1 /*
2  * backward.hpp
3  * Copyright 2013 Google Inc. All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a copy
6  * of this software and associated documentation files (the "Software"), to deal
7  * in the Software without restriction, including without limitation the rights
8  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9  * copies of the Software, and to permit persons to whom the Software is
10  * furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #ifndef H_6B9572DA_A64B_49E6_B234_051480991C89
25 #define H_6B9572DA_A64B_49E6_B234_051480991C89
26 
27 #ifndef __cplusplus
28 #	error "It's not going to compile without a C++ compiler..."
29 #endif
30 
31 #if	  defined(BACKWARD_CXX11)
32 #elif defined(BACKWARD_CXX98)
33 #else
34 #	if __cplusplus >= 201103L
35 #		define BACKWARD_CXX11
36 #		define BACKWARD_ATLEAST_CXX11
37 #		define BACKWARD_ATLEAST_CXX98
38 #	else
39 #		define BACKWARD_CXX98
40 #		define BACKWARD_ATLEAST_CXX98
41 #	endif
42 #endif
43 
44 // You can define one of the following (or leave it to the auto-detection):
45 //
46 // #define BACKWARD_SYSTEM_LINUX
47 //	- specialization for linux
48 //
49 // #define BACKWARD_SYSTEM_DARWIN
50 //	- specialization for Mac OS X 10.5 and later.
51 //
52 // #define BACKWARD_SYSTEM_UNKNOWN
53 //	- placebo implementation, does nothing.
54 //
55 #if   defined(BACKWARD_SYSTEM_LINUX)
56 #elif defined(BACKWARD_SYSTEM_DARWIN)
57 #elif defined(BACKWARD_SYSTEM_UNKNOWN)
58 #else
59 #	if defined(__linux) || defined(__linux__)
60 #		define BACKWARD_SYSTEM_LINUX
61 #	elif defined(__APPLE__)
62 #		define BACKWARD_SYSTEM_DARWIN
63 #	else
64 #		define BACKWARD_SYSTEM_UNKNOWN
65 #	endif
66 #endif
67 
68 #include <algorithm>
69 #include <cctype>
70 #include <cstdio>
71 #include <cstdlib>
72 #include <cstring>
73 #include <fstream>
74 #include <iomanip>
75 #include <iostream>
76 #include <new>
77 #include <sstream>
78 #include <streambuf>
79 #include <string>
80 #include <vector>
81 #include <limits>
82 
83 #if defined(BACKWARD_SYSTEM_LINUX)
84 
85 // On linux, backtrace can back-trace or "walk" the stack using the following
86 // libraries:
87 //
88 // #define BACKWARD_HAS_UNWIND 1
89 //  - unwind comes from libgcc, but I saw an equivalent inside clang itself.
90 //  - with unwind, the stacktrace is as accurate as it can possibly be, since
91 //  this is used by the C++ runtine in gcc/clang for stack unwinding on
92 //  exception.
93 //  - normally libgcc is already linked to your program by default.
94 //
95 // #define BACKWARD_HAS_BACKTRACE == 1
96 //  - backtrace seems to be a little bit more portable than libunwind, but on
97 //  linux, it uses unwind anyway, but abstract away a tiny information that is
98 //  sadly really important in order to get perfectly accurate stack traces.
99 //  - backtrace is part of the (e)glib library.
100 //
101 // The default is:
102 // #define BACKWARD_HAS_UNWIND == 1
103 //
104 // Note that only one of the define should be set to 1 at a time.
105 //
106 #	if   BACKWARD_HAS_UNWIND == 1
107 #	elif BACKWARD_HAS_BACKTRACE == 1
108 #	else
109 #		undef  BACKWARD_HAS_UNWIND
110 #		define BACKWARD_HAS_UNWIND 1
111 #		undef  BACKWARD_HAS_BACKTRACE
112 #		define BACKWARD_HAS_BACKTRACE 0
113 #	endif
114 
115 // On linux, backward can extract detailed information about a stack trace
116 // using one of the following libraries:
117 //
118 // #define BACKWARD_HAS_DW 1
119 //  - libdw gives you the most juicy details out of your stack traces:
120 //    - object filename
121 //    - function name
122 //    - source filename
123 //	  - line and column numbers
124 //	  - source code snippet (assuming the file is accessible)
125 //	  - variables name and values (if not optimized out)
126 //  - You need to link with the lib "dw":
127 //    - apt-get install libdw-dev
128 //    - g++/clang++ -ldw ...
129 //
130 // #define BACKWARD_HAS_BFD 1
131 //  - With libbfd, you get a fair amount of details:
132 //    - object filename
133 //    - function name
134 //    - source filename
135 //	  - line numbers
136 //	  - source code snippet (assuming the file is accessible)
137 //  - You need to link with the lib "bfd":
138 //    - apt-get install binutils-dev
139 //    - g++/clang++ -lbfd ...
140 //
141 // #define BACKWARD_HAS_DWARF 1
142 //  - libdwarf gives you the most juicy details out of your stack traces:
143 //    - object filename
144 //    - function name
145 //    - source filename
146 //    - line and column numbers
147 //    - source code snippet (assuming the file is accessible)
148 //    - variables name and values (if not optimized out)
149 //  - You need to link with the lib "dwarf":
150 //    - apt-get install libdwarf-dev
151 //    - g++/clang++ -ldwarf ...
152 //
153 // #define BACKWARD_HAS_BACKTRACE_SYMBOL 1
154 //  - backtrace provides minimal details for a stack trace:
155 //    - object filename
156 //    - function name
157 //  - backtrace is part of the (e)glib library.
158 //
159 // The default is:
160 // #define BACKWARD_HAS_BACKTRACE_SYMBOL == 1
161 //
162 // Note that only one of the define should be set to 1 at a time.
163 //
164 #	if   BACKWARD_HAS_DW == 1
165 #	elif BACKWARD_HAS_BFD == 1
166 #   elif BACKWARD_HAS_DWARF == 1
167 #	elif BACKWARD_HAS_BACKTRACE_SYMBOL == 1
168 #	else
169 #		undef  BACKWARD_HAS_DW
170 #		define BACKWARD_HAS_DW 0
171 #		undef  BACKWARD_HAS_BFD
172 #		define BACKWARD_HAS_BFD 0
173 #		undef  BACKWARD_HAS_DWARF
174 #		define BACKWARD_HAS_DWARF 0
175 #		undef  BACKWARD_HAS_BACKTRACE_SYMBOL
176 #		define BACKWARD_HAS_BACKTRACE_SYMBOL 1
177 #	endif
178 
179 #	include <cxxabi.h>
180 #	include <fcntl.h>
181 #	ifdef __ANDROID__
182 //		Old Android API levels define _Unwind_Ptr in both link.h and unwind.h
183 //		Rename the one in link.h as we are not going to be using it
184 #		define _Unwind_Ptr _Unwind_Ptr_Custom
185 #	include <link.h>
186 #		undef _Unwind_Ptr
187 #	else
188 #	    include <link.h>
189 #	endif
190 #	include <sys/stat.h>
191 #	include <syscall.h>
192 #	include <unistd.h>
193 #	include <signal.h>
194 
195 #	if BACKWARD_HAS_BFD == 1
196 //              NOTE: defining PACKAGE{,_VERSION} is required before including
197 //                    bfd.h on some platforms, see also:
198 //                    https://sourceware.org/bugzilla/show_bug.cgi?id=14243
199 #               ifndef PACKAGE
200 #                       define PACKAGE
201 #               endif
202 #               ifndef PACKAGE_VERSION
203 #                       define PACKAGE_VERSION
204 #               endif
205 #		include <bfd.h>
206 #		ifndef _GNU_SOURCE
207 #			define _GNU_SOURCE
208 #			include <dlfcn.h>
209 #			undef _GNU_SOURCE
210 #		else
211 #			include <dlfcn.h>
212 #		endif
213 #	endif
214 
215 #	if BACKWARD_HAS_DW == 1
216 #		include <elfutils/libdw.h>
217 #		include <elfutils/libdwfl.h>
218 #		include <dwarf.h>
219 #	endif
220 
221 #	if BACKWARD_HAS_DWARF == 1
222 #		include <libelf.h>
223 #		include <dwarf.h>
224 #		include <libdwarf.h>
225 #		include <map>
226 #		include <algorithm>
227 #		ifndef _GNU_SOURCE
228 #			define _GNU_SOURCE
229 #			include <dlfcn.h>
230 #			undef _GNU_SOURCE
231 #		else
232 #			include <dlfcn.h>
233 #		endif
234 #	endif
235 
236 #	if (BACKWARD_HAS_BACKTRACE == 1) || (BACKWARD_HAS_BACKTRACE_SYMBOL == 1)
237 		// then we shall rely on backtrace
238 #		include <execinfo.h>
239 #	endif
240 
241 #endif // defined(BACKWARD_SYSTEM_LINUX)
242 
243 #if defined(BACKWARD_SYSTEM_DARWIN)
244 // On Darwin, backtrace can back-trace or "walk" the stack using the following
245 // libraries:
246 //
247 // #define BACKWARD_HAS_UNWIND 1
248 //  - unwind comes from libgcc, but I saw an equivalent inside clang itself.
249 //  - with unwind, the stacktrace is as accurate as it can possibly be, since
250 //  this is used by the C++ runtine in gcc/clang for stack unwinding on
251 //  exception.
252 //  - normally libgcc is already linked to your program by default.
253 //
254 // #define BACKWARD_HAS_BACKTRACE == 1
255 //  - backtrace is available by default, though it does not produce as much information
256 //  as another library might.
257 //
258 // The default is:
259 // #define BACKWARD_HAS_UNWIND == 1
260 //
261 // Note that only one of the define should be set to 1 at a time.
262 //
263 #	if   BACKWARD_HAS_UNWIND == 1
264 #	elif BACKWARD_HAS_BACKTRACE == 1
265 #	else
266 #		undef  BACKWARD_HAS_UNWIND
267 #		define BACKWARD_HAS_UNWIND 1
268 #		undef  BACKWARD_HAS_BACKTRACE
269 #		define BACKWARD_HAS_BACKTRACE 0
270 #	endif
271 
272 // On Darwin, backward can extract detailed information about a stack trace
273 // using one of the following libraries:
274 //
275 // #define BACKWARD_HAS_BACKTRACE_SYMBOL 1
276 //  - backtrace provides minimal details for a stack trace:
277 //    - object filename
278 //    - function name
279 //
280 // The default is:
281 // #define BACKWARD_HAS_BACKTRACE_SYMBOL == 1
282 //
283 #	if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
284 #	else
285 #		undef  BACKWARD_HAS_BACKTRACE_SYMBOL
286 #		define BACKWARD_HAS_BACKTRACE_SYMBOL 1
287 #	endif
288 
289 #	include <cxxabi.h>
290 #	include <fcntl.h>
291 #	include <pthread.h>
292 #	include <sys/stat.h>
293 #	include <unistd.h>
294 #	include <signal.h>
295 
296 #	if (BACKWARD_HAS_BACKTRACE == 1) || (BACKWARD_HAS_BACKTRACE_SYMBOL == 1)
297 #		include <execinfo.h>
298 #	endif
299 #endif // defined(BACKWARD_SYSTEM_DARWIN)
300 
301 #if BACKWARD_HAS_UNWIND == 1
302 
303 #	include <unwind.h>
304 // while gcc's unwind.h defines something like that:
305 //  extern _Unwind_Ptr _Unwind_GetIP (struct _Unwind_Context *);
306 //  extern _Unwind_Ptr _Unwind_GetIPInfo (struct _Unwind_Context *, int *);
307 //
308 // clang's unwind.h defines something like this:
309 //  uintptr_t _Unwind_GetIP(struct _Unwind_Context* __context);
310 //
311 // Even if the _Unwind_GetIPInfo can be linked to, it is not declared, worse we
312 // cannot just redeclare it because clang's unwind.h doesn't define _Unwind_Ptr
313 // anyway.
314 //
315 // Luckily we can play on the fact that the guard macros have a different name:
316 #ifdef __CLANG_UNWIND_H
317 // In fact, this function still comes from libgcc (on my different linux boxes,
318 // clang links against libgcc).
319 #	include <inttypes.h>
320 extern "C" uintptr_t _Unwind_GetIPInfo(_Unwind_Context*, int*);
321 #endif
322 
323 #endif // BACKWARD_HAS_UNWIND == 1
324 
325 #ifdef BACKWARD_ATLEAST_CXX11
326 #	include <unordered_map>
327 #	include <utility> // for std::swap
328 	namespace backward {
329 	namespace details {
330 		template <typename K, typename V>
331 		struct hashtable {
332 			typedef std::unordered_map<K, V> type;
333 		};
334 		using std::move;
335 	} // namespace details
336 	} // namespace backward
337 #else // NOT BACKWARD_ATLEAST_CXX11
338 #	define override
339 #	include <map>
340 	namespace backward {
341 	namespace details {
342 		template <typename K, typename V>
343 		struct hashtable {
344 			typedef std::map<K, V> type;
345 		};
346 		template <typename T>
move(const T & v)347 			const T& move(const T& v) { return v; }
348 		template <typename T>
move(T & v)349 			T& move(T& v) { return v; }
350 	} // namespace details
351 	} // namespace backward
352 #endif // BACKWARD_ATLEAST_CXX11
353 
354 namespace backward {
355 
356 namespace system_tag {
357 	struct linux_tag; // seems that I cannot call that "linux" because the name
358 	// is already defined... so I am adding _tag everywhere.
