1      SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
2     $                   LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL,
3     $                   INFO )
4*
5*  -- LAPACK auxiliary routine (version 3.2) --
6*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
7*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
8*     November 2006
9*
10*     .. Scalar Arguments ..
11      CHARACTER          TRANS
12      INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N
13      DOUBLE PRECISION   RDSCAL, RDSUM, SCALE
14*     ..
15*     .. Array Arguments ..
16      COMPLEX*16         A( LDA, * ), B( LDB, * ), C( LDC, * ),
17     $                   D( LDD, * ), E( LDE, * ), F( LDF, * )
18*     ..
19*
20*  Purpose
21*  =======
22*
23*  ZTGSY2 solves the generalized Sylvester equation
24*
25*              A * R - L * B = scale *   C               (1)
26*              D * R - L * E = scale * F
27*
28*  using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices,
29*  (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M,
30*  N-by-N and M-by-N, respectively. A, B, D and E are upper triangular
31*  (i.e., (A,D) and (B,E) in generalized Schur form).
32*
33*  The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output
34*  scaling factor chosen to avoid overflow.
35*
36*  In matrix notation solving equation (1) corresponds to solve
37*  Zx = scale * b, where Z is defined as
38*
39*         Z = [ kron(In, A)  -kron(B', Im) ]             (2)
40*             [ kron(In, D)  -kron(E', Im) ],
41*
42*  Ik is the identity matrix of size k and X' is the transpose of X.
43*  kron(X, Y) is the Kronecker product between the matrices X and Y.
44*
45*  If TRANS = 'C', y in the conjugate transposed system Z'y = scale*b
46*  is solved for, which is equivalent to solve for R and L in
47*
48*              A' * R  + D' * L   = scale *  C           (3)
49*              R  * B' + L  * E'  = scale * -F
50*
51*  This case is used to compute an estimate of Dif[(A, D), (B, E)] =
52*  = sigma_min(Z) using reverse communicaton with ZLACON.
53*
54*  ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL
55*  of an upper bound on the separation between to matrix pairs. Then
56*  the input (A, D), (B, E) are sub-pencils of two matrix pairs in
57*  ZTGSYL.
58*
59*  Arguments
60*  =========
61*
62*  TRANS   (input) CHARACTER*1
63*          = 'N', solve the generalized Sylvester equation (1).
64*          = 'T': solve the 'transposed' system (3).
65*
66*  IJOB    (input) INTEGER
67*          Specifies what kind of functionality to be performed.
68*          =0: solve (1) only.
69*          =1: A contribution from this subsystem to a Frobenius
70*              norm-based estimate of the separation between two matrix
71*              pairs is computed. (look ahead strategy is used).
72*          =2: A contribution from this subsystem to a Frobenius
73*              norm-based estimate of the separation between two matrix
74*              pairs is computed. (DGECON on sub-systems is used.)
75*          Not referenced if TRANS = 'T'.
76*
77*  M       (input) INTEGER
78*          On entry, M specifies the order of A and D, and the row
79*          dimension of C, F, R and L.
80*
81*  N       (input) INTEGER
82*          On entry, N specifies the order of B and E, and the column
83*          dimension of C, F, R and L.
84*
85*  A       (input) COMPLEX*16 array, dimension (LDA, M)
86*          On entry, A contains an upper triangular matrix.
87*
88*  LDA     (input) INTEGER
89*          The leading dimension of the matrix A. LDA >= max(1, M).
90*
91*  B       (input) COMPLEX*16 array, dimension (LDB, N)
92*          On entry, B contains an upper triangular matrix.
93*
94*  LDB     (input) INTEGER
95*          The leading dimension of the matrix B. LDB >= max(1, N).
96*
97*  C       (input/output) COMPLEX*16 array, dimension (LDC, N)
98*          On entry, C contains the right-hand-side of the first matrix
99*          equation in (1).
100*          On exit, if IJOB = 0, C has been overwritten by the solution
101*          R.
102*
103*  LDC     (input) INTEGER
104*          The leading dimension of the matrix C. LDC >= max(1, M).
105*
106*  D       (input) COMPLEX*16 array, dimension (LDD, M)
107*          On entry, D contains an upper triangular matrix.
108*
109*  LDD     (input) INTEGER
110*          The leading dimension of the matrix D. LDD >= max(1, M).
111*
112*  E       (input) COMPLEX*16 array, dimension (LDE, N)
113*          On entry, E contains an upper triangular matrix.
