permission notice appear in
10  * all copies of the software and related documentation, and (ii) the names of
11  * Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or
12  * publicity relating to the software without the specific, prior written
13  * permission of Pixar, Sam Leffler and Silicon Graphics.
14  *
15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
18  *
19  * IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
24  * OF THIS SOFTWARE.
25  */
26 
27 #include "tiffiop.h"
28 #ifdef PIXARLOG_SUPPORT
29 
30 /*
31  * TIFF Library.
32  * PixarLog Compression Support
33  *
34  * Contributed by Dan McCoy.
35  *
36  * PixarLog film support uses the TIFF library to store companded
37  * 11 bit values into a tiff file, which are compressed using the
38  * zip compressor.
39  *
40  * The codec can take as input and produce as output 32-bit IEEE float values
41  * as well as 16-bit or 8-bit unsigned integer values.
42  *
43  * On writing any of the above are converted into the internal
44  * 11-bit log format.   In the case of  8 and 16 bit values, the
45  * input is assumed to be unsigned linear color values that represent
46  * the range 0-1.  In the case of IEEE values, the 0-1 range is assumed to
47  * be the normal linear color range, in addition over 1 values are
48  * accepted up to a value of about 25.0 to encode "hot" hightlights and such.
49  * The encoding is lossless for 8-bit values, slightly lossy for the
50  * other bit depths.  The actual color precision should be better
51  * than the human eye can perceive with extra room to allow for
52  * error introduced by further image computation.  As with any quantized
53  * color format, it is possible to perform image calculations which
54  * expose the quantization error. This format should certainly be less
55  * susceptable to such errors than standard 8-bit encodings, but more
56  * susceptable than straight 16-bit or 32-bit encodings.
57  *
58  * On reading the internal format is converted to the desired output format.
59  * The program can request which format it desires by setting the internal
60  * pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values:
61  *  PIXARLOGDATAFMT_FLOAT     = provide IEEE float values.
62  *  PIXARLOGDATAFMT_16BIT     = provide unsigned 16-bit integer values
63  *  PIXARLOGDATAFMT_8BIT      = provide unsigned 8-bit integer values
64  *
65  * alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer
66  * values with the difference that if there are exactly three or four channels
67  * (rgb or rgba) it swaps the channel order (bgr or abgr).
68  *
69  * PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly
70  * packed in 16-bit values.   However no tools are supplied for interpreting
71  * these values.
72  *
73  * "hot" (over 1.0) areas written in floating point get clamped to
74  * 1.0 in the integer data types.
75  *
76  * When the file is closed after writing, the bit depth and sample format
77  * are set always to appear as if 8-bit data has been written into it.
78  * That way a naive program unaware of the particulars of the encoding
79  * gets the format it is most likely able to handle.
80  *
81  * The codec does it's own horizontal differencing step on the coded
82  * values so the libraries predictor stuff should be turned off.
83  * The codec also handle byte swapping the encoded values as necessary
84  * since the library does not have the information necessary
85  * to know the bit depth of the raw unencoded buffer.
86  *
87  */
88 
89 #include "tif_predict.h"
90 #include "zlib.h"
91 
92 #include <stdio.h>
93 #include <stdlib.h>
94 #include <math.h>
95 
96 /* Tables for converting to/from 11 bit coded values */
97 
98 #define  TSIZE	 2048		/* decode table size (11-bit tokens) */
99 #define  TSIZEP1 2049		/* Plus one for slop */
100 #define  ONE	 1250		/* token value of 1.0 exactly */
101 #define  RATIO	 1.004		/* nominal ratio for log part */
102 
103 #define CODE_MASK 0x7ff         /* 11 bits. */
104 
105 static float  Fltsize;
106 static float  LogK1, LogK2;
107 
108 #define REPEAT(n, op)   { int i; i=n; do { i--; op; } while (i>0); }
109 
110 static void
horizontalAccumulateF(uint16 * wp,int n,int stride,float * op,float * ToLinearF)111 horizontalAccumulateF(uint16 *wp, int n, int stride, float *op,
112 	float *ToLinearF)
113 {
114     register unsigned int  cr, cg, cb, ca, mask;
115     register float  t0, t1, t2, t3;
116 
117     if (n >= stride) {
118 	mask = CODE_MASK;
119 	if (stride == 3) {
120 	    t0 = ToLinearF[cr = wp[0]];
121 	    t1 = ToLinearF[cg = wp[1]];
122 	    t2 = ToLinearF[cb = wp[2]];
123 	    op[0] = t0;
124 	    op[1] = t1;
125 	    op[2] = t2;
126 	    n -= 3;
127 	    while (n > 0) {
128 		wp += 3;
129 		op += 3;
130 		n -= 3;
131 		t0 = ToLinearF[(cr += wp[0]) & mask];
132 		t1 = ToLinearF[(cg += wp[1]) & mask];
133 		t2 = ToLinearF[(cb += wp[2]) & mask];
134 		op[0] = t0;
135 		op[1] = t1;
136 		op[2] = t2;
137 	    }
138 	} else if (stride == 4) {
139 	    t0 = ToLinearF[cr = wp[0]];
140 	    t1 = ToLinearF[cg = wp[1]];
141 	    t2 = ToLinearF[cb = wp[2]];
142 	    t3 = ToLinearF[ca = wp[3]];
143 	    op[0] = t0;
144 	    op[1] = t1;
145 	    op[2] = t2;
146 	    op[3] = t3;
147 	    n -= 4;
148 	    while (n > 0) {
149 		wp += 4;
150 		op += 4;
151 		n -= 4;
152 		t0 = ToLinearF[(cr += wp[0]) & mask];
153 		t1 = ToLinearF[(cg += wp[1]) & mask];
154 		t2 = ToLinearF[(cb += wp[2]) & mask];
155 		t3 = ToLinearF[(ca += wp[3]) & mask];
156 		op[0] = t0;
157 		op[1] = t1;
158 		op[2] = t2;
159 		op[3] = t3;
160 	    }
161 	} else {
162 	    REPEAT(stride, *op = ToLinearF[*wp&mask]; wp++; op++)
163 	    n -= stride;
164 	    while (n > 0) {
165 		REPEAT(stride,
166 		    wp[stride] += *wp; *op = ToLinearF[*wp&mask]; wp++; op++)
167 		n -= stride;
168 	    }
169 	}
170     }
171 }
172 
173 static void
horizontalAccumulate12(uint16 * wp,int n,int stride,int16 * op,float * ToLinearF)174 horizontalAccumulate12(uint16 *wp, int n, int stride, int16 *op,