359 	struct darwin_tag;
360 	struct unknown_tag;
361 
362 #if   defined(BACKWARD_SYSTEM_LINUX)
363 	typedef linux_tag current_tag;
364 #elif defined(BACKWARD_SYSTEM_DARWIN)
365 	typedef darwin_tag current_tag;
366 #elif defined(BACKWARD_SYSTEM_UNKNOWN)
367 	typedef unknown_tag current_tag;
368 #else
369 #	error "May I please get my system defines?"
370 #endif
371 } // namespace system_tag
372 
373 
374 namespace trace_resolver_tag {
375 #if defined(BACKWARD_SYSTEM_LINUX)
376 	struct libdw;
377 	struct libbfd;
378 	struct libdwarf;
379 	struct backtrace_symbol;
380 
381 #	if   BACKWARD_HAS_DW == 1
382 		typedef libdw current;
383 #	elif BACKWARD_HAS_BFD == 1
384 		typedef libbfd current;
385 #	elif BACKWARD_HAS_DWARF == 1
386 		typedef libdwarf current;
387 #	elif BACKWARD_HAS_BACKTRACE_SYMBOL == 1
388 		typedef backtrace_symbol current;
389 #	else
390 #		error "You shall not pass, until you know what you want."
391 #	endif
392 #elif defined(BACKWARD_SYSTEM_DARWIN)
393 	struct backtrace_symbol;
394 
395 #	if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
396 		typedef backtrace_symbol current;
397 #	else
398 #		error "You shall not pass, until you know what you want."
399 #	endif
400 #endif
401 } // namespace trace_resolver_tag
402 
403 
404 namespace details {
405 
406 template <typename T>
407 	struct rm_ptr { typedef T type; };
408 
409 template <typename T>
410 	struct rm_ptr<T*> { typedef T type; };
411 
412 template <typename T>
413 	struct rm_ptr<const T*> { typedef const T type; };
414 
415 template <typename R, typename T, R (*F)(T)>
416 struct deleter {
417 	template <typename U>
operator ()backward::details::deleter418 		void operator()(U& ptr) const {
419 			(*F)(ptr);
420 		}
421 };
422 
423 template <typename T>
424 struct default_delete {
operator ()backward::details::default_delete425 	void operator()(T& ptr) const {
426 		delete ptr;
427 	}
428 };
429 
430 template <typename T, typename Deleter = deleter<void, void*, &::free> >
431 class handle {
432 	struct dummy;
433 	T    _val;
434 	bool _empty;
435 
436 #ifdef BACKWARD_ATLEAST_CXX11
437 	handle(const handle&) = delete;
438 	handle& operator=(const handle&) = delete;
439 #endif
440 
441 public:
~handle()442 	~handle() {
443 		if (!_empty) {
444 			Deleter()(_val);
445 		}
446 	}
447 
handle()448 	explicit handle(): _val(), _empty(true) {}
handle(T val)449 	explicit handle(T val): _val(val), _empty(false) { if(!_val) _empty = true; }
450 
451 #ifdef BACKWARD_ATLEAST_CXX11
handle(handle && from)452 	handle(handle&& from): _empty(true) {
453 		swap(from);
454 	}
operator =(handle && from)455 	handle& operator=(handle&& from) {
456 		swap(from); return *this;
457 	}
458 #else
handle(const handle & from)459 	explicit handle(const handle& from): _empty(true) {
460 		// some sort of poor man's move semantic.
461 		swap(const_cast<handle&>(from));
462 	}
operator =(const handle & from)463 	handle& operator=(const handle& from) {
464 		// some sort of poor man's move semantic.
465 		swap(const_cast<handle&>(from)); return *this;
466 	}
467 #endif
468 
reset(T new_val)469 	void reset(T new_val) {
470 		handle tmp(new_val);
471 		swap(tmp);
472 	}
operator const dummy*() const473 	operator const dummy*() const {
474 		if (_empty) {
475 			return 0;
476 		}
477 		return reinterpret_cast<const dummy*>(_val);
478 	}
get()479 	T get() {
480 		return _val;
481 	}
release()482 	T release() {
483 		_empty = true;
484 		return _val;
485 	}
swap(handle & b)486 	void swap(handle& b) {
487 		using std::swap;
488 		swap(b._val, _val); // can throw, we are safe here.
489 		swap(b._empty, _empty); // should not throw: if you cannot swap two
490 		// bools without throwing... It's a lost cause anyway!
491 	}
492 
operator ->()493 	T operator->() { return _val; }
operator ->() const494 	const T operator->() const { return _val; }
495 
496 	typedef typename rm_ptr<T>::type& ref_t;
497 	typedef const typename rm_ptr<T>::type& const_ref_t;
operator *()498 	ref_t operator*() { return *_val; }
operator *() const499 	const_ref_t operator*() const { return *_val; }
operator [](size_t idx)500 	ref_t operator[](size_t idx) { return _val[idx]; }
501 
502 	// Watch out, we've got a badass over here
operator &()503 	T* operator&() {
504 		_empty = false;
505 		return &_val;
506 	}
507 };
508 
509 // Default demangler implementation (do nothing).
510 template <typename TAG>
511 struct demangler_impl {
demanglebackward::details::demangler_impl512 	static std::string demangle(const char* funcname) {
513 		return funcname;
514 	}
515 };
516 
517 #if defined(BACKWARD_SYSTEM_LINUX) || defined(BACKWARD_SYSTEM_DARWIN)
518 
519 template <>
520 struct demangler_impl<system_tag::current_tag> {
demangler_implbackward::details::demangler_impl521 	demangler_impl(): _demangle_buffer_length(0) {}
522 
demanglebackward::details::demangler_impl523 	std::string demangle(const char* funcname) {
524 		using namespace details;
525 		char* result = abi::__cxa_demangle(funcname,
526 			_demangle_buffer.release(), &_demangle_buffer_length, 0);
527 		if(result) {
528 			_demangle_buffer.reset(result);
529 			return result;
530 		}
531 		return funcname;
532 	}
533 
534 private:
535 	details::handle<char*> _demangle_buffer;
536 	size_t                 _demangle_buffer_length;
537 };
538 
539 #endif // BACKWARD_SYSTEM_LINUX || BACKWARD_SYSTEM_DARWIN
540 
541 struct demangler:
542 	public demangler_impl<system_tag::current_tag> {};
543 
544 } // namespace details
545 
546 /*************** A TRACE ***************/
547 
548 struct Trace {
549 	void*    addr;
550 	size_t   idx;
551 
Tracebackward::Trace552 	Trace():
553 		addr(0), idx(0) {}
554 
Tracebackward::Trace555 	explicit Trace(void* _addr, size_t _idx):
556 		addr(_addr), idx(_idx) {}
557 };
558 
559 struct ResolvedTrace: public Trace {
560 
561 	struct SourceLoc {
562 		std::string function;
563 		std::string filename;
564 		unsigned    line;
565 		unsigned    col;
566 
SourceLocbackward::ResolvedTrace::SourceLoc567 		SourceLoc(): line(0), col(0) {}
568 
operator ==backward::ResolvedTrace::SourceLoc569 		bool operator==(const SourceLoc& b) const {
570 			return function == b.function
571 				&& filename == b.filename
572 				&& line == b.line
573 				&& col == b.col;
574 		}
575 
operator !=backward::ResolvedTrace::SourceLoc576 		bool operator!=(const SourceLoc& b) const {
577 			return !(*this == b);
578 		}
579 	};
580 
581 	// In which binary object this trace is located.
582 	std::string                    object_filename;
583 
584 	// The function in the object that contain the trace. This is not the same
585 	// as source.function which can be an function inlined in object_function.
586 	std::string                    object_function;
587 
588 	// The source location of this trace. It is possible for filename to be
589 	// empty and for line/col to be invalid (value 0) if this information
590 	// couldn't be deduced, for example if there is no debug information in the
591 	// binary object.
592 	SourceLoc                      source;
593 
594 	// An optionals list of "inliners". All the successive sources location
595 	// from where the source location of the trace (the attribute right above)
596 	// is inlined. It is especially useful when you compiled with optimization.
597 	typedef std::vector<SourceLoc> source_locs_t;
598 	source_locs_t                  inliners;
599 
ResolvedTracebackward::ResolvedTrace600 	ResolvedTrace():
601 		Trace() {}
ResolvedTracebackward::ResolvedTrace602 	ResolvedTrace(const Trace& mini_trace):
603 		Trace(mini_trace) {}
604 };
605 
606 /*************** STACK TRACE ***************/
607 
608 // default implemention.
609 template <typename TAG>
610 class StackTraceImpl {
611 public:
size() const612 	size_t size() const { return 0; }
operator [](size_t)613 	Trace operator[](size_t) { return Trace(); }
load_here(size_t=0)614 	size_t load_here(size_t=0) { return 0; }
load_from(void *,size_t=0)615 	size_t load_from(void*, size_t=0) { return 0; }
thread_id() const616 	size_t thread_id() const { return 0; }
skip_n_firsts(size_t)617 	void skip_n_firsts(size_t) { }
618 };
619 
620 class StackTraceImplBase {
621 public:
StackTraceImplBase()622 	StackTraceImplBase(): _thread_id(0), _skip(0) {}
623 
thread_id() const624 	size_t thread_id() const {
625 		return _thread_id;
626 	}
627 
skip_n_firsts(size_t n)628 	void skip_n_firsts(size_t n) { _skip = n; }
629 
630 protected:
load_thread_info()631 	void load_thread_info() {
632 #ifdef BACKWARD_SYSTEM_LINUX
633 #ifndef __ANDROID__
634 		_thread_id = (size_t)syscall(SYS_gettid);
635 #else
636 		_thread_id = (size_t)gettid();
637 #endif
638 		if (_thread_id == (size_t) getpid()) {
639 			// If the thread is the main one, let's hide that.
640 			// I like to keep little secret sometimes.
641 			_thread_id = 0;
642 		}
643 #elif defined(BACKWARD_SYSTEM_DARWIN)
644 		_thread_id = reinterpret_cast<size_t>(pthread_self());
645 		if (pthread_main_np() == 1) {
646 			// If the thread is the main one, let's hide that.
647 			_thread_id = 0;
648 		}
649 #endif
650 	}
651 
skip_n_firsts() const652 	size_t skip_n_firsts() const { return _skip; }
653 
654 private:
655 	size_t _thread_id;
656 	size_t _skip;
657 };
658 
659 class StackTraceImplHolder: public StackTraceImplBase {
660 public:
size() const661 	size_t size() const {
662 		return _stacktrace.size() ? _stacktrace.size() - skip_n_firsts() : 0;
663 	}
operator [](size_t idx) const664 	Trace operator[](size_t idx) const {
665 		if (idx >= size()) {
666 			return Trace();
667 		}
668 		return Trace(_stacktrace[idx + skip_n_firsts()], idx);
669 	}
begin() const670 	void* const* begin() const {
671 		if (size()) {
672 			return &_stacktrace[skip_n_firsts()];
673 		}
674 		return 0;
675 	}
676 
677 protected:
678 	std::vector<void*> _stacktrace;
679 };
680 
681 
682 #if BACKWARD_HAS_UNWIND == 1
683 
684 namespace details {
685 
686 template <typename F>
687 class Unwinder {
688 public:
operator ()(F & f,size_t depth)689 	size_t operator()(F& f, size_t depth) {
690 		_f = &f;
691 		_index = -1;
692 		_depth = depth;
693 		_Unwind_Backtrace(&this->backtrace_trampoline, this);
694 		return _index;
695 	}
696 
697 private:
698 	F*      _f;
699 	ssize_t _index;
700 	size_t  _depth;
701 
backtrace_trampoline(_Unwind_Context * ctx,void * self)702 	static _Unwind_Reason_Code backtrace_trampoline(
703 			_Unwind_Context* ctx, void *self) {
704 		return ((Unwinder*)self)->backtrace(ctx);
705 	}
706 
backtrace(_Unwind_Context * ctx)707 	_Unwind_Reason_Code backtrace(_Unwind_Context* ctx) {
708 		if (_index >= 0 && static_cast<size_t>(_index) >= _depth)
709 			return _URC_END_OF_STACK;
710 
711 		int ip_before_instruction = 0;
712 		uintptr_t ip = _Unwind_GetIPInfo(ctx, &ip_before_instruction);
713 
714 		if (!ip_before_instruction) {
715 			// calculating 0-1 for unsigned, looks like a possible bug to sanitiziers, so let's do it explicitly:
716 			if (ip==0) {
717 				ip = std::numeric_limits<uintptr_t>::max(); // set it to 0xffff... (as from casting 0-1)
718 			} else {
719 				ip -= 1; // else just normally decrement it (no overflow/underflow will happen)
720 			}
721 		}
722 
723 		if (_index >= 0) { // ignore first frame.