114*
115*  LDE     (input) INTEGER
116*          The leading dimension of the matrix E. LDE >= max(1, N).
117*
118*  F       (input/output) COMPLEX*16 array, dimension (LDF, N)
119*          On entry, F contains the right-hand-side of the second matrix
120*          equation in (1).
121*          On exit, if IJOB = 0, F has been overwritten by the solution
122*          L.
123*
124*  LDF     (input) INTEGER
125*          The leading dimension of the matrix F. LDF >= max(1, M).
126*
127*  SCALE   (output) DOUBLE PRECISION
128*          On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions
129*          R and L (C and F on entry) will hold the solutions to a
130*          slightly perturbed system but the input matrices A, B, D and
131*          E have not been changed. If SCALE = 0, R and L will hold the
132*          solutions to the homogeneous system with C = F = 0.
133*          Normally, SCALE = 1.
134*
135*  RDSUM   (input/output) DOUBLE PRECISION
136*          On entry, the sum of squares of computed contributions to
137*          the Dif-estimate under computation by ZTGSYL, where the
138*          scaling factor RDSCAL (see below) has been factored out.
139*          On exit, the corresponding sum of squares updated with the
140*          contributions from the current sub-system.
141*          If TRANS = 'T' RDSUM is not touched.
142*          NOTE: RDSUM only makes sense when ZTGSY2 is called by
143*          ZTGSYL.
144*
145*  RDSCAL  (input/output) DOUBLE PRECISION
146*          On entry, scaling factor used to prevent overflow in RDSUM.
147*          On exit, RDSCAL is updated w.r.t. the current contributions
148*          in RDSUM.
149*          If TRANS = 'T', RDSCAL is not touched.
150*          NOTE: RDSCAL only makes sense when ZTGSY2 is called by
151*          ZTGSYL.
152*
153*  INFO    (output) INTEGER
154*          On exit, if INFO is set to
155*            =0: Successful exit
156*            <0: If INFO = -i, input argument number i is illegal.
157*            >0: The matrix pairs (A, D) and (B, E) have common or very
158*                close eigenvalues.
159*
160*  Further Details
161*  ===============
162*
163*  Based on contributions by
164*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
165*     Umea University, S-901 87 Umea, Sweden.
166*
167*  =====================================================================
168*
169*     .. Parameters ..
170      DOUBLE PRECISION   ZERO, ONE
171      INTEGER            LDZ
172      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, LDZ = 2 )
173*     ..
174*     .. Local Scalars ..
175      LOGICAL            NOTRAN
176      INTEGER            I, IERR, J, K
177      DOUBLE PRECISION   SCALOC
178      COMPLEX*16         ALPHA
179*     ..
180*     .. Local Arrays ..
181      INTEGER            IPIV( LDZ ), JPIV( LDZ )
182      COMPLEX*16         RHS( LDZ ), Z( LDZ, LDZ )
183*     ..
184*     .. External Functions ..
185      LOGICAL            LSAME
186      EXTERNAL           LSAME
187*     ..
188*     .. External Subroutines ..
189      EXTERNAL           XERBLA, ZAXPY, ZGESC2, ZGETC2, ZLATDF, ZSCAL
190*     ..
191*     .. Intrinsic Functions ..
192      INTRINSIC          DCMPLX, DCONJG, MAX
193*     ..
194*     .. Executable Statements ..