175 	float *ToLinearF)
176 {
177     register unsigned int  cr, cg, cb, ca, mask;
178     register float  t0, t1, t2, t3;
179 
180 #define SCALE12 2048.0F
181 #define CLAMP12(t) (((t) < 3071) ? (uint16) (t) : 3071)
182 
183     if (n >= stride) {
184 	mask = CODE_MASK;
185 	if (stride == 3) {
186 	    t0 = ToLinearF[cr = wp[0]] * SCALE12;
187 	    t1 = ToLinearF[cg = wp[1]] * SCALE12;
188 	    t2 = ToLinearF[cb = wp[2]] * SCALE12;
189 	    op[0] = CLAMP12(t0);
190 	    op[1] = CLAMP12(t1);
191 	    op[2] = CLAMP12(t2);
192 	    n -= 3;
193 	    while (n > 0) {
194 		wp += 3;
195 		op += 3;
196 		n -= 3;
197 		t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
198 		t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
199 		t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
200 		op[0] = CLAMP12(t0);
201 		op[1] = CLAMP12(t1);
202 		op[2] = CLAMP12(t2);
203 	    }
204 	} else if (stride == 4) {
205 	    t0 = ToLinearF[cr = wp[0]] * SCALE12;
206 	    t1 = ToLinearF[cg = wp[1]] * SCALE12;
207 	    t2 = ToLinearF[cb = wp[2]] * SCALE12;
208 	    t3 = ToLinearF[ca = wp[3]] * SCALE12;
209 	    op[0] = CLAMP12(t0);
210 	    op[1] = CLAMP12(t1);
211 	    op[2] = CLAMP12(t2);
212 	    op[3] = CLAMP12(t3);
213 	    n -= 4;
214 	    while (n > 0) {
215 		wp += 4;
216 		op += 4;
217 		n -= 4;
218 		t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12;
219 		t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12;
220 		t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12;
221 		t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12;
222 		op[0] = CLAMP12(t0);
223 		op[1] = CLAMP12(t1);
224 		op[2] = CLAMP12(t2);
225 		op[3] = CLAMP12(t3);
226 	    }
227 	} else {
228 	    REPEAT(stride, t0 = ToLinearF[*wp&mask] * SCALE12;
229                            *op = CLAMP12(t0); wp++; op++)
230 	    n -= stride;
231 	    while (n > 0) {
232 		REPEAT(stride,
233 		    wp[stride] += *wp; t0 = ToLinearF[wp[stride]&mask]*SCALE12;
234 		    *op = CLAMP12(t0);  wp++; op++)
235 		n -= stride;
236 	    }
237 	}
238     }
239 }
240 
241 static void
horizontalAccumulate16(uint16 * wp,int n,int stride,uint16 * op,uint16 * ToLinear16)242 horizontalAccumulate16(uint16 *wp, int n, int stride, uint16 *op,
243 	uint16 *ToLinear16)
244 {
245     register unsigned int  cr, cg, cb, ca, mask;
246 
247     if (n >= stride) {
248 	mask = CODE_MASK;
249 	if (stride == 3) {
250 	    op[0] = ToLinear16[cr = wp[0]];
251 	    op[1] = ToLinear16[cg = wp[1]];
252 	    op[2] = ToLinear16[cb = wp[2]];
253 	    n -= 3;
254 	    while (n > 0) {
255 		wp += 3;
256 		op += 3;
257 		n -= 3;
258 		op[0] = ToLinear16[(cr += wp[0]) & mask];
259 		op[1] = ToLinear16[(cg += wp[1]) & mask];
260 		op[2] = ToLinear16[(cb += wp[2]) & mask];
261 	    }
262 	} else if (stride == 4) {
263 	    op[0] = ToLinear16[cr = wp[0]];
264 	    op[1] = ToLinear16[cg = wp[1]];
265 	    op[2] = ToLinear16[cb = wp[2]];
266 	    op[3] = ToLinear16[ca = wp[3]];
267 	    n -= 4;
268 	    while (n > 0) {
269 		wp += 4;
270 		op += 4;
271 		n -= 4;
272 		op[0] = ToLinear16[(cr += wp[0]) & mask];
273 		op[1] = ToLinear16[(cg += wp[1]) & mask];
274 		op[2] = ToLinear16[(cb += wp[2]) & mask];
275 		op[3] = ToLinear16[(ca += wp[3]) & mask];
276 	    }
277 	} else {
278 	    REPEAT(stride, *op = ToLinear16[*wp&mask]; wp++; op++)
279 	    n -= stride;
280 	    while (n > 0) {
281 		REPEAT(stride,
282 		    wp[stride] += *wp; *op = ToLinear16[*wp&mask]; wp++; op++)
283 		n -= stride;
284 	    }
285 	}
286     }
287 }
288 
289 /*
290  * Returns the log encoded 11-bit values with the horizontal
291  * differencing undone.
292  */
293 static void
horizontalAccumulate11(uint16 * wp,int n,int stride,uint16 * op)294 horizontalAccumulate11(uint16 *wp, int n, int stride, uint16 *op)
295 {
296     register unsigned int  cr, cg, cb, ca, mask;
297 
298     if (n >= stride) {
299 	mask = CODE_MASK;
300 	if (stride == 3) {
301 	    op[0] = cr = wp[0];  op[1] = cg = wp[1];  op[2] = cb = wp[2];
302 	    n -= 3;
303 	    while (n > 0) {
304 		wp += 3;
305 		op += 3;
306 		n -= 3;
307 		op[0] = (cr += wp[0]) & mask;
308 		op[1] = (cg += wp[1]) & mask;
309 		op[2] = (cb += wp[2]) & mask;
310 	    }
311 	} else if (stride == 4) {
312 	    op[0] = cr = wp[0];  op[1] = cg = wp[1];
313 	    op[2] = cb = wp[2];  op[3] = ca = wp[3];
314 	    n -= 4;
315 	    while (n > 0) {
316 		wp += 4;
317 		op += 4;
318 		n -= 4;
319 		op[0] = (cr += wp[0]) & mask;
320 		op[1] = (cg += wp[1]) & mask;
321 		op[2] = (cb += wp[2]) & mask;
322 		op[3] = (ca += wp[3]) & mask;
323 	    }
324 	} else {
325 	    REPEAT(stride, *op = *wp&mask; wp++; op++)
326 	    n -= stride;
327 	    while (n > 0) {
328 		REPEAT(stride,
329 		    wp[stride] += *wp; *op = *wp&mask; wp++; op++)
330 	    	n -= stride;
331 	    }
332 	}
333     }
334 }
335 
336 static void
horizontalAccumulate8(uint16 * wp,int n,int stride,unsigned char * op,unsigned char * ToLinear8)337 horizontalAccumulate8(uint16 *wp, int n, int stride, unsigned char *op,
338 	unsigned char *ToLinear8)
339 {
340     register unsigned int  cr, cg, cb, ca, mask;
341 
342     if (n >= stride) {
343 	mask = CODE_MASK;
344 	if (stride == 3) {
345 	    op[0] = ToLinear8[cr = wp[0]];
346 	    op[1] = ToLinear8[cg = wp[1]];
347 	    op[2] = ToLinear8[cb = wp[2]];
348 	    n -= 3;
349 	    while (n > 0) {
350 		n -= 3;
351 		wp += 3;
352 		op += 3;
353 		op[0] = ToLinear8[(cr += wp[0]) & mask];
354 		op[1] = ToLinear8[(cg += wp[1]) & mask];
355 		op[2] = ToLinear8[(cb += wp[2]) & mask];
356 	    }
357 	} else if (stride == 4) {
358 	    op[0] = ToLinear8[cr = wp[0]];
359 	    op[1] = ToLinear8[cg = wp[1]];
360 	    op[2] = ToLinear8[cb = wp[2]];
361 	    op[3] = ToLinear8[ca = wp[3]];
362 	    n -= 4;
363 	    while (n > 0) {
364 		n -= 4;
365 		wp += 4;
366 		op += 4;
367 		op[0] = ToLinear8[(cr += wp[0]) & mask];
368 		op[1] = ToLinear8[(cg += wp[1]) & mask];
369 		op[2] = ToLinear8[(cb += wp[2]) & mask];