724 			(*_f)(_index, (void*)ip);
725 		}
726 		_index += 1;
727 		return _URC_NO_REASON;
728 	}
729 };
730 
731 template <typename F>
unwind(F f,size_t depth)732 size_t unwind(F f, size_t depth) {
733 	Unwinder<F> unwinder;
734 	return unwinder(f, depth);
735 }
736 
737 } // namespace details
738 
739 
740 template <>
741 class StackTraceImpl<system_tag::current_tag>: public StackTraceImplHolder {
742 public:
743 	__attribute__ ((noinline)) // TODO use some macro
load_here(size_t depth=32)744 	size_t load_here(size_t depth=32) {
745 		load_thread_info();
746 		if (depth == 0) {
747 			return 0;
748 		}
749 		_stacktrace.resize(depth);
750 		size_t trace_cnt = details::unwind(callback(*this), depth);
751 		_stacktrace.resize(trace_cnt);
752 		skip_n_firsts(0);
753 		return size();
754 	}
load_from(void * addr,size_t depth=32)755 	size_t load_from(void* addr, size_t depth=32) {
756 		load_here(depth + 8);
757 
758 		for (size_t i = 0; i < _stacktrace.size(); ++i) {
759 			if (_stacktrace[i] == addr) {
760 				skip_n_firsts(i);
761 				break;
762 			}
763 		}
764 
765 		_stacktrace.resize(std::min(_stacktrace.size(),
766 					skip_n_firsts() + depth));
767 		return size();
768 	}
769 
770 private:
771 	struct callback {
772 		StackTraceImpl& self;
callbackbackward::StackTraceImpl::callback773 		callback(StackTraceImpl& _self): self(_self) {}
774 
operator ()backward::StackTraceImpl::callback775 		void operator()(size_t idx, void* addr) {
776 			self._stacktrace[idx] = addr;
777 		}
778 	};
779 };
780 
781 
782 #else // BACKWARD_HAS_UNWIND == 0
783 
784 template <>
785 class StackTraceImpl<system_tag::current_tag>: public StackTraceImplHolder {
786 public:
787 	__attribute__ ((noinline)) // TODO use some macro
load_here(size_t depth=32)788 	size_t load_here(size_t depth=32) {
789 		load_thread_info();
790 		if (depth == 0) {
791 			return 0;
792 		}
793 		_stacktrace.resize(depth + 1);
794 		size_t trace_cnt = backtrace(&_stacktrace[0], _stacktrace.size());
795 		_stacktrace.resize(trace_cnt);
796 		skip_n_firsts(1);
797 		return size();
798 	}
799 
load_from(void * addr,size_t depth=32)800 	size_t load_from(void* addr, size_t depth=32) {
801 		load_here(depth + 8);
802 
803 		for (size_t i = 0; i < _stacktrace.size(); ++i) {
804 			if (_stacktrace[i] == addr) {
805 				skip_n_firsts(i);
806 				_stacktrace[i] = (void*)( (uintptr_t)_stacktrace[i] + 1);
807 				break;
808 			}
809 		}
810 
811 		_stacktrace.resize(std::min(_stacktrace.size(),
812 					skip_n_firsts() + depth));
813 		return size();
814 	}
815 };
816 
817 #endif // BACKWARD_HAS_UNWIND
818 
819 class StackTrace:
820 	public StackTraceImpl<system_tag::current_tag> {};
821 
822 /*************** TRACE RESOLVER ***************/
823 
824 template <typename TAG>
825 class TraceResolverImpl;
826 
827 #ifdef BACKWARD_SYSTEM_UNKNOWN
828 
829 template <>
830 class TraceResolverImpl<system_tag::unknown_tag> {
831 public:
832 	template <class ST>
load_stacktrace(ST &)833 		void load_stacktrace(ST&) {}
resolve(ResolvedTrace t)834 	ResolvedTrace resolve(ResolvedTrace t) {
835 		return t;
836 	}
837 };
838 
839 #endif
840 
841 class TraceResolverImplBase {
842 protected:
demangle(const char * funcname)843 	std::string demangle(const char* funcname) {
844 		return _demangler.demangle(funcname);
845 	}
846 
847 private:
848 	details::demangler _demangler;
849 };
850 
851 #ifdef BACKWARD_SYSTEM_LINUX
852 
853 template <typename STACKTRACE_TAG>
854 class TraceResolverLinuxImpl;
855 
856 #if BACKWARD_HAS_BACKTRACE_SYMBOL == 1
857 
858 template <>
859 class TraceResolverLinuxImpl<trace_resolver_tag::backtrace_symbol>:
860 	public TraceResolverImplBase {
861 public:
862 	template <class ST>
load_stacktrace(ST & st)863 		void load_stacktrace(ST& st) {
864 			using namespace details;
865 			if (st.size() == 0) {
866 				return;
867 			}
868 			_symbols.reset(
869 					backtrace_symbols(st.begin(), (int)st.size())
870 					);
871 		}
872 
resolve(ResolvedTrace trace)873 	ResolvedTrace resolve(ResolvedTrace trace) {
874 		char* filename = _symbols[trace.idx];
875 		char* funcname = filename;
876 		while (*funcname && *funcname != '(') {
877 			funcname += 1;
878 		}
879 		trace.object_filename.assign(filename, funcname); // ok even if funcname is the ending \0 (then we assign entire string)
880 
881 		if (*funcname) { // if it's not end of string (e.g. from last frame ip==0)
882 			funcname += 1;
883 			char* funcname_end = funcname;
884 			while (*funcname_end && *funcname_end != ')' && *funcname_end != '+') {
885 				funcname_end += 1;
886 			}
887 			*funcname_end = '\0';
888 			trace.object_function = this->demangle(funcname);
889 			trace.source.function = trace.object_function; // we cannot do better.
890 		}
891 		return trace;
892 	}
893 
894 private:
895 	details::handle<char**> _symbols;
896 };
897 
898 #endif // BACKWARD_HAS_BACKTRACE_SYMBOL == 1
899 
900 #if BACKWARD_HAS_BFD == 1
901 
902 template <>
903 class TraceResolverLinuxImpl<trace_resolver_tag::libbfd>:
904 	public TraceResolverImplBase {
read_symlink(std::string const & symlink_path)905 	static std::string read_symlink(std::string const & symlink_path) {
906 		std::string path;
907 		path.resize(100);
908 
909 		while(true) {
910 			ssize_t len = ::readlink(symlink_path.c_str(), &*path.begin(), path.size());
911 			if(len < 0) {
912 				return "";
913 			}
914 			if ((size_t)len == path.size()) {
915 				path.resize(path.size() * 2);
916 			}
917 			else {
918 				path.resize(len);
919 				break;
920 			}
921 		}
922 
923 		return path;
924 	}
925 public:
TraceResolverLinuxImpl()926 	TraceResolverLinuxImpl(): _bfd_loaded(false) {}
927 
928 	template <class ST>
load_stacktrace(ST &)929 		void load_stacktrace(ST&) {}
930 
resolve(ResolvedTrace trace)931 	ResolvedTrace resolve(ResolvedTrace trace) {
932 		Dl_info symbol_info;
933 
934 		// trace.addr is a virtual address in memory pointing to some code.
935 		// Let's try to find from which loaded object it comes from.
936 		// The loaded object can be yourself btw.
937 		if (!dladdr(trace.addr, &symbol_info)) {
938 			return trace; // dat broken trace...
939 		}
940 
941 		std::string argv0;
942 		{
943 			std::ifstream ifs("/proc/self/cmdline");
944 			std::getline(ifs, argv0, '\0');
945 		}
946 		std::string tmp;
947 		if(symbol_info.dli_fname == argv0) {
948 			tmp = read_symlink("/proc/self/exe");
949 			symbol_info.dli_fname = tmp.c_str();
950 		}
951 
952 		// Now we get in symbol_info:
953 		// .dli_fname:
954 		//		pathname of the shared object that contains the address.
955 		// .dli_fbase:
956 		//		where the object is loaded in memory.
957 		// .dli_sname:
958 		//		the name of the nearest symbol to trace.addr, we expect a
959 		//		function name.
960 		// .dli_saddr:
961 		//		the exact address corresponding to .dli_sname.
962 
963 		if (symbol_info.dli_sname) {
964 			trace.object_function = demangle(symbol_info.dli_sname);
965 		}
966 
967 		if (!symbol_info.dli_fname) {
968 			return trace;
969 		}
970 
971 		trace.object_filename = symbol_info.dli_fname;
972 		bfd_fileobject& fobj = load_object_with_bfd(symbol_info.dli_fname);
973 		if (!fobj.handle) {
974 			return trace; // sad, we couldn't load the object :(
975 		}
976 
977 
978 		find_sym_result* details_selected; // to be filled.
979 
980 		// trace.addr is the next instruction to be executed after returning
981 		// from the nested stack frame. In C++ this usually relate to the next
982 		// statement right after the function call that leaded to a new stack
983 		// frame. This is not usually what you want to see when printing out a
984 		// stacktrace...
985 		find_sym_result details_call_site = find_symbol_details(fobj,
986 				trace.addr, symbol_info.dli_fbase);
987 		details_selected = &details_call_site;
988 
989 #if BACKWARD_HAS_UNWIND == 0
990 		// ...this is why we also try to resolve the symbol that is right
991 		// before the return address. If we are lucky enough, we will get the
992 		// line of the function that was called. But if the code is optimized,
993 		// we might get something absolutely not related since the compiler
994 		// can reschedule the return address with inline functions and
995 		// tail-call optimisation (among other things that I don't even know
996 		// or cannot even dream about with my tiny limited brain).
997 		find_sym_result details_adjusted_call_site = find_symbol_details(fobj,
998 				(void*) (uintptr_t(trace.addr) - 1),
999 				symbol_info.dli_fbase);
1000 
1001 		// In debug mode, we should always get the right thing(TM).
1002 		if (details_call_site.found && details_adjusted_call_site.found) {
1003 			// Ok, we assume that details_adjusted_call_site is a better estimation.
1004 			details_selected = &details_adjusted_call_site;
1005 			trace.addr = (void*) (uintptr_t(trace.addr) - 1);
1006 		}
1007 
1008 		if (details_selected == &details_call_site && details_call_site.found) {
1009 			// we have to re-resolve the symbol in order to reset some
1010 			// internal state in BFD... so we can call backtrace_inliners
1011 			// thereafter...
1012 			details_call_site = find_symbol_details(fobj, trace.addr,
1013 					symbol_info.dli_fbase);
1014 		}
1015 #endif // BACKWARD_HAS_UNWIND
1016 
1017 		if (details_selected->found) {
1018 			if (details_selected->filename) {
1019 				trace.source.filename = details_selected->filename;
1020 			}
1021 			trace.source.line = details_selected->line;
1022 
1023 			if (details_selected->funcname) {
1024 				// this time we get the name of the function where the code is
1025 				// located, instead of the function were the address is
1026 				// located. In short, if the code was inlined, we get the
1027 				// function correspoding to the code. Else we already got in
1028 				// trace.function.
1029 				trace.source.function = demangle(details_selected->funcname);
1030 
1031 				if (!symbol_info.dli_sname) {
1032 					// for the case dladdr failed to find the symbol name of
1033 					// the function, we might as well try to put something
1034 					// here.
1035 					trace.object_function = trace.source.function;
1036 				}
1037 			}
1038 
1039 			// Maybe the source of the trace got inlined inside the function
1040 			// (trace.source.function). Let's see if we can get all the inlined
1041 			// calls along the way up to the initial call site.
1042 			trace.inliners = backtrace_inliners(fobj, *details_selected);
1043 
1044 #if 0
1045 			if (trace.inliners.size() == 0) {
1046 				// Maybe the trace was not inlined... or maybe it was and we
1047 				// are lacking the debug information. Let's try to make the
1048 				// world better and see if we can get the line number of the
1049 				// function (trace.source.function) now.
1050 				//
1051 				// We will get the location of where the function start (to be
1052 				// exact: the first instruction that really start the
1053 				// function), not where the name of the function is defined.
1054 				// This can be quite far away from the name of the function
1055 				// btw.
1056 				//
1057 				// If the source of the function is the same as the source of
1058 				// the trace, we cannot say if the trace was really inlined or
1059 				// not.  However, if the filename of the source is different
1060 				// between the function and the trace... we can declare it as
1061 				// an inliner.  This is not 100% accurate, but better than
1062 				// nothing.
