1 /*
2 Bullet Continuous Collision Detection and Physics Library
3 Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
4 
5 This software is provided 'as-is', without any express or implied warranty.
6 In no event will the authors be held liable for any damages arising from the use of this software.
7 Permission is granted to anyone to use this software for any purpose,
8 including commercial applications, and to alter it and redistribute it freely,
9 subject to the following restrictions:
10 
11 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
12 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
13 3. This notice may not be removed or altered from any source distribution.
14 */
15 
16 #include "btContinuousConvexCollision.h"
17 #include "BulletCollision/CollisionShapes/btConvexShape.h"
18 #include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h"
19 #include "LinearMath/btTransformUtil.h"
20 #include "BulletCollision/CollisionShapes/btSphereShape.h"
21 
22 #include "btGjkPairDetector.h"
23 #include "btPointCollector.h"
24 #include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
25 
btContinuousConvexCollision(const btConvexShape * convexA,const btConvexShape * convexB,btSimplexSolverInterface * simplexSolver,btConvexPenetrationDepthSolver * penetrationDepthSolver)26 btContinuousConvexCollision::btContinuousConvexCollision(const btConvexShape* convexA, const btConvexShape* convexB, btSimplexSolverInterface* simplexSolver, btConvexPenetrationDepthSolver* penetrationDepthSolver)
27 	: m_simplexSolver(simplexSolver),
28 	  m_penetrationDepthSolver(penetrationDepthSolver),
29 	  m_convexA(convexA),
30 	  m_convexB1(convexB),
31 	  m_planeShape(0)
32 {
33 }
34 
btContinuousConvexCollision(const btConvexShape * convexA,const btStaticPlaneShape * plane)35 btContinuousConvexCollision::btContinuousConvexCollision(const btConvexShape* convexA, const btStaticPlaneShape* plane)
36 	: m_simplexSolver(0),
37 	  m_penetrationDepthSolver(0),
38 	  m_convexA(convexA),
39 	  m_convexB1(0),
40 	  m_planeShape(plane)
41 {
42 }
43 
44 /// This maximum should not be necessary. It allows for untested/degenerate cases in production code.
45 /// You don't want your game ever to lock-up.
46 #define MAX_ITERATIONS 64
47 
computeClosestPoints(const btTransform & transA,const btTransform & transB,btPointCollector & pointCollector)48 void btContinuousConvexCollision::computeClosestPoints(const btTransform& transA, const btTransform& transB, btPointCollector& pointCollector)
49 {
50 	if (m_convexB1)
51 	{
52 		m_simplexSolver->reset();
53 		btGjkPairDetector gjk(m_convexA, m_convexB1, m_convexA->getShapeType(), m_convexB1->getShapeType(), m_convexA->getMargin(), m_convexB1->getMargin(), m_simplexSolver, m_penetrationDepthSolver);
54 		btGjkPairDetector::ClosestPointInput input;
55 		input.m_transformA = transA;
56 		input.m_transformB = transB;
57 		gjk.getClosestPoints(input, pointCollector, 0);
58 	}
59 	else
60 	{
61 		//convex versus plane
62 		const btConvexShape* convexShape = m_convexA;
63 		const btStaticPlaneShape* planeShape = m_planeShape;
64 
65 		const btVector3& planeNormal = planeShape->getPlaneNormal();
66 		const btScalar& planeConstant = planeShape->getPlaneConstant();
67 
68 		btTransform convexWorldTransform = transA;
69 		btTransform convexInPlaneTrans;
70 		convexInPlaneTrans = transB.inverse() * convexWorldTransform;
71 		btTransform planeInConvex;
72 		planeInConvex = convexWorldTransform.inverse() * transB;
73 
74 		btVector3 vtx = convexShape->localGetSupportingVertex(planeInConvex.getBasis() * -planeNormal);
75 
76 		btVector3 vtxInPlane = convexInPlaneTrans(vtx);
77 		btScalar distance = (planeNormal.dot(vtxInPlane) - planeConstant);
78 
79 		btVector3 vtxInPlaneProjected = vtxInPlane - distance * planeNormal;
80 		btVector3 vtxInPlaneWorld = transB * vtxInPlaneProjected;
81 		btVector3 normalOnSurfaceB = transB.getBasis() * planeNormal;
82 
83 		pointCollector.addContactPoint(
84 			normalOnSurfaceB,
85 			vtxInPlaneWorld,
86 			distance);
87 	}
88 }
89 
calcTimeOfImpact(const btTransform & fromA,const btTransform & toA,const btTransform & fromB,const btTransform & toB,CastResult & result)90 bool btContinuousConvexCollision::calcTimeOfImpact(