370 		op[3] = ToLinear8[(ca += wp[3]) & mask];
371 	    }
372 	} else {
373 	    REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
374 	    n -= stride;
375 	    while (n > 0) {
376 		REPEAT(stride,
377 		    wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
378 		n -= stride;
379 	    }
380 	}
381     }
382 }
383 
384 
385 static void
horizontalAccumulate8abgr(uint16 * wp,int n,int stride,unsigned char * op,unsigned char * ToLinear8)386 horizontalAccumulate8abgr(uint16 *wp, int n, int stride, unsigned char *op,
387 	unsigned char *ToLinear8)
388 {
389     register unsigned int  cr, cg, cb, ca, mask;
390     register unsigned char  t0, t1, t2, t3;
391 
392     if (n >= stride) {
393 	mask = CODE_MASK;
394 	if (stride == 3) {
395 	    op[0] = 0;
396 	    t1 = ToLinear8[cb = wp[2]];
397 	    t2 = ToLinear8[cg = wp[1]];
398 	    t3 = ToLinear8[cr = wp[0]];
399 	    op[1] = t1;
400 	    op[2] = t2;
401 	    op[3] = t3;
402 	    n -= 3;
403 	    while (n > 0) {
404 		n -= 3;
405 		wp += 3;
406 		op += 4;
407 		op[0] = 0;
408 		t1 = ToLinear8[(cb += wp[2]) & mask];
409 		t2 = ToLinear8[(cg += wp[1]) & mask];
410 		t3 = ToLinear8[(cr += wp[0]) & mask];
411 		op[1] = t1;
412 		op[2] = t2;
413 		op[3] = t3;
414 	    }
415 	} else if (stride == 4) {
416 	    t0 = ToLinear8[ca = wp[3]];
417 	    t1 = ToLinear8[cb = wp[2]];
418 	    t2 = ToLinear8[cg = wp[1]];
419 	    t3 = ToLinear8[cr = wp[0]];
420 	    op[0] = t0;
421 	    op[1] = t1;
422 	    op[2] = t2;
423 	    op[3] = t3;
424 	    n -= 4;
425 	    while (n > 0) {
426 		n -= 4;
427 		wp += 4;
428 		op += 4;
429 		t0 = ToLinear8[(ca += wp[3]) & mask];
430 		t1 = ToLinear8[(cb += wp[2]) & mask];
431 		t2 = ToLinear8[(cg += wp[1]) & mask];
432 		t3 = ToLinear8[(cr += wp[0]) & mask];
433 		op[0] = t0;
434 		op[1] = t1;
435 		op[2] = t2;
436 		op[3] = t3;
437 	    }
438 	} else {
439 	    REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++)
440 	    n -= stride;
441 	    while (n > 0) {
442 		REPEAT(stride,
443 		    wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++)
444 		n -= stride;
445 	    }
446 	}
447     }
448 }
449 
450 /*
451  * State block for each open TIFF
452  * file using PixarLog compression/decompression.
453  */
454 typedef	struct {
455 	TIFFPredictorState	predict;
456 	z_stream		stream;
457 	uint16			*tbuf;
458 	uint16			stride;
459 	int			state;
460 	int			user_datafmt;
461 	int			quality;
462 #define PLSTATE_INIT 1
463 
464 	TIFFVSetMethod		vgetparent;	/* super-class method */
465 	TIFFVSetMethod		vsetparent;	/* super-class method */
466 
467 	float *ToLinearF;
468 	uint16 *ToLinear16;
469 	unsigned char *ToLinear8;
470 	uint16  *FromLT2;
471 	uint16  *From14; /* Really for 16-bit data, but we shift down 2 */
472 	uint16  *From8;
473 
474 } PixarLogState;
475 
476 static int
PixarLogMakeTables(TIFF * tif,PixarLogState * sp)477 PixarLogMakeTables(TIFF *tif, PixarLogState *sp)
478 {
479 
480 /*
481  *    We make several tables here to convert between various external
482  *    representations (float, 16-bit, and 8-bit) and the internal
483  *    11-bit companded representation.  The 11-bit representation has two
484  *    distinct regions.  A linear bottom end up through .018316 in steps
485  *    of about .000073, and a region of constant ratio up to about 25.
486  *    These floating point numbers are stored in the main table ToLinearF.
487  *    All other tables are derived from this one.  The tables (and the
488  *    ratios) are continuous at the internal seam.
489  */
490 
491     int  nlin, lt2size;
492     int  i, j;
493     double  b, c, linstep, v;
494     float *ToLinearF;
495     uint16 *ToLinear16;
496     unsigned char *ToLinear8;
497     uint16  *FromLT2;
498     uint16  *From14; /* Really for 16-bit data, but we shift down 2 */
499     uint16  *From8;
500 
501     c = log(RATIO);
502     nlin = (int)(1./c);	/* nlin must be an integer */
503     c = 1./nlin;
504     b = exp(-c*ONE);	/* multiplicative scale factor [b*exp(c*ONE) = 1] */
505     linstep = b*c*exp(1.);
506 
507     LogK1 = (float)(1./c);	/* if (v >= 2)  token = k1*log(v*k2) */
508     LogK2 = (float)(1./b);
509     lt2size = (int)(2./linstep) + 1;
510     FromLT2 = (uint16 *)_TIFFmalloc(lt2size*sizeof(uint16));
511     From14 = (uint16 *)_TIFFmalloc(16384*sizeof(uint16));
512     From8 = (uint16 *)_TIFFmalloc(256*sizeof(uint16));
513     ToLinearF = (float *)_TIFFmalloc(TSIZEP1 * sizeof(float));
514     ToLinear16 = (uint16 *)_TIFFmalloc(TSIZEP1 * sizeof(uint16));
515     ToLinear8=(unsigned char *)_TIFFmalloc(*sizeof(unsigned char));
516     if (FromLT2 == NULL || From14  == NULL || From8   == NULL ||
517 	 ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL) {
518 	if (FromLT2) _TIFFfree(FromLT2);
519 	if (From14) _TIFFfree(From14);
520 	if (From8) _TIFFfree(From8);
521 	if (ToLinearF) _TIFFfree(ToLinearF);
522 	if (ToLinear16) _TIFFfree(ToLinear16);
523 	if (ToLinear8) _TIFFfree(ToLinear8);
524 	sp->FromLT2 = NULL;
525 	sp->From14 = NULL;
526 	sp->From8 = NULL;
527 	sp->ToLinearF = NULL;
528 	sp->ToLinear16 = NULL;
529 	sp->ToLinear8 = NULL;
530 	return 0;
531     }
532 
533     j = 0;
534 
535     for (i = 0; i < nlin; i++)  {
536 	v = i * linstep;
537 	ToLinearF[j++] = (float)v;
538     }
539 
540     for (i = nlin; i < TSIZE; i++)
541 	ToLinearF[j++] = (float)(b*exp(c*i));
542 
543     ToLinearF[2048] = ToLinearF[2047];
544 
545     for (i = 0; i < TSIZEP1; i++)  {
546 	v = ToLinearF[i]*65535.0 + 0.5;
547 	ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16)v;
548 	v = ToLinearF[i]*255.0  + 0.5;
549 	ToLinear8[i]  = (v > 255.0) ? 255 : (unsigned char)v;
550     }
551 
552     j = 0;
553     for (i = 0; i < lt2size; i++)  {
554 	if ((i*linstep)*(i*linstep) > ToLinearF[j]*ToLinearF[j+1])
555 	    j++;
556 	FromLT2[i] = j;
557     }
558 
559     /*
560      * Since we lose info anyway on 16-bit data, we set up a 14-bit
561      * table and shift 16-bit values down two bits on input.