1063 
1064 				if (symbol_info.dli_saddr) {
1065 					find_sym_result details = find_symbol_details(fobj,
1066 							symbol_info.dli_saddr,
1067 							symbol_info.dli_fbase);
1068 
1069 					if (details.found) {
1070 						ResolvedTrace::SourceLoc diy_inliner;
1071 						diy_inliner.line = details.line;
1072 						if (details.filename) {
1073 							diy_inliner.filename = details.filename;
1074 						}
1075 						if (details.funcname) {
1076 							diy_inliner.function = demangle(details.funcname);
1077 						} else {
1078 							diy_inliner.function = trace.source.function;
1079 						}
1080 						if (diy_inliner != trace.source) {
1081 							trace.inliners.push_back(diy_inliner);
1082 						}
1083 					}
1084 				}
1085 			}
1086 #endif
1087 		}
1088 
1089 		return trace;
1090 	}
1091 
1092 private:
1093 	bool                _bfd_loaded;
1094 
1095 	typedef details::handle<bfd*,
1096 			details::deleter<bfd_boolean, bfd*, &bfd_close>
1097 				> bfd_handle_t;
1098 
1099 	typedef details::handle<asymbol**> bfd_symtab_t;
1100 
1101 
1102 	struct bfd_fileobject {
1103 		bfd_handle_t handle;
1104 		bfd_vma      base_addr;
1105 		bfd_symtab_t symtab;
1106 		bfd_symtab_t dynamic_symtab;
1107 	};
1108 
1109 	typedef details::hashtable<std::string, bfd_fileobject>::type
1110 		fobj_bfd_map_t;
1111 	fobj_bfd_map_t      _fobj_bfd_map;
1112 
load_object_with_bfd(const std::string & filename_object)1113 	bfd_fileobject& load_object_with_bfd(const std::string& filename_object) {
1114 		using namespace details;
1115 
1116 		if (!_bfd_loaded) {
1117 			using namespace details;
1118 			bfd_init();
1119 			_bfd_loaded = true;
1120 		}
1121 
1122 		fobj_bfd_map_t::iterator it =
1123 			_fobj_bfd_map.find(filename_object);
1124 		if (it != _fobj_bfd_map.end()) {
1125 			return it->second;
1126 		}
1127 
1128 		// this new object is empty for now.
1129 		bfd_fileobject& r = _fobj_bfd_map[filename_object];
1130 
1131 		// we do the work temporary in this one;
1132 		bfd_handle_t bfd_handle;
1133 
1134 		int fd = open(filename_object.c_str(), O_RDONLY);
1135 		bfd_handle.reset(
1136 				bfd_fdopenr(filename_object.c_str(), "default", fd)
1137 				);
1138 		if (!bfd_handle) {
1139 			close(fd);
1140 			return r;
1141 		}
1142 
1143 		if (!bfd_check_format(bfd_handle.get(), bfd_object)) {
1144 			return r; // not an object? You lose.
1145 		}
1146 
1147 		if ((bfd_get_file_flags(bfd_handle.get()) & HAS_SYMS) == 0) {
1148 			return r; // that's what happen when you forget to compile in debug.
1149 		}
1150 
1151 		ssize_t symtab_storage_size =
1152 			bfd_get_symtab_upper_bound(bfd_handle.get());
1153 
1154 		ssize_t dyn_symtab_storage_size =
1155 			bfd_get_dynamic_symtab_upper_bound(bfd_handle.get());
1156 
1157 		if (symtab_storage_size <= 0 && dyn_symtab_storage_size <= 0) {
1158 			return r; // weird, is the file is corrupted?
1159 		}
1160 
1161 		bfd_symtab_t symtab, dynamic_symtab;
1162 		ssize_t symcount = 0, dyn_symcount = 0;
1163 
1164 		if (symtab_storage_size > 0) {
1165 			symtab.reset(
1166 					(bfd_symbol**) malloc(symtab_storage_size)
1167 					);
1168 			symcount = bfd_canonicalize_symtab(
1169 					bfd_handle.get(), symtab.get()
1170 					);
1171 		}
1172 
1173 		if (dyn_symtab_storage_size > 0) {
1174 			dynamic_symtab.reset(
1175 					(bfd_symbol**) malloc(dyn_symtab_storage_size)
1176 					);
1177 			dyn_symcount = bfd_canonicalize_dynamic_symtab(
1178 					bfd_handle.get(), dynamic_symtab.get()
1179 					);
1180 		}
1181 
1182 
1183 		if (symcount <= 0 && dyn_symcount <= 0) {
1184 			return r; // damned, that's a stripped file that you got there!
1185 		}
1186 
1187 		r.handle = move(bfd_handle);
1188 		r.symtab = move(symtab);
1189 		r.dynamic_symtab = move(dynamic_symtab);
1190 		return r;
1191 	}
1192 
1193 	struct find_sym_result {
1194 		bool found;
1195 		const char* filename;
1196 		const char* funcname;
1197 		unsigned int line;
1198 	};
1199 
1200 	struct find_sym_context {
1201 		TraceResolverLinuxImpl* self;
1202 		bfd_fileobject* fobj;
1203 		void* addr;
1204 		void* base_addr;
1205 		find_sym_result result;
1206 	};
1207 
find_symbol_details(bfd_fileobject & fobj,void * addr,void * base_addr)1208 	find_sym_result find_symbol_details(bfd_fileobject& fobj, void* addr,
1209 			void* base_addr) {
1210 		find_sym_context context;
1211 		context.self = this;
1212 		context.fobj = &fobj;
1213 		context.addr = addr;
1214 		context.base_addr = base_addr;
1215 		context.result.found = false;
1216 		bfd_map_over_sections(fobj.handle.get(), &find_in_section_trampoline,
1217 				(void*)&context);
1218 		return context.result;
1219 	}
1220 
find_in_section_trampoline(bfd *,asection * section,void * data)1221 	static void find_in_section_trampoline(bfd*, asection* section,
1222 			void* data) {
1223 		find_sym_context* context = static_cast<find_sym_context*>(data);
1224 		context->self->find_in_section(
1225 				reinterpret_cast<bfd_vma>(context->addr),
1226 				reinterpret_cast<bfd_vma>(context->base_addr),
1227 				*context->fobj,
1228 				section, context->result
1229 				);
1230 	}
1231 
find_in_section(bfd_vma addr,bfd_vma base_addr,bfd_fileobject & fobj,asection * section,find_sym_result & result)1232 	void find_in_section(bfd_vma addr, bfd_vma base_addr,
1233 			bfd_fileobject& fobj, asection* section, find_sym_result& result)
1234 	{
1235 		if (result.found) return;
1236 
1237 		if ((bfd_get_section_flags(fobj.handle.get(), section)
1238 					& SEC_ALLOC) == 0)
1239 			return; // a debug section is never loaded automatically.
1240 
1241 		bfd_vma sec_addr = bfd_get_section_vma(fobj.handle.get(), section);
1242 		bfd_size_type size = bfd_get_section_size(section);
1243 
1244 		// are we in the boundaries of the section?
1245 		if (addr < sec_addr || addr >= sec_addr + size) {
1246 			addr -= base_addr; // oups, a relocated object, lets try again...
1247 			if (addr < sec_addr || addr >= sec_addr + size) {
1248 				return;
1249 			}
1250 		}
1251 
1252 		if (!result.found && fobj.symtab) {
1253 			result.found = bfd_find_nearest_line(fobj.handle.get(), section,
1254 					fobj.symtab.get(), addr - sec_addr, &result.filename,
1255 					&result.funcname, &result.line);
1256 		}
1257 
1258 		if (!result.found && fobj.dynamic_symtab) {
1259 			result.found = bfd_find_nearest_line(fobj.handle.get(), section,
1260 					fobj.dynamic_symtab.get(), addr - sec_addr,
1261 					&result.filename, &result.funcname, &result.line);
1262 		}
1263 
1264 	}
1265 
backtrace_inliners(bfd_fileobject & fobj,find_sym_result previous_result)1266 	ResolvedTrace::source_locs_t backtrace_inliners(bfd_fileobject& fobj,
1267 			find_sym_result previous_result) {
1268 		// This function can be called ONLY after a SUCCESSFUL call to
1269 		// find_symbol_details. The state is global to the bfd_handle.
1270 		ResolvedTrace::source_locs_t results;
1271 		while (previous_result.found) {
1272 			find_sym_result result;
1273 			result.found = bfd_find_inliner_info(fobj.handle.get(),
1274 					&result.filename, &result.funcname, &result.line);
1275 
1276 			if (result.found) /* and not (
1277 						cstrings_eq(previous_result.filename, result.filename)
1278 						and cstrings_eq(previous_result.funcname, result.funcname)
1279 						and result.line == previous_result.line
1280 						)) */ {
1281 				ResolvedTrace::SourceLoc src_loc;
1282 				src_loc.line = result.line;
1283 				if (result.filename) {
1284 					src_loc.filename = result.filename;
1285 				}
1286 				if (result.funcname) {
1287 					src_loc.function = demangle(result.funcname);
1288 				}
1289 				results.push_back(src_loc);
1290 			}
1291 			previous_result = result;
1292 		}
1293 		return results;
1294 	}
1295 
cstrings_eq(const char * a,const char * b)1296 	bool cstrings_eq(const char* a, const char* b) {
1297 		if (!a || !b) {
1298 			return false;
1299 		}
1300 		return strcmp(a, b) == 0;
1301 	}
1302 
1303 };
1304 #endif // BACKWARD_HAS_BFD == 1
1305 
1306 #if BACKWARD_HAS_DW == 1
1307 
1308 template <>
1309 class TraceResolverLinuxImpl<trace_resolver_tag::libdw>:
1310 	public TraceResolverImplBase {
1311 public:
TraceResolverLinuxImpl()1312 	TraceResolverLinuxImpl(): _dwfl_handle_initialized(false) {}
1313 
1314 	template <class ST>
load_stacktrace(ST &)1315 		void load_stacktrace(ST&) {}
1316 
resolve(ResolvedTrace trace)1317 	ResolvedTrace resolve(ResolvedTrace trace) {
1318 		using namespace details;
1319 
1320 		Dwarf_Addr trace_addr = (Dwarf_Addr) trace.addr;
1321 
1322 		if (!_dwfl_handle_initialized) {
1323 			// initialize dwfl...
1324 			_dwfl_cb.reset(new Dwfl_Callbacks);
1325 			_dwfl_cb->find_elf = &dwfl_linux_proc_find_elf;
1326 			_dwfl_cb->find_debuginfo = &dwfl_standard_find_debuginfo;
1327 			_dwfl_cb->debuginfo_path = 0;
1328 
1329 			_dwfl_handle.reset(dwfl_begin(_dwfl_cb.get()));
1330 			_dwfl_handle_initialized = true;
1331 
1332 			if (!_dwfl_handle) {
1333 				return trace;
1334 			}
1335 
1336 			// ...from the current process.
1337 			dwfl_report_begin(_dwfl_handle.get());
1338 			int r = dwfl_linux_proc_report (_dwfl_handle.get(), getpid());
1339 			dwfl_report_end(_dwfl_handle.get(), NULL, NULL);
1340 			if (r < 0) {
1341 				return trace;
1342 			}
1343 		}
1344 
1345 		if (!_dwfl_handle) {
1346 			return trace;
1347 		}
1348 
1349 		// find the module (binary object) that contains the trace's address.
1350 		// This is not using any debug information, but the addresses ranges of
1351 		// all the currently loaded binary object.
1352 		Dwfl_Module* mod = dwfl_addrmodule(_dwfl_handle.get(), trace_addr);
1353 		if (mod) {
1354 			// now that we found it, lets get the name of it, this will be the
1355 			// full path to the running binary or one of the loaded library.
1356 			const char* module_name = dwfl_module_info (mod,
1357 					0, 0, 0, 0, 0, 0, 0);
1358 			if (module_name) {
1359 				trace.object_filename = module_name;
1360 			}
1361 			// We also look after the name of the symbol, equal or before this
1362 			// address. This is found by walking the symtab. We should get the
1363 			// symbol corresponding to the function (mangled) containing the
1364 			// address. If the code corresponding to the address was inlined,
1365 			// this is the name of the out-most inliner function.
1366 			const char* sym_name = dwfl_module_addrname(mod, trace_addr);
1367 			if (sym_name) {
1368 				trace.object_function = demangle(sym_name);
1369 			}
1370 		}
1371 
1372 		// now let's get serious, and find out the source location (file and
1373 		// line number) of the address.
1374 
1375 		// This function will look in .debug_aranges for the address and map it
1376 		// to the location of the compilation unit DIE in .debug_info and
1377 		// return it.