91 	const btTransform& fromA,
92 	const btTransform& toA,
93 	const btTransform& fromB,
94 	const btTransform& toB,
95 	CastResult& result)
96 {
97 	/// compute linear and angular velocity for this interval, to interpolate
98 	btVector3 linVelA, angVelA, linVelB, angVelB;
99 	btTransformUtil::calculateVelocity(fromA, toA, btScalar(1.), linVelA, angVelA);
100 	btTransformUtil::calculateVelocity(fromB, toB, btScalar(1.), linVelB, angVelB);
101 
102 	btScalar boundingRadiusA = m_convexA->getAngularMotionDisc();
103 	btScalar boundingRadiusB = m_convexB1 ? m_convexB1->getAngularMotionDisc() : 0.f;
104 
105 	btScalar maxAngularProjectedVelocity = angVelA.length() * boundingRadiusA + angVelB.length() * boundingRadiusB;
106 	btVector3 relLinVel = (linVelB - linVelA);
107 
108 	btScalar relLinVelocLength = (linVelB - linVelA).length();
109 
110 	if ((relLinVelocLength + maxAngularProjectedVelocity) == 0.f)
111 		return false;
112 
113 	btScalar lambda = btScalar(0.);
114 
115 	btVector3 n;
116 	n.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
117 	bool hasResult = false;
118 	btVector3 c;
119 
120 	btScalar lastLambda = lambda;
121 	//btScalar epsilon = btScalar(0.001);
122 
123 	int numIter = 0;
124 	//first solution, using GJK
125 
126 	btScalar radius = 0.001f;
127 	//	result.drawCoordSystem(sphereTr);
128 
129 	btPointCollector pointCollector1;
130 
131 	{
132 		computeClosestPoints(fromA, fromB, pointCollector1);
133 
134 		hasResult = pointCollector1.m_hasResult;
135 		c = pointCollector1.m_pointInWorld;
136 	}
137 
138 	if (hasResult)
139 	{
140 		btScalar dist;
141 		dist = pointCollector1.m_distance + result.m_allowedPenetration;
142 		n = pointCollector1.m_normalOnBInWorld;
143 		btScalar projectedLinearVelocity = relLinVel.dot(n);
144 		if ((projectedLinearVelocity + maxAngularProjectedVelocity) <= SIMD_EPSILON)
145 			return false;
146 
147 		//not close enough
148 		while (dist > radius)
149 		{
150 			if (result.m_debugDrawer)
151 			{
152 				result.m_debugDrawer->drawSphere(c, 0.2f, btVector3(1, 1, 1));
153 			}
154 			btScalar dLambda = btScalar(0.);
155 
156 			projectedLinearVelocity = relLinVel.dot(n);
157 
158 			//don't report time of impact for motion away from the contact normal (or causes minor penetration)
159 			if ((projectedLinearVelocity + maxAngularProjectedVelocity) <= SIMD_EPSILON)
160 				return false;
161 
162 			dLambda = dist / (projectedLinearVelocity + maxAngularProjectedVelocity);
163 
164 			lambda += dLambda;
165 
166 			if (lambda > btScalar(1.) || lambda < btScalar(0.))
167 				return false;
168 
169 			//todo: next check with relative epsilon
170 			if (lambda <= lastLambda)
171 			{
172 				return false;
173 				//n.setValue(0,0,0);
174 				//break;
175 			}
176 			lastLambda = lambda;
177 
178 			//interpolate to next lambda
179 			btTransform interpolatedTransA, interpolatedTransB, relativeTrans;
180 
181 			btTransformUtil::integrateTransform(fromA, linVelA, angVelA, lambda, interpolatedTransA);
182 			btTransformUtil::integrateTransform(fromB, linVelB, angVelB, lambda, interpolatedTransB);
183 			relativeTrans = interpolatedTransB.inverseTimes(interpolatedTransA);
184 
185 			if (result.m_debugDrawer)
186 			{
187 				result.m_debugDrawer->drawSphere(interpolatedTransA.getOrigin(), 0.2f, btVector3(1, 0, 0));
188 			}
189 
190 			result.DebugDraw(lambda);
191 
192 			btPointCollector pointCollector;
193 			computeClosestPoints(interpolatedTransA, interpolatedTransB, pointCollector);
194 
195 			if (pointCollector.m_hasResult)
196 			{
197 				dist = pointCollector.m_distance + result.m_allowedPenetration;
198 				c = pointCollector.m_pointInWorld;
199 				n = pointCollector.m_normalOnBInWorld;
200 			}
201 			else
202 			{
203 				result.reportFailure(-1, numIter);
204 				return false;
205 			}
206 
207 			numIter++;
208 			if (numIter > MAX_ITERATIONS)
209 			{
210 				result.reportFailure(-2, numIter);
211 				return false;
212 			}
213 		}
214 
215 		result.m_fraction = lambda;
216 		result.m_normal = n;
217 		result.m_hitPoint = c;
218 		return true;
219 	}
220 
221 	return false;
222 }
223