562      * saves a little table space.
563      */
564     j = 0;
565     for (i = 0; i < 16384; i++)  {
566 	while ((i/16383.)*(i/16383.) > ToLinearF[j]*ToLinearF[j+1])
567 	    j++;
568 	From14[i] = j;
569     }
570 
571     j = 0;
572     for (i = 0; i < 256; i++)  {
573 	while ((i/255.)*(i/255.) > ToLinearF[j]*ToLinearF[j+1])
574 	    j++;
575 	From8[i] = j;
576     }
577 
578     Fltsize = (float)(lt2size/2);
579 
580     sp->ToLinearF = ToLinearF;
581     sp->ToLinear16 = ToLinear16;
582     sp->ToLinear8 = ToLinear8;
583     sp->FromLT2 = FromLT2;
584     sp->From14 = From14;
585     sp->From8 = From8;
586 
587     return 1;
588 }
589 
590 #define	DecoderState(tif)	((PixarLogState*) (tif)->tif_data)
591 #define	EncoderState(tif)	((PixarLogState*) (tif)->tif_data)
592 
593 #ifdef PDFLIB_TIFFWRITE_SUPPORT
594 static	int PixarLogEncode(TIFF*, tidata_t, tsize_t, tsample_t);
595 #endif /* PDFLIB_TIFFWRITE_SUPPORT */
596 static	int PixarLogDecode(TIFF*, tidata_t, tsize_t, tsample_t);
597 
598 #define N(a)   (sizeof(a)/sizeof(a[0]))
599 #define PIXARLOGDATAFMT_UNKNOWN	-1
600 
601 static int
PixarLogGuessDataFmt(TIFFDirectory * td)602 PixarLogGuessDataFmt(TIFFDirectory *td)
603 {
604 	int guess = PIXARLOGDATAFMT_UNKNOWN;
605 	int format = td->td_sampleformat;
606 
607 	/* If the user didn't tell us his datafmt,
608 	 * take our best guess from the bitspersample.
609 	 */
610 	switch (td->td_bitspersample) {
611 	 case 32:
612 		if (format == SAMPLEFORMAT_IEEEFP)
613 			guess = PIXARLOGDATAFMT_FLOAT;
614 		break;
615 	 case 16:
616 		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
617 			guess = PIXARLOGDATAFMT_16BIT;
618 		break;
619 	 case 12:
620 		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT)
621 			guess = PIXARLOGDATAFMT_12BITPICIO;
622 		break;
623 	 case 11:
624 		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
625 			guess = PIXARLOGDATAFMT_11BITLOG;
626 		break;
627 	 case 8:
628 		if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT)
629 			guess = PIXARLOGDATAFMT_8BIT;
630 		break;
631 	}
632 
633 	return guess;
634 }
635 
636 static uint32
multiply(size_t m1,size_t m2)637 multiply(size_t m1, size_t m2)
638 {
639 	uint32	bytes = m1 * m2;
640 
641 	if (m1 && bytes / m1 != m2)
642 		bytes = 0;
643 
644 	return bytes;
645 }
646 
647 static int
PixarLogSetupDecode(TIFF * tif)648 PixarLogSetupDecode(TIFF* tif)
649 {
650 	TIFFDirectory *td = &tif->tif_dir;
651 	PixarLogState* sp = DecoderState(tif);
652 	tsize_t tbuf_size;
653 	static const char module[] = "PixarLogSetupDecode";
654 
655 	assert(sp != NULL);
656 
657 	/* Make sure no byte swapping happens on the data
658 	 * after decompression. */
659 	tif->tif_postdecode = _TIFFNoPostDecode;
660 
661 	/* for some reason, we can't do this in TIFFInitPixarLog */
662 
663 	sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
664 	    td->td_samplesperpixel : 1);
665 	tbuf_size = multiply(multiply(multiply(sp->stride, td->td_imagewidth),
666 				      td->td_rowsperstrip), sizeof(uint16));
667 	if (tbuf_size == 0)
668 		return (0);
669 	sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
670 	if (sp->tbuf == NULL)
671 		return (0);
672 	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
673 		sp->user_datafmt = PixarLogGuessDataFmt(td);
674 	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
675 		_TIFFError(tif, module,
676 "PixarLog compression can't handle bits depth/data format combination\
677 (depth: %d)",
678 			td->td_bitspersample);
679 		return (0);
680 	}
681 
682 	if (inflateInit(&sp->stream) != Z_OK) {
683 		_TIFFError(tif, module, "%s: %s",
684 			tif->tif_name, sp->stream.msg);
685 		return (0);
686 	} else {
687 		sp->state |= PLSTATE_INIT;
688 		return (1);
689 	}
690 }
691 
692 /*
693  * Setup state for decoding a strip.