1378 		Dwarf_Addr mod_bias = 0;
1379 		Dwarf_Die* cudie = dwfl_module_addrdie(mod, trace_addr, &mod_bias);
1380 
1381 #if 1
1382 		if (!cudie) {
1383 			// Sadly clang does not generate the section .debug_aranges, thus
1384 			// dwfl_module_addrdie will fail early. Clang doesn't either set
1385 			// the lowpc/highpc/range info for every compilation unit.
1386 			//
1387 			// So in order to save the world:
1388 			// for every compilation unit, we will iterate over every single
1389 			// DIEs. Normally functions should have a lowpc/highpc/range, which
1390 			// we will use to infer the compilation unit.
1391 
1392 			// note that this is probably badly inefficient.
1393 			while ((cudie = dwfl_module_nextcu(mod, cudie, &mod_bias))) {
1394 				Dwarf_Die die_mem;
1395 				Dwarf_Die* fundie = find_fundie_by_pc(cudie,
1396 						trace_addr - mod_bias, &die_mem);
1397 				if (fundie) {
1398 					break;
1399 				}
1400 			}
1401 		}
1402 #endif
1403 
1404 //#define BACKWARD_I_DO_NOT_RECOMMEND_TO_ENABLE_THIS_HORRIBLE_PIECE_OF_CODE
1405 #ifdef BACKWARD_I_DO_NOT_RECOMMEND_TO_ENABLE_THIS_HORRIBLE_PIECE_OF_CODE
1406 		if (!cudie) {
1407 			// If it's still not enough, lets dive deeper in the shit, and try
1408 			// to save the world again: for every compilation unit, we will
1409 			// load the corresponding .debug_line section, and see if we can
1410 			// find our address in it.
1411 
1412 			Dwarf_Addr cfi_bias;
1413 			Dwarf_CFI* cfi_cache = dwfl_module_eh_cfi(mod, &cfi_bias);
1414 
1415 			Dwarf_Addr bias;
1416 			while ((cudie = dwfl_module_nextcu(mod, cudie, &bias))) {
1417 				if (dwarf_getsrc_die(cudie, trace_addr - bias)) {
1418 
1419 					// ...but if we get a match, it might be a false positive
1420 					// because our (address - bias) might as well be valid in a
1421 					// different compilation unit. So we throw our last card on
1422 					// the table and lookup for the address into the .eh_frame
1423 					// section.
1424 
1425 					handle<Dwarf_Frame*> frame;
1426 					dwarf_cfi_addrframe(cfi_cache, trace_addr - cfi_bias, &frame);
1427 					if (frame) {
1428 						break;
1429 					}
1430 				}
1431 			}
1432 		}
1433 #endif
1434 
1435 		if (!cudie) {
1436 			return trace; // this time we lost the game :/
1437 		}
1438 
1439 		// Now that we have a compilation unit DIE, this function will be able
1440 		// to load the corresponding section in .debug_line (if not already
1441 		// loaded) and hopefully find the source location mapped to our
1442 		// address.
1443 		Dwarf_Line* srcloc = dwarf_getsrc_die(cudie, trace_addr - mod_bias);
1444 
1445 		if (srcloc) {
1446 			const char* srcfile = dwarf_linesrc(srcloc, 0, 0);
1447 			if (srcfile) {
1448 				trace.source.filename = srcfile;
1449 			}
1450 			int line = 0, col = 0;
1451 			dwarf_lineno(srcloc, &line);
1452 			dwarf_linecol(srcloc, &col);
1453 			trace.source.line = line;
1454 			trace.source.col = col;
1455 		}
1456 
1457 		deep_first_search_by_pc(cudie, trace_addr - mod_bias,
1458 				inliners_search_cb(trace));
1459 		if (trace.source.function.size() == 0) {
1460 			// fallback.
1461 			trace.source.function = trace.object_function;
1462 		}
1463 
1464 		return trace;
1465 	}
1466 
1467 private:
1468 	typedef details::handle<Dwfl*, details::deleter<void, Dwfl*, &dwfl_end> >
1469 		dwfl_handle_t;
1470 	details::handle<Dwfl_Callbacks*, details::default_delete<Dwfl_Callbacks*> >
1471 		           _dwfl_cb;
1472 	dwfl_handle_t  _dwfl_handle;
1473 	bool           _dwfl_handle_initialized;
1474 
1475 	// defined here because in C++98, template function cannot take locally
1476 	// defined types... grrr.
1477 	struct inliners_search_cb {
operator ()backward::TraceResolverLinuxImpl::inliners_search_cb1478 		void operator()(Dwarf_Die* die) {
1479 			switch (dwarf_tag(die)) {
1480 				const char* name;
1481 				case DW_TAG_subprogram:
1482 					if ((name = dwarf_diename(die))) {
1483 						trace.source.function = name;
1484 					}
1485 					break;
1486 
1487 				case DW_TAG_inlined_subroutine:
1488 					ResolvedTrace::SourceLoc sloc;
1489 					Dwarf_Attribute attr_mem;
1490 
1491 					if ((name = dwarf_diename(die))) {
1492 						sloc.function = name;
1493 					}
1494 					if ((name = die_call_file(die))) {
1495 						sloc.filename = name;
1496 					}
1497 
1498 					Dwarf_Word line = 0, col = 0;
1499 					dwarf_formudata(dwarf_attr(die, DW_AT_call_line,
1500 								&attr_mem), &line);
1501 					dwarf_formudata(dwarf_attr(die, DW_AT_call_column,
1502 								&attr_mem), &col);
1503 					sloc.line = (unsigned)line;
1504 					sloc.col = (unsigned)col;
1505 
1506 					trace.inliners.push_back(sloc);
1507 					break;
1508 			};
1509 		}
1510 		ResolvedTrace& trace;
inliners_search_cbbackward::TraceResolverLinuxImpl::inliners_search_cb1511 		inliners_search_cb(ResolvedTrace& t): trace(t) {}
1512 	};
1513 
1514 
die_has_pc(Dwarf_Die * die,Dwarf_Addr pc)1515 	static bool die_has_pc(Dwarf_Die* die, Dwarf_Addr pc) {
1516 		Dwarf_Addr low, high;
1517 
1518 		// continuous range
1519 		if (dwarf_hasattr(die, DW_AT_low_pc) &&
1520 							dwarf_hasattr(die, DW_AT_high_pc)) {
1521 			if (dwarf_lowpc(die, &low) != 0) {
1522 				return false;
1523 			}
1524 			if (dwarf_highpc(die, &high) != 0) {
1525 				Dwarf_Attribute attr_mem;
1526 				Dwarf_Attribute* attr = dwarf_attr(die, DW_AT_high_pc, &attr_mem);
1527 				Dwarf_Word value;
1528 				if (dwarf_formudata(attr, &value) != 0) {
1529 					return false;
1530 				}
1531 				high = low + value;
1532 			}
1533 			return pc >= low && pc < high;
1534 		}
1535 
1536 		// non-continuous range.
1537 		Dwarf_Addr base;
1538 		ptrdiff_t offset = 0;
1539 		while ((offset = dwarf_ranges(die, offset, &base, &low, &high)) > 0) {
1540 			if (pc >= low && pc < high) {
1541 				return true;
1542 			}
1543 		}
1544 		return false;
1545 	}
1546 
find_fundie_by_pc(Dwarf_Die * parent_die,Dwarf_Addr pc,Dwarf_Die * result)1547 	static Dwarf_Die* find_fundie_by_pc(Dwarf_Die* parent_die, Dwarf_Addr pc,
1548 			Dwarf_Die* result) {
1549 		if (dwarf_child(parent_die, result) != 0) {
1550 			return 0;
1551 		}
1552 
1553 		Dwarf_Die* die = result;
1554 		do {
1555 			switch (dwarf_tag(die)) {
1556 				case DW_TAG_subprogram:
1557 				case DW_TAG_inlined_subroutine:
1558 					if (die_has_pc(die, pc)) {
1559 						return result;
1560 					}
1561 			};
1562 			bool declaration = false;
1563 			Dwarf_Attribute attr_mem;
1564 			dwarf_formflag(dwarf_attr(die, DW_AT_declaration,
1565 						&attr_mem), &declaration);
1566 			if (!declaration) {
1567 				// let's be curious and look deeper in the tree,
1568 				// function are not necessarily at the first level, but
1569 				// might be nested inside a namespace, structure etc.
1570 				Dwarf_Die die_mem;
1571 				Dwarf_Die* indie = find_fundie_by_pc(die, pc, &die_mem);
1572 				if (indie) {
1573 					*result = die_mem;
1574 					return result;
1575 				}
1576 			}
1577 		} while (dwarf_siblingof(die, result) == 0);
1578 		return 0;
1579 	}
1580 
1581 	template <typename CB>
deep_first_search_by_pc(Dwarf_Die * parent_die,Dwarf_Addr pc,CB cb)1582 		static bool deep_first_search_by_pc(Dwarf_Die* parent_die,
1583 				Dwarf_Addr pc, CB cb) {
1584 		Dwarf_Die die_mem;
1585 		if (dwarf_child(parent_die, &die_mem) != 0) {
1586 			return false;
1587 		}
1588 
1589 		bool branch_has_pc = false;
1590 		Dwarf_Die* die = &die_mem;
1591 		do {
1592 			bool declaration = false;
1593 			Dwarf_Attribute attr_mem;
1594 			dwarf_formflag(dwarf_attr(die, DW_AT_declaration, &attr_mem), &declaration);
1595 			if (!declaration) {
1596 				// let's be curious and look deeper in the tree, function are
1597 				// not necessarily at the first level, but might be nested
1598 				// inside a namespace, structure, a function, an inlined
1599 				// function etc.
1600 				branch_has_pc = deep_first_search_by_pc(die, pc, cb);
1601 			}
1602 			if (!branch_has_pc) {
1603 				branch_has_pc = die_has_pc(die, pc);
1604 			}
1605 			if (branch_has_pc) {
1606 				cb(die);
1607 			}
1608 		} while (dwarf_siblingof(die, &die_mem) == 0);
1609 		return branch_has_pc;
1610 	}
1611 
die_call_file(Dwarf_Die * die)1612 	static const char* die_call_file(Dwarf_Die *die) {
1613 		Dwarf_Attribute attr_mem;
1614 		Dwarf_Sword file_idx = 0;
1615 
1616 		dwarf_formsdata(dwarf_attr(die, DW_AT_call_file, &attr_mem),
1617 				&file_idx);
1618 
1619 		if (file_idx == 0) {
1620 			return 0;
1621 		}
1622 
1623 		Dwarf_Die die_mem;
1624 		Dwarf_Die* cudie = dwarf_diecu(die, &die_mem, 0, 0);
1625 		if (!cudie) {
1626 			return 0;
1627 		}
1628 
1629 		Dwarf_Files* files = 0;
1630 		size_t nfiles;
1631 		dwarf_getsrcfiles(cudie, &files, &nfiles);
1632 		if (!files) {
1633 			return 0;
1634 		}
1635 
1636 		return dwarf_filesrc(files, file_idx, 0, 0);
1637 	}
1638 
1639 };
1640 #endif // BACKWARD_HAS_DW == 1
1641 
1642 #if BACKWARD_HAS_DWARF == 1
1643 
1644 template <>
1645 class TraceResolverLinuxImpl<trace_resolver_tag::libdwarf>:
1646 	public TraceResolverImplBase {
read_symlink(std::string const & symlink_path)1647 	static std::string read_symlink(std::string const & symlink_path) {
1648 		std::string path;
1649 		path.resize(100);
1650 
1651 		while(true) {
1652 			ssize_t len = ::readlink(symlink_path.c_str(),
1653 									&*path.begin(), path.size());
1654 			if(len < 0) {
1655 				return "";
1656 			}
1657 			if ((size_t)len == path.size()) {
1658 				path.resize(path.size() * 2);
1659 			}
1660 			else {
1661 				path.resize(len);
1662 				break;
1663 			}
1664 		}
1665 
1666 		return path;
1667 	}
1668 public:
TraceResolverLinuxImpl()1669 	TraceResolverLinuxImpl(): _dwarf_loaded(false) {}
1670 
1671 	template <class ST>
load_stacktrace(ST &)1672 		void load_stacktrace(ST&) {}
1673 
resolve(ResolvedTrace trace)1674 	ResolvedTrace resolve(ResolvedTrace trace) {
1675 		// trace.addr is a virtual address in memory pointing to some code.
1676 		// Let's try to find from which loaded object it comes from.
1677 		// The loaded object can be yourself btw.
1678 
1679 		Dl_info symbol_info;
1680 		int dladdr_result = 0;
1681 #ifndef __ANDROID__
1682 		link_map *link_map;
1683 		// We request the link map so we can get information about offsets
1684 		dladdr_result = dladdr1(trace.addr, &symbol_info,
1685 				reinterpret_cast<void**>(&link_map), RTLD_DL_LINKMAP);
1686 #else
1687 		// Android doesn't have dladdr1. Don't use the linker map.