195*
196*     Decode and test input parameters
197*
198      INFO = 0
199      IERR = 0
200      NOTRAN = LSAME( TRANS, 'N' )
201      IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
202         INFO = -1
203      ELSE IF( NOTRAN ) THEN
204         IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN
205            INFO = -2
206         END IF
207      END IF
208      IF( INFO.EQ.0 ) THEN
209         IF( M.LE.0 ) THEN
210            INFO = -3
211         ELSE IF( N.LE.0 ) THEN
212            INFO = -4
213         ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
214            INFO = -5
215         ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
216            INFO = -8
217         ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
218            INFO = -10
219         ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
220            INFO = -12
221         ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
222            INFO = -14
223         ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
224            INFO = -16
225         END IF
226      END IF
227      IF( INFO.NE.0 ) THEN
228         CALL XERBLA( 'ZTGSY2', -INFO )
229         RETURN
230      END IF
231*
232      IF( NOTRAN ) THEN
233*
234*        Solve (I, J) - system
235*           A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
236*           D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
237*        for I = M, M - 1, ..., 1; J = 1, 2, ..., N
238*
239         SCALE = ONE
240         SCALOC = ONE
241         DO 30 J = 1, N
242            DO 20 I = M, 1, -1
243*
244*              Build 2 by 2 system
245*
246               Z( 1, 1 ) = A( I, I )
247               Z( 2, 1 ) = D( I, I )
248               Z( 1, 2 ) = -B( J, J )
249               Z( 2, 2 ) = -E( J, J )
250*
251*              Set up right hand side(s)
252*
253               RHS( 1 ) = C( I, J )
254               RHS( 2 ) = F( I, J )
255*
256*              Solve Z * x = RHS
257*
258               CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
259               IF( IERR.GT.0 )
260     $            INFO = IERR
261               IF( IJOB.EQ.0 ) THEN
262                  CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
263                  IF( SCALOC.NE.ONE ) THEN
264                     DO 10 K = 1, N
265                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
266     $                              C( 1, K ), 1 )
267                        CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ),
268     $                              F( 1, K ), 1 )
269   10                CONTINUE
270                     SCALE = SCALE*SCALOC
271                  END IF
272               ELSE
273                  CALL ZLATDF( IJOB, LDZ, Z, LDZ, RHS, RDSUM, RDSCAL,
274     $                         IPIV, JPIV )
275               END IF
276*
277*              Unpack solution vector(s)
278*
279               C( I, J ) = RHS( 1 )
280               F( I, J ) = RHS( 2 )
281*
282*              Substitute R(I, J) and L(I, J) into remaining equation.
283*
284               IF( I.GT.1 ) THEN
285                  ALPHA = -RHS( 1 )
286                  CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, C( 1, J ), 1 )
287                  CALL ZAXPY( I-1, ALPHA, D( 1, I ), 1, F( 1, J ), 1 )
288               END IF
289               IF( J.LT.N ) THEN
290                  CALL ZAXPY( N-J, RHS( 2 ), B( J, J+1 ), LDB,
291     $                        C( I, J+1 ), LDC )
292                  CALL ZAXPY( N-J, RHS( 2 ), E( J, J+1 ), LDE,
293     $                        F( I, J+1 ), LDF )
294               END IF
295*
296   20       CONTINUE
297   30    CONTINUE
298      ELSE
299*
300*        Solve transposed (I, J) - system:
301*           A(I, I)' * R(I, J) + D(I, I)' * L(J, J) = C(I, J)
302*           R(I, I) * B(J, J) + L(I, J) * E(J, J)   = -F(I, J)
303*        for I = 1, 2, ..., M, J = N, N - 1, ..., 1
304*
305         SCALE = ONE
306         SCALOC = ONE
307         DO 80 I = 1, M
308            DO 70 J = N, 1, -1
309*
310*              Build 2 by 2 system Z'
311*
312               Z( 1, 1 ) = DCONJG( A( I, I ) )
313               Z( 2, 1 ) = -DCONJG( B( J, J ) )
314               Z( 1, 2 ) = DCONJG( D( I, I ) )
315               Z( 2, 2 ) = -DCONJG( E( J, J ) )
316*
317*
318*              Set up right hand side(s)
319*
320               RHS( 1 ) = C( I, J )
321               RHS( 2 ) = F( I, J )
322*
323*              Solve Z' * x = RHS
324*
325               CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR )
326               IF( IERR.GT.0 )
327     $            INFO = IERR
328               CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC )
329               IF( SCALOC.NE.ONE ) THEN
330                  DO 40 K = 1, N
331                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ),
332     $                           1 )
333                     CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ),
334     $                           1 )
335   40             CONTINUE
336                  SCALE = SCALE*SCALOC
337               END IF
338*
339*              Unpack solution vector(s)
340*
341               C( I, J ) = RHS( 1 )
342               F( I, J ) = RHS( 2 )
343*
344*              Substitute R(I, J) and L(I, J) into remaining equation.
345*
346               DO 50 K = 1, J - 1
347                  F( I, K ) = F( I, K ) + RHS( 1 )*DCONJG( B( K, J ) ) +
348     $                        RHS( 2 )*DCONJG( E( K, J ) )
349   50          CONTINUE
350               DO 60 K = I + 1, M
351                  C( K, J ) = C( K, J ) - DCONJG( A( I, K ) )*RHS( 1 ) -
352     $                        DCONJG( D( I, K ) )*RHS( 2 )
353   60          CONTINUE
354*
355   70       CONTINUE
356   80    CONTINUE
357      END IF
358      RETURN
359*
360*     End of ZTGSY2
361*
362      END
363