694  */
695 static int
PixarLogPreDecode(TIFF * tif,tsample_t s)696 PixarLogPreDecode(TIFF* tif, tsample_t s)
697 {
698 	PixarLogState* sp = DecoderState(tif);
699 
700 	(void) s;
701 	assert(sp != NULL);
702 	sp->stream.next_in = tif->tif_rawdata;
703 	sp->stream.avail_in = tif->tif_rawcc;
704 	return (inflateReset(&sp->stream) == Z_OK);
705 }
706 
707 static int
PixarLogDecode(TIFF * tif,tidata_t op,tsize_t occ,tsample_t s)708 PixarLogDecode(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s)
709 {
710 	TIFFDirectory *td = &tif->tif_dir;
711 	PixarLogState* sp = DecoderState(tif);
712 	static const char module[] = "PixarLogDecode";
713 	int i, nsamples, llen;
714 	uint16 *up;
715 
716 	switch (sp->user_datafmt) {
717 	case PIXARLOGDATAFMT_FLOAT:
718 		nsamples = occ / sizeof(float);	/* XXX float == 32 bits */
719 		break;
720 	case PIXARLOGDATAFMT_16BIT:
721 	case PIXARLOGDATAFMT_12BITPICIO:
722 	case PIXARLOGDATAFMT_11BITLOG:
723 		nsamples = occ / sizeof(uint16); /* XXX uint16 == 16 bits */
724 		break;
725 	case PIXARLOGDATAFMT_8BIT:
726 	case PIXARLOGDATAFMT_8BITABGR:
727 		nsamples = occ;
728 		break;
729 	default:
730 		_TIFFError(tif, tif->tif_name,
731 			"%d bit input not supported in PixarLog",
732 			td->td_bitspersample);
733 		return 0;
734 	}
735 
736 	llen = sp->stride * td->td_imagewidth;
737 
738 	(void) s;
739 	assert(sp != NULL);
740 	sp->stream.next_out = (unsigned char *) sp->tbuf;
741 	sp->stream.avail_out = nsamples * sizeof(uint16);
742 	do {
743 		int state = inflate(&sp->stream, Z_PARTIAL_FLUSH);
744 		if (state == Z_STREAM_END) {
745 			break;			/* XXX */
746 		}
747 		if (state == Z_DATA_ERROR) {
748 			_TIFFError(tif, module,
749 			    "%s: Decoding error at scanline %d, %s",
750 			    tif->tif_name, tif->tif_row, sp->stream.msg);
751 			if (inflateSync(&sp->stream) != Z_OK)
752 				return (0);
753 			continue;
754 		}
755 		if (state != Z_OK) {
756 			_TIFFError(tif, module, "%s: zlib error: %s",
757 			    tif->tif_name, sp->stream.msg);
758 			return (0);
759 		}
760 	} while (sp->stream.avail_out > 0);
761 
762 	/* hopefully, we got all the bytes we needed */
763 	if (sp->stream.avail_out != 0) {
764 		_TIFFError(tif, module,
765 		    "%s: Not enough data at scanline %d (short %d bytes)",
766 		    tif->tif_name, tif->tif_row, sp->stream.avail_out);
767 		return (0);
768 	}
769 
770 	up = sp->tbuf;
771 	/* Swap bytes in the data if from a different endian machine. */
772 	if (tif->tif_flags & TIFF_SWAB)
773 		TIFFSwabArrayOfShort(up, nsamples);
774 
775 	for (i = 0; i < nsamples; i += llen, up += llen) {
776 		switch (sp->user_datafmt)  {
777 		case PIXARLOGDATAFMT_FLOAT:
778 			horizontalAccumulateF(up, llen, sp->stride,
779 					(float *)op, sp->ToLinearF);
780 			op += llen * sizeof(float);
781 			break;
782 		case PIXARLOGDATAFMT_16BIT:
783 			horizontalAccumulate16(up, llen, sp->stride,
784 					(uint16 *)op, sp->ToLinear16);
785 			op += llen * sizeof(uint16);
786 			break;
787 		case PIXARLOGDATAFMT_12BITPICIO:
788 			horizontalAccumulate12(up, llen, sp->stride,
789 					(int16 *)op, sp->ToLinearF);
790 			op += llen * sizeof(int16);
791 			break;
792 		case PIXARLOGDATAFMT_11BITLOG:
793 			horizontalAccumulate11(up, llen, sp->stride,
794 					(uint16 *)op);
795 			op += llen * sizeof(uint16);
796 			break;
797 		case PIXARLOGDATAFMT_8BIT:
798 			horizontalAccumulate8(up, llen, sp->stride,
799 					(unsigned char *)op, sp->ToLinear8);
800 			op += llen * sizeof(unsigned char);
801 			break;
802 		case PIXARLOGDATAFMT_8BITABGR:
803 			horizontalAccumulate8abgr(up, llen, sp->stride,
804 					(unsigned char *)op, sp->ToLinear8);
805 			op += llen * sizeof(unsigned char);
806 			break;
807 		default:
808 			_TIFFError(tif, tif->tif_name,
809 				  "PixarLogDecode: unsupported bits/sample: %d",
810 				  td->td_bitspersample);
811 			return (0);
812 		}
813 	}
814 
815 	return (1);
816 }
817 
818 #ifdef PDFLIB_TIFFWRITE_SUPPORT
819 static int
PixarLogSetupEncode(TIFF * tif)820 PixarLogSetupEncode(TIFF* tif)
821 {
822 	TIFFDirectory *td = &tif->tif_dir;
823 	PixarLogState* sp = EncoderState(tif);
824 	tsize_t tbuf_size;
825 	static const char module[] = "PixarLogSetupEncode";
826 
827 	assert(sp != NULL);
828 
829 	/* for some reason, we can't do this in TIFFInitPixarLog */
830 
831 	sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ?
832 	    td->td_samplesperpixel : 1);
833 	tbuf_size = multiply(multiply(multiply(sp->stride, td->td_imagewidth),
834 				      td->td_rowsperstrip), sizeof(uint16));
835 	if (tbuf_size == 0)
836 		return (0);
837 	sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size);
838 	if (sp->tbuf == NULL)
839 		return (0);
840 	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN)
841 		sp->user_datafmt = PixarLogGuessDataFmt(td);
842 	if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) {
843 		_TIFFError(tif, module,
844 		"PixarLog compression can't handle %d bit linear encodings",
845 		td->td_bitspersample);
846 		return (0);
847 	}
848 
849 	if (deflateInit(&sp->stream, sp->quality) != Z_OK) {
850 		_TIFFError(tif, module, "%s: %s",
851 			tif->tif_name, sp->stream.msg);
852 		return (0);
853 	} else {
854 		sp->state |= PLSTATE_INIT;
855 		return (1);
856 	}
857 }
858 #endif /* PDFLIB_TIFFWRITE_SUPPORT */
859 
860 /*
861  * Reset encoding state at the start of a strip.