1688 		dladdr_result = dladdr(trace.addr, &symbol_info);
1689 #endif
1690 		if (!dladdr_result) {
1691 			return trace; // dat broken trace...
1692 		}
1693 
1694 		std::string argv0;
1695 		{
1696 			std::ifstream ifs("/proc/self/cmdline");
1697 			std::getline(ifs, argv0, '\0');
1698 		}
1699 		std::string tmp;
1700 		if(symbol_info.dli_fname == argv0) {
1701 			tmp = read_symlink("/proc/self/exe");
1702 			symbol_info.dli_fname = tmp.c_str();
1703 		}
1704 
1705 		// Now we get in symbol_info:
1706 		// .dli_fname:
1707 		//      pathname of the shared object that contains the address.
1708 		// .dli_fbase:
1709 		//      where the object is loaded in memory.
1710 		// .dli_sname:
1711 		//      the name of the nearest symbol to trace.addr, we expect a
1712 		//      function name.
1713 		// .dli_saddr:
1714 		//      the exact address corresponding to .dli_sname.
1715 		//
1716 		// And in link_map:
1717 		// .l_addr:
1718 		//      difference between the address in the ELF file and the address
1719 		//      in memory
1720 		// l_name:
1721 		//      absolute pathname where the object was found
1722 
1723 		if (symbol_info.dli_sname) {
1724 			trace.object_function = demangle(symbol_info.dli_sname);
1725 		}
1726 
1727 		if (!symbol_info.dli_fname) {
1728 			return trace;
1729 		}
1730 
1731 		trace.object_filename = symbol_info.dli_fname;
1732 		dwarf_fileobject& fobj = load_object_with_dwarf(symbol_info.dli_fname);
1733 		if (!fobj.dwarf_handle) {
1734 			return trace; // sad, we couldn't load the object :(
1735 		}
1736 
1737 #ifndef __ANDROID__
1738 		// Convert the address to a module relative one by looking at
1739 		// the module's loading address in the link map
1740 		Dwarf_Addr address = reinterpret_cast<uintptr_t>(trace.addr) -
1741 				reinterpret_cast<uintptr_t>(link_map->l_addr);
1742 #else
1743 		Dwarf_Addr address = reinterpret_cast<uintptr_t>(trace.addr);
1744 #endif
1745 
1746 		if (trace.object_function.empty()) {
1747 			symbol_cache_t::iterator it =
1748 					fobj.symbol_cache.lower_bound(address);
1749 
1750 			if (it != fobj.symbol_cache.end()) {
1751 				if (it->first != address) {
1752 					if (it != fobj.symbol_cache.begin()) {
1753 						--it;
1754 					}
1755 				}
1756 				trace.object_function = demangle(it->second.c_str());
1757 			}
1758 		}
1759 
1760 		// Get the Compilation Unit DIE for the address
1761 		Dwarf_Die die = find_die(fobj, address);
1762 
1763 		if (!die) {
1764 			return trace; // this time we lost the game :/
1765 		}
1766 
1767 		// libdwarf doesn't give us direct access to its objects, it always
1768 		// allocates a copy for the caller. We keep that copy alive in a cache
1769 		// and we deallocate it later when it's no longer required.
1770 		die_cache_entry& die_object = get_die_cache(fobj, die);
1771 		if (die_object.isEmpty())
1772 			return trace;  // We have no line section for this DIE
1773 
1774 		die_linemap_t::iterator it =
1775 				die_object.line_section.lower_bound(address);
1776 
1777 		if (it != die_object.line_section.end()) {
1778 			if (it->first != address) {
1779 				if (it == die_object.line_section.begin()) {
1780 					// If we are on the first item of the line section
1781 					// but the address does not match it means that
1782 					// the address is below the range of the DIE. Give up.
1783 					return trace;
1784 				} else {
1785 					--it;
1786 				}
1787 			}
1788 		} else {
1789 			return trace; // We didn't find the address.
1790 		}
1791 
1792 		// Get the Dwarf_Line that the address points to and call libdwarf
1793 		// to get source file, line and column info.
1794 		Dwarf_Line line = die_object.line_buffer[it->second];
1795 		Dwarf_Error error = DW_DLE_NE;
1796 
1797 		char* filename;
1798 		if (dwarf_linesrc(line, &filename, &error)
1799 				== DW_DLV_OK) {
1800 			trace.source.filename = std::string(filename);
1801 			dwarf_dealloc(fobj.dwarf_handle.get(), filename, DW_DLA_STRING);
1802 		}
1803 
1804 		Dwarf_Unsigned number = 0;
1805 		if (dwarf_lineno(line, &number, &error) == DW_DLV_OK) {
1806 			trace.source.line = number;
1807 		} else {
1808 			trace.source.line = 0;
1809 		}
1810 
1811 		if (dwarf_lineoff_b(line, &number, &error) == DW_DLV_OK) {
1812 			trace.source.col = number;
1813 		} else {
1814 			trace.source.col = 0;
1815 		}
1816 
1817 		std::vector<std::string> namespace_stack;
1818 		deep_first_search_by_pc(fobj, die, address, namespace_stack,
1819 				inliners_search_cb(trace, fobj, die));
1820 
1821 		dwarf_dealloc(fobj.dwarf_handle.get(), die, DW_DLA_DIE);
1822 
1823 		return trace;
1824 	}
1825 
1826 public:
close_dwarf(Dwarf_Debug dwarf)1827 	static int close_dwarf(Dwarf_Debug dwarf) {
1828 		return dwarf_finish(dwarf, NULL);
1829 	}
1830 
1831 private:
1832 	bool                _dwarf_loaded;
1833 
1834 	typedef details::handle<int,
1835 					details::deleter<int, int, &::close>
1836 							> dwarf_file_t;
1837 
1838 	typedef details::handle<Elf*,
1839 					details::deleter<int, Elf*, &elf_end>
1840 							> dwarf_elf_t;
1841 
1842 	typedef details::handle<Dwarf_Debug,
1843 					details::deleter<int, Dwarf_Debug, &close_dwarf>
1844 							> dwarf_handle_t;
1845 
1846 	typedef std::map<Dwarf_Addr, int>		die_linemap_t;
1847 
1848 	typedef std::map<Dwarf_Off, Dwarf_Off>	die_specmap_t;
1849 
1850 	struct die_cache_entry {
1851 		die_specmap_t			spec_section;
1852 		die_linemap_t			line_section;
1853 		Dwarf_Line*				line_buffer;
1854 		Dwarf_Signed			line_count;
1855 		Dwarf_Line_Context		line_context;
1856 
isEmptybackward::TraceResolverLinuxImpl::die_cache_entry1857 		inline bool isEmpty() {
1858 			return  line_buffer == NULL ||
1859 					line_count == 0 ||
1860 					line_context == NULL ||
1861 					line_section.empty();
1862 		}
1863 
die_cache_entrybackward::TraceResolverLinuxImpl::die_cache_entry1864 		die_cache_entry() :
1865 			line_buffer(0), line_count(0), line_context(0) {}
1866 
~die_cache_entrybackward::TraceResolverLinuxImpl::die_cache_entry1867 		~die_cache_entry()
1868 		{
1869 			if (line_context) {
1870 				dwarf_srclines_dealloc_b(line_context);
1871 			}
1872 		}
1873 	};
1874 
1875 	typedef std::map<Dwarf_Off, die_cache_entry> die_cache_t;
1876 
1877 	typedef std::map<uintptr_t, std::string>     symbol_cache_t;
1878 
1879 	struct dwarf_fileobject {
1880 		dwarf_file_t		file_handle;
1881 		dwarf_elf_t			elf_handle;
1882 		dwarf_handle_t		dwarf_handle;
1883 		symbol_cache_t		symbol_cache;
1884 
1885 		// Die cache
1886 		die_cache_t     	die_cache;
1887 		die_cache_entry*	current_cu;
1888 	};
1889 
1890 	typedef details::hashtable<std::string, dwarf_fileobject>::type
1891 			fobj_dwarf_map_t;
1892 	fobj_dwarf_map_t    _fobj_dwarf_map;
1893 
cstrings_eq(const char * a,const char * b)1894 	static bool cstrings_eq(const char* a, const char* b) {
1895 		if (!a || !b) {
1896 			return false;
1897 		}
1898 		return strcmp(a, b) == 0;
1899 	}
1900 
load_object_with_dwarf(const std::string filename_object)1901 	dwarf_fileobject& load_object_with_dwarf(
1902 			const std::string filename_object) {
1903 
1904 		if (!_dwarf_loaded) {
1905 			// Set the ELF library operating version
1906 			// If that fails there's nothing we can do
1907 			_dwarf_loaded = elf_version(EV_CURRENT) != EV_NONE;
1908 		}
1909 
1910 		fobj_dwarf_map_t::iterator it =
1911 				_fobj_dwarf_map.find(filename_object);
1912 		if (it != _fobj_dwarf_map.end()) {
1913 				return it->second;
1914 		}
1915 
1916 		// this new object is empty for now
1917 		dwarf_fileobject& r = _fobj_dwarf_map[filename_object];
1918 
1919 		dwarf_file_t file_handle;
1920 		file_handle.reset(open(filename_object.c_str(), O_RDONLY));
1921 		if (file_handle < 0) {
1922 			return r;
1923 		}
1924 
1925 		// Try to get an ELF handle. We need to read the ELF sections
1926 		// because we want to see if there is a .gnu_debuglink section
1927 		// that points to a split debug file
1928 		dwarf_elf_t elf_handle;
1929 		elf_handle.reset(elf_begin(file_handle.get(), ELF_C_READ, NULL));
1930 		if (!elf_handle) {
1931 			return r;
1932 		}
1933 
1934 		const char* e_ident = elf_getident(elf_handle.get(), 0);
1935 		if (!e_ident) {
1936 			return r;
1937 		}
1938 
1939 		// Get the number of sections
1940 		// We use the new APIs as elf_getshnum is deprecated
1941 		size_t shdrnum = 0;
1942 		if (elf_getshdrnum(elf_handle.get(), &shdrnum) == -1) {
1943 			return r;
1944 		}
1945 
1946 		// Get the index to the string section
1947 		size_t shdrstrndx = 0;
1948 		if (elf_getshdrstrndx (elf_handle.get(), &shdrstrndx) == -1) {
1949 			return r;
1950 		}
1951 
1952 		std::string debuglink;
1953 		// Iterate through the ELF sections to try to get a gnu_debuglink
1954 		// note and also to cache the symbol table.
1955 		// We go the preprocessor way to avoid having to create templated
1956 		// classes or using gelf (which might throw a compiler error if 64 bit
1957 		// is not supported
1958 #define ELF_GET_DATA(ARCH)                                                   \
1959 		Elf_Scn *elf_section = 0;                                            \
1960 		Elf_Data *elf_data = 0;                                              \
1961 		Elf##ARCH##_Shdr* section_header = 0;                                \
1962 		Elf_Scn *symbol_section = 0;                                         \
1963 		size_t symbol_count = 0;                                             \
1964 		size_t symbol_strings = 0;                                           \
1965 		Elf##ARCH##_Sym *symbol = 0;                                         \
1966 		const char* section_name = 0;                                        \
1967 		                                                                     \
1968 		while ((elf_section = elf_nextscn(elf_handle.get(), elf_section))    \
1969 				!= NULL) {                                                   \
1970 			section_header = elf##ARCH##_getshdr(elf_section);               \
1971 			if (section_header == NULL) {                                    \
1972 				return r;                                                    \
1973 			}                                                                \
1974 		                                                                     \
1975 			if ((section_name = elf_strptr(                                  \
1976 								elf_handle.get(), shdrstrndx,                \
1977 								section_header->sh_name)) == NULL) {         \
1978 				return r;                                                    \
1979 			}                                                                \
1980 		                                                                     \
1981 			if (cstrings_eq(section_name, ".gnu_debuglink")) {               \
1982 				elf_data = elf_getdata(elf_section, NULL);                   \
1983 				if (elf_data && elf_data->d_size > 0) {                      \
1984 					debuglink = std::string(                                 \
1985 							reinterpret_cast<const char*>(elf_data->d_buf)); \
1986 				}                                                            \
1987 			}                                                                \
1988 		                                                                     \
1989 			switch(section_header->sh_type) {                                \
1990 				case SHT_SYMTAB:                                             \
1991 					symbol_section = elf_section;                            \
1992 					symbol_count   = section_header->sh_size /               \
1993 									section_header->sh_entsize;              \
1994 					symbol_strings = section_header->sh_link;                \
1995 					break;                                                   \
1996 		                                                                     \
1997 				/* We use .dynsyms as a last resort, we prefer .symtab */    \
1998 				case SHT_DYNSYM:                                             \
1999 					if (!symbol_section) {                                   \
2000 						symbol_section = elf_section;                        \
2001 						symbol_count   = section_header->sh_size /           \
2002 										section_header->sh_entsize;          \
2003 						symbol_strings = section_header->sh_link;            \
2004 					}                                                        \
2005 					break;                                                   \
2006 			}                                                                \
2007 		}                                                                    \
2008 		                                                                     \
2009 		if (symbol_section && symbol_count && symbol_strings) {              \
2010 			elf_data = elf_getdata(symbol_section, NULL);                    \
2011 			symbol = reinterpret_cast<Elf##ARCH##_Sym*>(elf_data->d_buf);    \
2012 			for (size_t i = 0; i < symbol_count; ++i) {                      \
2013 				int type = ELF##ARCH##_ST_TYPE(symbol->st_info);             \
2014 				if (type == STT_FUNC && symbol->st_value > 0) {              \
2015 					r.symbol_cache[symbol->st_value] = std::string(          \
2016 							elf_strptr(elf_handle.get(),                     \
2017 							symbol_strings, symbol->st_name));               \
2018 				}                                                            \
2019 				++symbol;                                                    \
2020 			}                                                                \
2021 		}                                                                    \
2022 
2023 
2024 		if (e_ident[EI_CLASS] == ELFCLASS32) {
2025 			ELF_GET_DATA(32)
2026 		} else if (e_ident[EI_CLASS] == ELFCLASS64) {
2027 		// libelf might have been built without 64 bit support
2028 #if __LIBELF64
2029 			ELF_GET_DATA(64)
2030 #endif
2031 		}
2032 
2033 		if (!debuglink.empty()) {
2034 			// We have a debuglink section! Open an elf instance on that
2035 			// file instead. If we can't open the file, then return
2036 			// the elf handle we had already opened.
2037 			dwarf_file_t debuglink_file;
2038 			debuglink_file.reset(open(debuglink.c_str(), O_RDONLY));
2039 			if (debuglink_file.get() > 0) {
2040 				dwarf_elf_t debuglink_elf;
2041 				debuglink_elf.reset(
2042 					elf_begin(debuglink_file.get(),ELF_C_READ, NULL)
2043 				);
2044 
2045 				// If we have a valid elf handle, return the new elf handle
2046 				// and file handle and discard the original ones
2047 				if (debuglink_elf) {
2048 					elf_handle = move(debuglink_elf);
2049 					file_handle = move(debuglink_file);
2050 				}
2051 			}
2052 		}
2053 
2054 		// Ok, we have a valid ELF handle, let's try to get debug symbols
2055 		Dwarf_Debug dwarf_debug;
2056 		Dwarf_Error error = DW_DLE_NE;
2057 		dwarf_handle_t dwarf_handle;
2058 
2059 		int dwarf_result = dwarf_elf_init(elf_handle.get(),
2060 						DW_DLC_READ, NULL, NULL, &dwarf_debug, &error);
2061 
2062 		// We don't do any special handling for DW_DLV_NO_ENTRY specially.
2063 		// If we get an error, or the file doesn't have debug information
2064 		// we just return.
2065 		if (dwarf_result != DW_DLV_OK) {
2066 			return r;
2067 		}
2068 
2069 		dwarf_handle.reset(dwarf_debug);
2070 
2071 		r.file_handle = move(file_handle);
2072 		r.elf_handle = move(elf_handle);
2073 		r.dwarf_handle = move(dwarf_handle);
2074 
2075 		return r;
2076 	}
2077 
get_die_cache(dwarf_fileobject & fobj,Dwarf_Die die)2078 	die_cache_entry& get_die_cache(dwarf_fileobject& fobj, Dwarf_Die die)
2079 	{
2080 		Dwarf_Error error = DW_DLE_NE;
2081 
2082 		// Get the die offset, we use it as the cache key
2083 		Dwarf_Off die_offset;
2084 		if (dwarf_dieoffset(die, &die_offset, &error) != DW_DLV_OK) {
2085 			die_offset = 0;
2086 		}
2087 
2088 		die_cache_t::iterator it = fobj.die_cache.find(die_offset);
2089 
2090 		if (it != fobj.die_cache.end()) {
2091 			fobj.current_cu = &it->second;
2092 			return it->second;
2093 		}
2094 
2095 		die_cache_entry& de = fobj.die_cache[die_offset];
2096 		fobj.current_cu = &de;
2097 
2098 		Dwarf_Addr line_addr;
2099 		Dwarf_Small table_count;
2100 
2101 		// The addresses in the line section are not fully sorted (they might
2102 		// be sorted by block of code belonging to the same file), which makes
2103 		// it necessary to do so before searching is possible.
2104 		//
2105 		// As libdwarf allocates a copy of everything, let's get the contents
2106 		// of the line section and keep it around. We also create a map of
2107 		// program counter to line table indices so we can search by address
2108 		// and get the line buffer index.
2109 		//
2110 		// To make things more difficult, the same address can span more than
2111 		// one line, so we need to keep the index pointing to the first line
2112 		// by using insert instead of the map's [ operator.
2113 
2114 		// Get the line context for the DIE
2115 		if (dwarf_srclines_b(die, 0, &table_count, &de.line_context, &error)
2116 				== DW_DLV_OK) {
2117 			// Get the source lines for this line context, to be deallocated
2118 			// later
2119 			if (dwarf_srclines_from_linecontext(
2120 					de.line_context, &de.line_buffer, &de.line_count, &error)
2121 						== DW_DLV_OK) {
2122 
2123 				// Add all the addresses to our map
2124 				for (int i = 0; i < de.line_count; i++) {
2125 					if (dwarf_lineaddr(de.line_buffer[i], &line_addr, &error)
2126 							!= DW_DLV_OK) {
2127 						line_addr = 0;
2128 					}
2129 					de.line_section.insert(
2130 							std::pair<Dwarf_Addr, int>(line_addr, i));
2131 				}
2132 			}
2133 		}
2134 
2135 		// For each CU, cache the function DIEs that contain the
2136 		// DW_AT_specification attribute. When building with -g3 the function
2137 		// DIEs are separated in declaration and specification, with the
2138 		// declaration containing only the name and parameters and the
2139 		// specification the low/high pc and other compiler attributes.
2140 		//
2141 		// We cache those specifications so we don't skip over the declarations,
2142 		// because they have no pc, and we can do namespace resolution for
2143 		// DWARF function names.
2144 		Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2145 		Dwarf_Die current_die = 0;
2146 		if (dwarf_child(die, &current_die, &error) == DW_DLV_OK) {
2147 			for(;;) {
2148 				Dwarf_Die sibling_die = 0;
2149 
2150 				Dwarf_Half tag_value;
2151 				dwarf_tag(current_die, &tag_value, &error);
2152 
2153 				if (tag_value == DW_TAG_subprogram ||
2154 					tag_value == DW_TAG_inlined_subroutine) {
2155 
2156 					Dwarf_Bool has_attr = 0;
2157 					if (dwarf_hasattr(current_die, DW_AT_specification,
2158 									  &has_attr, &error) == DW_DLV_OK) {
2159 						if (has_attr) {
2160 							Dwarf_Attribute attr_mem;
2161 							if (dwarf_attr(current_die, DW_AT_specification,
2162 											&attr_mem, &error) == DW_DLV_OK) {
2163 								Dwarf_Off spec_offset = 0;
2164 								if (dwarf_formref(attr_mem,
2165 										&spec_offset, &error) == DW_DLV_OK) {
2166 									Dwarf_Off spec_die_offset;
2167 									if (dwarf_dieoffset(current_die,
2168 											&spec_die_offset, &error)
2169 											== DW_DLV_OK) {
2170 										de.spec_section[spec_offset] =
2171 												spec_die_offset;
2172 									}
2173 								}
2174 							}
2175 							dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2176 						}
2177 					}
2178 				}
2179 
2180 				int result = dwarf_siblingof(
2181 						dwarf, current_die, &sibling_die, &error);
2182 				if (result == DW_DLV_ERROR) {
2183 					break;
2184 				} else if (result == DW_DLV_NO_ENTRY) {
2185 					break;
2186 				}
2187 
2188 				if (current_die != die) {
2189 					dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
2190 					current_die = 0;
2191 				}
2192 
2193 				current_die = sibling_die;
2194 			}
2195 		}
2196 		return de;
2197 	}
2198 
get_referenced_die(Dwarf_Debug dwarf,Dwarf_Die die,Dwarf_Half attr,bool global)2199 	static Dwarf_Die get_referenced_die(
2200 			Dwarf_Debug dwarf, Dwarf_Die die, Dwarf_Half attr, bool global) {
2201 		Dwarf_Error error = DW_DLE_NE;
2202 		Dwarf_Attribute attr_mem;
2203 
2204 		Dwarf_Die found_die = NULL;
2205 		if (dwarf_attr(die, attr, &attr_mem, &error) == DW_DLV_OK) {
2206 			Dwarf_Off offset;
2207 			int result = 0;
2208 			if (global) {
2209 				result = dwarf_global_formref(attr_mem, &offset, &error);
2210 			} else {
2211 				result = dwarf_formref(attr_mem, &offset, &error);
2212 			}
2213 
2214 			if (result == DW_DLV_OK) {
2215 				if (dwarf_offdie(dwarf, offset, &found_die, &error)
2216 						!= DW_DLV_OK) {
2217 					found_die = NULL;
2218 				}
2219 			}
2220 			dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2221 		}
2222 		return found_die;
2223 	}
2224 
get_referenced_die_name(Dwarf_Debug dwarf,Dwarf_Die die,Dwarf_Half attr,bool global)2225 	static std::string get_referenced_die_name(
2226 			Dwarf_Debug dwarf, Dwarf_Die die, Dwarf_Half attr, bool global) {
2227 		Dwarf_Error error = DW_DLE_NE;
2228 		std::string value;
2229 
2230 		Dwarf_Die found_die = get_referenced_die(dwarf, die, attr, global);
2231 
2232 		if (found_die) {
2233 			char *name;
2234 			if (dwarf_diename(found_die, &name, &error) == DW_DLV_OK) {
2235 				if (name) {
2236 					value = std::string(name);
2237 				}
2238 				dwarf_dealloc(dwarf, name, DW_DLA_STRING);
2239 			}
2240 			dwarf_dealloc(dwarf, found_die, DW_DLA_DIE);
2241 		}
2242 
2243 		return value;
2244 	}
2245 
2246 	// Returns a spec DIE linked to the passed one. The caller should
2247 	// deallocate the DIE
get_spec_die(dwarf_fileobject & fobj,Dwarf_Die die)2248 	static Dwarf_Die get_spec_die(dwarf_fileobject& fobj, Dwarf_Die die) {
2249 		Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2250 		Dwarf_Error error = DW_DLE_NE;
2251 		Dwarf_Off die_offset;
2252 		if (fobj.current_cu && dwarf_die_CU_offset(die, &die_offset, &error)
2253 				== DW_DLV_OK) {
2254 			die_specmap_t::iterator it =
2255 					fobj.current_cu->spec_section.find(die_offset);
2256 
2257 			// If we have a DIE that completes the current one, check if
2258 			// that one has the pc we are looking for
2259 			if (it != fobj.current_cu->spec_section.end()) {
2260 				Dwarf_Die spec_die = 0;
2261 				if (dwarf_offdie(dwarf, it->second, &spec_die, &error)
2262 						== DW_DLV_OK) {
2263 					return spec_die;
2264 				}
2265 			}
2266 		}
2267 
2268 		// Maybe we have an abstract origin DIE with the function information?
2269 		return get_referenced_die(
2270 				fobj.dwarf_handle.get(), die, DW_AT_abstract_origin, true);
2271 
2272 	}
2273 
die_has_pc(dwarf_fileobject & fobj,Dwarf_Die die,Dwarf_Addr pc)2274 	static bool die_has_pc(dwarf_fileobject& fobj, Dwarf_Die die, Dwarf_Addr pc)
2275 	{
2276 		Dwarf_Addr low_pc = 0, high_pc = 0;
2277 		Dwarf_Half high_pc_form = 0;
2278 		Dwarf_Form_Class return_class;
2279 		Dwarf_Error error = DW_DLE_NE;
2280 		Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2281 		bool has_lowpc = false;
2282 		bool has_highpc = false;
2283 		bool has_ranges = false;
2284 
2285 		if (dwarf_lowpc(die, &low_pc, &error) == DW_DLV_OK) {
2286 			// If we have a low_pc check if there is a high pc.
2287 			// If we don't have a high pc this might mean we have a base
2288 			// address for the ranges list or just an address.
2289 			has_lowpc = true;
2290 
2291 			if (dwarf_highpc_b(
2292 					die, &high_pc, &high_pc_form, &return_class, &error)
2293 					== DW_DLV_OK) {
2294 				// We do have a high pc. In DWARF 4+ this is an offset from the
2295 				// low pc, but in earlier versions it's an absolute address.