862  */
863 #ifdef PDFLIB_TIFFWRITE_SUPPORT
864 static int
PixarLogPreEncode(TIFF * tif,tsample_t s)865 PixarLogPreEncode(TIFF* tif, tsample_t s)
866 {
867 	PixarLogState *sp = EncoderState(tif);
868 
869 	(void) s;
870 	assert(sp != NULL);
871 	sp->stream.next_out = tif->tif_rawdata;
872 	sp->stream.avail_out = tif->tif_rawdatasize;
873 	return (deflateReset(&sp->stream) == Z_OK);
874 }
875 #endif /* PDFLIB_TIFFWRITE_SUPPORT */
876 
877 #ifdef PDFLIB_TIFFWRITE_SUPPORT
878 static void
horizontalDifferenceF(float * ip,int n,int stride,uint16 * wp,uint16 * FromLT2)879 horizontalDifferenceF(float *ip, int n, int stride, uint16 *wp, uint16 *FromLT2)
880 {
881 
882     int32 r1, g1, b1, a1, r2, g2, b2, a2, mask;
883     float fltsize = Fltsize;
884 
885 #define  CLAMP(v) ( (v<(float)0.)   ? 0				\
886 		  : (v<(float)2.)   ? FromLT2[(int)(v*fltsize)]	\
887 		  : (v>(float)24.2) ? 2047			\
888 		  : LogK1*log(v*LogK2) + 0.5 )
889 
890     mask = CODE_MASK;
891     if (n >= stride) {
892 	if (stride == 3) {
893 	    r2 = wp[0] = (uint16) CLAMP(ip[0]);
894 	    g2 = wp[1] = (uint16) CLAMP(ip[1]);
895 	    b2 = wp[2] = (uint16) CLAMP(ip[2]);
896 	    n -= 3;
897 	    while (n > 0) {
898 		n -= 3;
899 		wp += 3;
900 		ip += 3;
901 		r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
902 		g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
903 		b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
904 	    }
905 	} else if (stride == 4) {
906 	    r2 = wp[0] = (uint16) CLAMP(ip[0]);
907 	    g2 = wp[1] = (uint16) CLAMP(ip[1]);
908 	    b2 = wp[2] = (uint16) CLAMP(ip[2]);
909 	    a2 = wp[3] = (uint16) CLAMP(ip[3]);
910 	    n -= 4;
911 	    while (n > 0) {
912 		n -= 4;
913 		wp += 4;
914 		ip += 4;
915 		r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
916 		g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
917 		b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
918 		a1 = (int32) CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
919 	    }
920 	} else {
921 	    ip += n - 1;	/* point to last one */
922 	    wp += n - 1;	/* point to last one */
923 	    n -= stride;
924 	    while (n > 0) {
925 		REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]);
926 				wp[stride] -= wp[0];
927 				wp[stride] &= mask;
928 				wp--; ip--)
929 		n -= stride;
930 	    }
931 	    REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]); wp--; ip--)
932 	}
933     }
934 }
935 #endif /* PDFLIB_TIFFWRITE_SUPPORT */
936 
937 #ifdef PDFLIB_TIFFWRITE_SUPPORT
938 static void
horizontalDifference16(unsigned short * ip,int n,int stride,unsigned short * wp,uint16 * From14)939 horizontalDifference16(unsigned short *ip, int n, int stride,
940 	unsigned short *wp, uint16 *From14)
941 {
942     register int  r1, g1, b1, a1, r2, g2, b2, a2, mask;
943 
944 /* assumption is unsigned pixel values */
945 #undef   CLAMP
946 #define  CLAMP(v) From14[(v) >> 2]
947 
948     mask = CODE_MASK;
949     if (n >= stride) {
950 	if (stride == 3) {
951 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
952 	    b2 = wp[2] = CLAMP(ip[2]);
953 	    n -= 3;
954 	    while (n > 0) {
955 		n -= 3;
956 		wp += 3;
957 		ip += 3;
958 		r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
959 		g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
960 		b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
961 	    }
962 	} else if (stride == 4) {
963 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
964 	    b2 = wp[2] = CLAMP(ip[2]);  a2 = wp[3] = CLAMP(ip[3]);
965 	    n -= 4;
966 	    while (n > 0) {
967 		n -= 4;
968 		wp += 4;
969 		ip += 4;
970 		r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1;
971 		g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1;
972 		b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1;
973 		a1 = CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1;
974 	    }
975 	} else {
976 	    ip += n - 1;	/* point to last one */
977 	    wp += n - 1;	/* point to last one */
978 	    n -= stride;
979 	    while (n > 0) {
980 		REPEAT(stride, wp[0] = CLAMP(ip[0]);
981 				wp[stride] -= wp[0];
982 				wp[stride] &= mask;
983 				wp--; ip--)
984 		n -= stride;
985 	    }
986 	    REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
987 	}
988     }
989 }
990 #endif /* PDFLIB_TIFFWRITE_SUPPORT */
991 
992 
993 #ifdef PDFLIB_TIFFWRITE_SUPPORT
994 static void
horizontalDifference8(unsigned char * ip,int n,int stride,unsigned short * wp,uint16 * From8)995 horizontalDifference8(unsigned char *ip, int n, int stride,
996 	unsigned short *wp, uint16 *From8)
997 {
998     register int  r1, g1, b1, a1, r2, g2, b2, a2, mask;
999 
1000 #undef	 CLAMP
1001 #define  CLAMP(v) (From8[(v)])
1002 
1003     mask = CODE_MASK;
1004     if (n >= stride) {
1005 	if (stride == 3) {
1006 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
1007 	    b2 = wp[2] = CLAMP(ip[2]);
1008 	    n -= 3;
1009 	    while (n > 0) {
1010 		n -= 3;
1011 		r1 = CLAMP(ip[3]); wp[3] = (r1-r2) & mask; r2 = r1;
1012 		g1 = CLAMP(ip[4]); wp[4] = (g1-g2) & mask; g2 = g1;
1013 		b1 = CLAMP(ip[5]); wp[5] = (b1-b2) & mask; b2 = b1;
1014 		wp += 3;
1015 		ip += 3;
1016 	    }
1017 	} else if (stride == 4) {
1018 	    r2 = wp[0] = CLAMP(ip[0]);  g2 = wp[1] = CLAMP(ip[1]);
1019 	    b2 = wp[2] = CLAMP(ip[2]);  a2 = wp[3] = CLAMP(ip[3]);
1020 	    n -= 4;
1021 	    while (n > 0) {
1022 		n -= 4;
1023 		r1 = CLAMP(ip[4]); wp[4] = (r1-r2) & mask; r2 = r1;
1024 		g1 = CLAMP(ip[5]); wp[5] = (g1-g2) & mask; g2 = g1;
1025 		b1 = CLAMP(ip[6]); wp[6] = (b1-b2) & mask; b2 = b1;
1026 		a1 = CLAMP(ip[7]); wp[7] = (a1-a2) & mask; a2 = a1;
1027 		wp += 4;
1028 		ip += 4;
1029 	    }
1030 	} else {
1031 	    wp += n + stride - 1;	/* point to last one */
1032 	    ip += n + stride - 1;	/* point to last one */
1033 	    n -= stride;
1034 	    while (n > 0) {
1035 		REPEAT(stride, wp[0] = CLAMP(ip[0]);
1036 				wp[stride] -= wp[0];
1037 				wp[stride] &= mask;
1038 				wp--; ip--)
1039 		n -= stride;
1040 	    }
1041 	    REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--)
1042 	}
1043     }
1044 }
1045 #endif /* PDFLIB_TIFFWRITE_SUPPORT */
1046 
1047 /*
1048  * Encode a chunk of pixels.
1049  */
1050 #ifdef PDFLIB_TIFFWRITE_SUPPORT
1051 static int
PixarLogEncode(TIFF * tif,tidata_t bp,tsize_t cc,tsample_t s)1052 PixarLogEncode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s)
1053 {
1054 	TIFFDirectory *td = &tif->tif_dir;
1055 	PixarLogState *sp = EncoderState(tif);
1056 	static const char module[] = "PixarLogEncode";
1057 	int 	i, n, llen;
1058 	unsigned short * up;
1059 
1060 	(void) s;
1061 
1062 	switch (sp->user_datafmt) {
1063 	case PIXARLOGDATAFMT_FLOAT:
1064 		n = cc / sizeof(float);		/* XXX float == 32 bits */
1065 		break;
1066 	case PIXARLOGDATAFMT_16BIT:
1067 	case PIXARLOGDATAFMT_12BITPICIO:
1068 	case PIXARLOGDATAFMT_11BITLOG:
1069 		n = cc / sizeof(uint16);	/* XXX uint16 == 16 bits */
1070 		break;
1071 	case PIXARLOGDATAFMT_8BIT:
1072 	case PIXARLOGDATAFMT_8BITABGR:
1073 		n = cc;
1074 		break;
1075 	default:
1076 		_TIFFError(tif, tif->tif_name,
1077 			"%d bit input not supported in PixarLog",
1078 			td->td_bitspersample);
1079 		return 0;
1080 	}
1081 
1082 	llen = sp->stride * td->td_imagewidth;
1083 
1084 	for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen) {
1085 		switch (sp->user_datafmt)  {
1086 		case PIXARLOGDATAFMT_FLOAT:
1087 			horizontalDifferenceF((float *)bp, llen,
1088 				sp->stride, up, sp->FromLT2);
1089 			bp += llen * sizeof(float);
1090 			break;
1091 		case PIXARLOGDATAFMT_16BIT:
1092 			horizontalDifference16((uint16 *)bp, llen,
1093 				sp->stride, up, sp->From14);
1094 			bp += llen * sizeof(uint16);
1095 			break;
1096 		case PIXARLOGDATAFMT_8BIT:
1097 			horizontalDifference8((unsigned char *)bp, llen,
1098 				sp->stride, up, sp->From8);
1099 			bp += llen * sizeof(unsigned char);
1100 			break;
1101 		default:
1102 			_TIFFError(tif, tif->tif_name,
1103 				"%d bit input not supported in PixarLog",
1104 				td->td_bitspersample);
1105 			return 0;
1106 		}
1107 	}
1108 
1109 	sp->stream.next_in = (unsigned char *) sp->tbuf;
1110 	sp->stream.avail_in = n * sizeof(uint16);
1111 
1112 	do {
1113 		if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK) {
1114 			_TIFFError(tif, module, "%s: Encoder error: %s",
1115 			    tif->tif_name, sp->stream.msg);
1116 			return (0);
1117 		}
1118 		if (sp->stream.avail_out == 0) {
1119 			tif->tif_rawcc = tif->tif_rawdatasize;
1120 			TIFFFlushData1(tif);
1121 			sp->stream.next_out = tif->tif_rawdata;
1122 			sp->stream.avail_out = tif->tif_rawdatasize;
1123 		}
1124 	} while (sp->stream.avail_in > 0);
1125 	return (1);
1126 }
1127 #endif /* PDFLIB_TIFFWRITE_SUPPORT */
1128 
1129 /*
1130  * Finish off an encoded strip by flushing the last
1131  * string and tacking on an End Of Information code.
1132  */
1133 
1134 #ifdef PDFLIB_TIFFWRITE_SUPPORT
1135 static int
PixarLogPostEncode(TIFF * tif)1136 PixarLogPostEncode(TIFF* tif)
1137 {
1138 	PixarLogState *sp = EncoderState(tif);
1139 	static const char module[] = "PixarLogPostEncode";
1140 	int state;
1141 
1142 	sp->stream.avail_in = 0;
1143 
1144 	do {
1145 		state = deflate(&sp->stream, Z_FINISH);
1146 		switch (state) {
1147 		case Z_STREAM_END:
1148 		case Z_OK:
1149 		    if (sp->stream.avail_out != tif->tif_rawdatasize) {
1150 			    tif->tif_rawcc =
1151 				tif->tif_rawdatasize - sp->stream.avail_out;
1152 			    TIFFFlushData1(tif);
1153 			    sp->stream.next_out = tif->tif_rawdata;
1154 			    sp->stream.avail_out = tif->tif_rawdatasize;
1155 		    }
1156 		    break;
1157 		default:
1158 		    _TIFFError(tif, module, "%s: zlib error: %s",
1159 			tif->tif_name, sp->stream.msg);
1160 		    return (0);
1161 		}
1162 	} while (state != Z_STREAM_END);
1163 	return (1);
1164 }
1165 #endif /* PDFLIB_TIFFWRITE_SUPPORT */
1166 
1167 #ifdef PDFLIB_TIFFWRITE_SUPPORT
1168 static void
PixarLogClose(TIFF * tif)1169 PixarLogClose(TIFF* tif)
1170 {
1171 	TIFFDirectory *td = &tif->tif_dir;
1172 
1173 	/* In a really sneaky maneuver, on close, we covertly modify both
1174 	 * bitspersample and sampleformat in the directory to indicate
1175 	 * 8-bit linear.  This way, the decode "just works" even for
1176 	 * readers that don't know about PixarLog, or how to set
1177 	 * the PIXARLOGDATFMT pseudo-tag.
1178 	 */
1179 	td->td_bitspersample = 8;
1180 	td->td_sampleformat = SAMPLEFORMAT_UINT;
1181 }
1182 #endif /* PDFLIB_TIFFWRITE_SUPPORT */
1183 
1184 static void
PixarLogCleanup(TIFF * tif)1185 PixarLogCleanup(TIFF* tif)
1186 {
1187 	PixarLogState* sp = (PixarLogState*) tif->tif_data;
1188 
1189 	if (sp) {
1190 		if (sp->FromLT2) _TIFFfree(sp->FromLT2);
1191 		if (sp->From14) _TIFFfree(sp->From14);
1192 		if (sp->From8) _TIFFfree(sp->From8);
1193 		if (sp->ToLinearF) _TIFFfree(sp->ToLinearF);
1194 		if (sp->ToLinear16) _TIFFfree(sp->ToLinear16);
1195 		if (sp->ToLinear8) _TIFFfree(sp->ToLinear8);
1196 		if (sp->state&PLSTATE_INIT) {
1197 			if (tif->tif_mode == O_RDONLY)
1198 				inflateEnd(&sp->stream);
1199 			else
1200 				deflateEnd(&sp->stream);
1201 		}
1202 		if (sp->tbuf)
1203 			_TIFFfree(sp->tbuf);
1204 		_TIFFfree(sp);
1205 		tif->tif_data = NULL;
1206 	}
1207 }
1208 
1209 static int
PixarLogVSetField(TIFF * tif,ttag_t tag,va_list ap)1210 PixarLogVSetField(TIFF* tif, ttag_t tag, va_list ap)
1211 {
1212     PixarLogState *sp = (PixarLogState *)tif->tif_data;
1213     int result;
1214     static const char module[] = "PixarLogVSetField";
1215 
1216     switch (tag) {
1217      case TIFFTAG_PIXARLOGQUALITY:
1218 		sp->quality = va_arg(ap, int);
1219 		if (tif->tif_mode != O_RDONLY && (sp->state&PLSTATE_INIT)) {
1220 			if (deflateParams(&sp->stream,
1221 			    sp->quality, Z_DEFAULT_STRATEGY) != Z_OK) {
1222 				_TIFFError(tif, module, "%s: zlib error: %s",
1223 					tif->tif_name, sp->stream.msg);
1224 				return (0);
1225 			}
1226 		}
1227 		return (1);
1228      case TIFFTAG_PIXARLOGDATAFMT:
1229 	sp->user_datafmt = va_arg(ap, int);
1230 	/* Tweak the TIFF header so that the rest of libtiff knows what
1231 	 * size of data will be passed between app and library, and
1232 	 * assume that the app knows what it is doing and is not
1233 	 * confused by these header manipulations...
1234 	 */
1235 	switch (sp->user_datafmt) {
1236 	 case PIXARLOGDATAFMT_8BIT:
1237 	 case PIXARLOGDATAFMT_8BITABGR:
1238 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8);
1239 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1240 	    break;
1241 	 case PIXARLOGDATAFMT_11BITLOG:
1242 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1243 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1244 	    break;
1245 	 case PIXARLOGDATAFMT_12BITPICIO:
1246 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1247 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT);
1248 	    break;
1249 	 case PIXARLOGDATAFMT_16BIT:
1250 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16);
1251 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT);
1252 	    break;
1253 	 case PIXARLOGDATAFMT_FLOAT:
1254 	    TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32);
1255 	    TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
1256 	    break;
1257 	}
1258 	/*
1259 	 * Must recalculate sizes should bits/sample change.
1260 	 */
1261 	tif->tif_tilesize = isTiled(tif) ? TIFFTileSize(tif) : (tsize_t) -1;
1262 	tif->tif_scanlinesize = TIFFScanlineSize(tif);
1263 	result = 1;		/* NB: pseudo tag */
1264 	break;
1265      default:
1266 	result = (*sp->vsetparent)(tif, tag, ap);
1267     }
1268     return (result);
1269 }
1270 
1271 static int
PixarLogVGetField(TIFF * tif,ttag_t tag,va_list ap)1272 PixarLogVGetField(TIFF* tif, ttag_t tag, va_list ap)
1273 {
1274     PixarLogState *sp = (PixarLogState *)tif->tif_data;
1275 
1276     switch (tag) {
1277      case TIFFTAG_PIXARLOGQUALITY:
1278 	*va_arg(ap, int*) = sp->quality;
1279 	break;
1280      case TIFFTAG_PIXARLOGDATAFMT:
1281 	*va_arg(ap, int*) = sp->user_datafmt;
1282 	break;
1283      default:
1284 	return (*sp->vgetparent)(tif, tag, ap);
1285     }
1286     return (1);
1287 }
1288 
1289 static const TIFFFieldInfo pixarlogFieldInfo[] = {
1290     {TIFFTAG_PIXARLOGDATAFMT,0,0,TIFF_ANY,  FIELD_PSEUDO,FALSE,FALSE,""},
1291     {TIFFTAG_PIXARLOGQUALITY,0,0,TIFF_ANY,  FIELD_PSEUDO,FALSE,FALSE,""}
1292 };
1293 
1294 int
TIFFInitPixarLog(TIFF * tif,int scheme)1295 TIFFInitPixarLog(TIFF* tif, int scheme)
1296 {
1297 	PixarLogState* sp;
1298 
1299 	assert(scheme == COMPRESSION_PIXARLOG);
1300 
1301 	/*
1302 	 * Allocate state block so tag methods have storage to record values.
1303 	 */
1304 	tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (PixarLogState));
1305 	if (tif->tif_data == NULL)
1306 		goto bad;
1307 	sp = (PixarLogState*) tif->tif_data;
1308 	_TIFFmemset(sp, 0, sizeof (*sp));
1309 	sp->stream.data_type = Z_BINARY;
1310 	sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN;
1311 
1312 	/*
1313 	 * Install codec methods.
1314 	 */
1315 	tif->tif_setupdecode = PixarLogSetupDecode;
1316 	tif->tif_predecode = PixarLogPreDecode;
1317 	tif->tif_decoderow = PixarLogDecode;
1318 	tif->tif_decodestrip = PixarLogDecode;
1319 	tif->tif_decodetile = PixarLogDecode;
1320 #ifdef PDFLIB_TIFFWRITE_SUPPORT
1321 	tif->tif_setupencode = PixarLogSetupEncode;
1322 	tif->tif_preencode = PixarLogPreEncode;
1323 	tif->tif_postencode = PixarLogPostEncode;
1324 	tif->tif_encoderow = PixarLogEncode;
1325 	tif->tif_encodestrip = PixarLogEncode;
1326 	tif->tif_encodetile = PixarLogEncode;
1327 	tif->tif_close = PixarLogClose;
1328 #endif	/* PDFLIB_TIFFWRITE_SUPPORT */
1329 	tif->tif_cleanup = PixarLogCleanup;
1330 
1331 	/* Override SetField so we can handle our private pseudo-tag */
1332 	TIFFMergeFieldInfo(tif, pixarlogFieldInfo, N(pixarlogFieldInfo));
1333 	sp->vgetparent = tif->tif_tagmethods.vgetfield;
1334 	/* hook for codec tags */
1335 	tif->tif_tagmethods.vgetfield = PixarLogVGetField;
1336 	sp->vsetparent = tif->tif_tagmethods.vsetfield;
1337 	/* hook for codec tags */
1338 	tif->tif_tagmethods.vsetfield = PixarLogVSetField;
1339 
1340 	/* Default values for codec-specific fields */
1341 	sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */
1342 	sp->state = 0;
1343 
1344 	/* we don't wish to use the predictor,
1345 	 * the default is none, which predictor value 1
1346 	 */
1347 	(void) TIFFPredictorInit(tif);
1348 
1349 	/*
1350 	 * build the companding tables
1351 	 */
1352 	PixarLogMakeTables(tif, sp);
1353 
1354 	return (1);
1355 bad:
1356 	_TIFFError(tif, "TIFFInitPixarLog",
1357 		"No space for PixarLog state block");
1358 	return (0);
1359 }
1360 #endif /* PIXARLOG_SUPPORT */
1361 
1362 /* vim: set ts=8 sts=8 sw=8 noet: */
1363