2296 
2297 				has_highpc = true;
2298 				// In DWARF 2/3 this would be a DW_FORM_CLASS_ADDRESS
2299 				if (return_class == DW_FORM_CLASS_CONSTANT) {
2300 					high_pc = low_pc + high_pc;
2301 				}
2302 
2303 				// We have low and high pc, check if our address
2304 				// is in that range
2305 				return pc >= low_pc && pc < high_pc;
2306 			}
2307 		} else {
2308 			// Reset the low_pc, in case dwarf_lowpc failing set it to some
2309 			// undefined value.
2310 			low_pc = 0;
2311 		}
2312 
2313 		// Check if DW_AT_ranges is present and search for the PC in the
2314 		// returned ranges list. We always add the low_pc, as it not set it will
2315 		// be 0, in case we had a DW_AT_low_pc and DW_AT_ranges pair
2316 		bool result = false;
2317 
2318 		Dwarf_Attribute attr;
2319 		if (dwarf_attr(die, DW_AT_ranges, &attr, &error) == DW_DLV_OK) {
2320 
2321 			Dwarf_Off offset;
2322 			if (dwarf_global_formref(attr, &offset, &error) == DW_DLV_OK) {
2323 				Dwarf_Ranges *ranges;
2324 				Dwarf_Signed ranges_count = 0;
2325 				Dwarf_Unsigned byte_count = 0;
2326 
2327 				if (dwarf_get_ranges_a(dwarf, offset, die, &ranges,
2328 						&ranges_count, &byte_count, &error) == DW_DLV_OK) {
2329 					has_ranges = ranges_count != 0;
2330 					for (int i = 0; i < ranges_count; i++) {
2331 						if (pc >= ranges[i].dwr_addr1 + low_pc &&
2332 							pc < ranges[i].dwr_addr2 + low_pc) {
2333 							result = true;
2334 							break;
2335 						}
2336 					}
2337 					dwarf_ranges_dealloc(dwarf, ranges, ranges_count);
2338 				}
2339 			}
2340 		}
2341 
2342 		// Last attempt. We might have a single address set as low_pc.
2343 		if (!result && low_pc != 0 && pc == low_pc) {
2344 			result = true;
2345 		}
2346 
2347 		// If we don't have lowpc, highpc and ranges maybe this DIE is a
2348 		// declaration that relies on a DW_AT_specification DIE that happens
2349 		// later. Use the specification cache we filled when we loaded this CU.
2350 		if (!result && (!has_lowpc && !has_highpc && !has_ranges)) {
2351 			Dwarf_Die spec_die = get_spec_die(fobj, die);
2352 			if (spec_die) {
2353 				result = die_has_pc(fobj, spec_die, pc);
2354 				dwarf_dealloc(dwarf, spec_die, DW_DLA_DIE);
2355 			}
2356 		}
2357 
2358 		return result;
2359 	}
2360 
get_type(Dwarf_Debug dwarf,Dwarf_Die die,std::string & type)2361 	static void get_type(Dwarf_Debug dwarf, Dwarf_Die die, std::string& type) {
2362 		Dwarf_Error error = DW_DLE_NE;
2363 
2364 		Dwarf_Die child = 0;
2365 		if (dwarf_child(die, &child, &error) == DW_DLV_OK) {
2366 			get_type(dwarf, child, type);
2367 		}
2368 
2369 		if (child) {
2370 			type.insert(0, "::");
2371 			dwarf_dealloc(dwarf, child, DW_DLA_DIE);
2372 		}
2373 
2374 		char *name;
2375 		if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
2376 			type.insert(0, std::string(name));
2377 			dwarf_dealloc(dwarf, name, DW_DLA_STRING);
2378 		} else {
2379 			type.insert(0,"<unknown>");
2380 		}
2381 	}
2382 
get_type_by_signature(Dwarf_Debug dwarf,Dwarf_Die die)2383 	static std::string get_type_by_signature(Dwarf_Debug dwarf, Dwarf_Die die) {
2384 		Dwarf_Error error = DW_DLE_NE;
2385 
2386 		Dwarf_Sig8 signature;
2387 		Dwarf_Bool has_attr = 0;
2388 		if (dwarf_hasattr(die, DW_AT_signature,
2389 						  &has_attr, &error) == DW_DLV_OK) {
2390 			if (has_attr) {
2391 				Dwarf_Attribute attr_mem;
2392 				if (dwarf_attr(die, DW_AT_signature,
2393 								&attr_mem, &error) == DW_DLV_OK) {
2394 					if (dwarf_formsig8(attr_mem, &signature, &error)
2395 							!= DW_DLV_OK) {
2396 						return std::string("<no type signature>");
2397 					}
2398 				}
2399 				dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2400 			}
2401 		}
2402 
2403 		Dwarf_Unsigned next_cu_header;
2404 		Dwarf_Sig8 tu_signature;
2405 		std::string result;
2406 		bool found = false;
2407 
2408 		while (dwarf_next_cu_header_d(dwarf, 0, 0, 0, 0, 0, 0, 0, &tu_signature,
2409 				0, &next_cu_header, 0, &error) == DW_DLV_OK) {
2410 
2411 			if (strncmp(signature.signature, tu_signature.signature, 8) == 0) {
2412 				Dwarf_Die type_cu_die = 0;
2413 				if (dwarf_siblingof_b(dwarf, 0, 0, &type_cu_die, &error)
2414 						== DW_DLV_OK) {
2415 					Dwarf_Die child_die = 0;
2416 					if (dwarf_child(type_cu_die, &child_die, &error)
2417 							== DW_DLV_OK) {
2418 						get_type(dwarf, child_die, result);
2419 						found = !result.empty();
2420 						dwarf_dealloc(dwarf, child_die, DW_DLA_DIE);
2421 					}
2422 					dwarf_dealloc(dwarf, type_cu_die, DW_DLA_DIE);
2423 				}
2424 			}
2425 		}
2426 
2427 		if (found) {
2428 			while (dwarf_next_cu_header_d(dwarf, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2429 					&next_cu_header, 0, &error) == DW_DLV_OK) {
2430 				// Reset the cu header state. Unfortunately, libdwarf's
2431 				// next_cu_header API keeps its own iterator per Dwarf_Debug that
2432 				// can't be reset. We need to keep fetching elements until the end.
2433 			}
2434 		} else {
2435 			// If we couldn't resolve the type just print out the signature
2436 			std::ostringstream string_stream;
2437 			string_stream << "<0x" <<
2438 					std::hex << std::setfill('0');
2439 			for (int i = 0; i < 8; ++i) {
2440 				string_stream << std::setw(2) << std::hex << (int)(unsigned char)(signature.signature[i]);
2441 			}
2442 			string_stream << ">";
2443 			result = string_stream.str();
2444 		}
2445 		return result;
2446 	}
2447 
2448 	struct type_context_t {
2449 		bool is_const;
2450 		bool is_typedef;
2451 		bool has_type;
2452 		bool has_name;
2453 		std::string text;
2454 
type_context_tbackward::TraceResolverLinuxImpl::type_context_t2455 		type_context_t() :
2456 			is_const(false), is_typedef(false),
2457 			has_type(false), has_name(false) {}
2458 	};
2459 
2460 	// Types are resolved from right to left: we get the variable name first
2461 	// and then all specifiers (like const or pointer) in a chain of DW_AT_type
2462 	// DIEs. Call this function recursively until we get a complete type
2463 	// string.
set_parameter_string(dwarf_fileobject & fobj,Dwarf_Die die,type_context_t & context)2464 	static void set_parameter_string(
2465 			dwarf_fileobject& fobj, Dwarf_Die die, type_context_t &context) {
2466 		char *name;
2467 		Dwarf_Error error = DW_DLE_NE;
2468 
2469 		// typedefs contain also the base type, so we skip it and only
2470 		// print the typedef name
2471 		if (!context.is_typedef) {
2472 			if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
2473 				if (!context.text.empty()) {
2474 					context.text.insert(0, " ");
2475 				}
2476 				context.text.insert(0, std::string(name));
2477 				dwarf_dealloc(fobj.dwarf_handle.get(), name, DW_DLA_STRING);
2478 			}
2479 		} else {
2480 			context.is_typedef = false;
2481 			context.has_type = true;
2482 			if (context.is_const) {
2483 				context.text.insert(0, "const ");
2484 				context.is_const = false;
2485 			}
2486 		}
2487 
2488 		bool next_type_is_const = false;
2489 		bool is_keyword = true;
2490 
2491 		Dwarf_Half tag = 0;
2492 		Dwarf_Bool has_attr = 0;
2493 		if (dwarf_tag(die, &tag, &error) == DW_DLV_OK) {
2494 			switch(tag) {
2495 			case DW_TAG_structure_type:
2496 			case DW_TAG_union_type:
2497 			case DW_TAG_class_type:
2498 			case DW_TAG_enumeration_type:
2499 				context.has_type = true;
2500 				if (dwarf_hasattr(die, DW_AT_signature,
2501 								  &has_attr, &error) == DW_DLV_OK) {
2502 					// If we have a signature it means the type is defined
2503 					// in .debug_types, so we need to load the DIE pointed
2504 					// at by the signature and resolve it
2505 					if (has_attr) {
2506 						std::string type =
2507 							get_type_by_signature(fobj.dwarf_handle.get(), die);
2508 						if (context.is_const)
2509 							type.insert(0, "const ");
2510 
2511 						if (!context.text.empty())
2512 							context.text.insert(0, " ");
2513 						context.text.insert(0, type);
2514 					}
2515 
2516 					// Treat enums like typedefs, and skip printing its
2517 					// base type
2518 					context.is_typedef = (tag == DW_TAG_enumeration_type);
2519 				}
2520 				break;
2521 			case DW_TAG_const_type:
2522 				next_type_is_const = true;
2523 				break;
2524 			case DW_TAG_pointer_type:
2525 				context.text.insert(0, "*");
2526 				break;
2527 			case DW_TAG_reference_type:
2528 				context.text.insert(0, "&");
2529 				break;
2530 			case DW_TAG_restrict_type:
2531 				context.text.insert(0, "restrict ");
2532 				break;
2533 			case DW_TAG_rvalue_reference_type:
2534 				context.text.insert(0, "&&");
2535 				break;
2536 			case DW_TAG_volatile_type:
2537 				context.text.insert(0, "volatile ");
2538 				break;
2539 			case DW_TAG_typedef:
2540 				// Propagate the const-ness to the next type
2541 				// as typedefs are linked to its base type
2542 				next_type_is_const = context.is_const;
2543 				context.is_typedef = true;
2544 				context.has_type = true;
2545 				break;
2546 			case DW_TAG_base_type:
2547 				context.has_type = true;
2548 				break;
2549 			case DW_TAG_formal_parameter:
2550 				context.has_name = true;
2551 				break;
2552 			default:
2553 				is_keyword = false;
2554 				break;
2555 			}
2556 		}
2557 
2558 		if (!is_keyword && context.is_const) {
2559 			context.text.insert(0, "const ");
2560 		}
2561 
2562 		context.is_const = next_type_is_const;
2563 
2564 		Dwarf_Die ref = get_referenced_die(fobj.dwarf_handle.get(), die, DW_AT_type, true);
2565 		if (ref) {
2566 			set_parameter_string(fobj, ref, context);
2567 			dwarf_dealloc(fobj.dwarf_handle.get(), ref, DW_DLA_DIE);
2568 		}
2569 
2570 		if (!context.has_type && context.has_name) {
2571 			context.text.insert(0, "void ");
2572 			context.has_type = true;
2573 		}
2574 	}
2575 
2576 	// Resolve the function return type and parameters
set_function_parameters(std::string & function_name,std::vector<std::string> & ns,dwarf_fileobject & fobj,Dwarf_Die die)2577 	static void set_function_parameters(std::string& function_name,
2578 										std::vector<std::string>& ns,
2579 										dwarf_fileobject& fobj, Dwarf_Die die) {
2580 		Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2581 		Dwarf_Error error = DW_DLE_NE;
2582 		Dwarf_Die current_die = 0;
2583 		std::string parameters;
2584 		bool has_spec = true;
2585 		// Check if we have a spec DIE. If we do we use it as it contains
2586 		// more information, like parameter names.
2587 		Dwarf_Die spec_die = get_spec_die(fobj, die);
2588 		if (!spec_die) {
2589 			has_spec = false;
2590 			spec_die = die;
2591 		}
2592 
2593 		std::vector<std::string>::const_iterator it = ns.begin();
2594 		std::string ns_name;
2595 		for (it = ns.begin(); it < ns.end(); ++it) {
2596 			ns_name.append(*it).append("::");
2597 		}
2598 
2599 		if (!ns_name.empty()) {
2600 			function_name.insert(0, ns_name);
2601 		}
2602 
2603 		// See if we have a function return type. It can be either on the
2604 		// current die or in its spec one (usually true for inlined functions)
2605 		std::string return_type =
2606 				get_referenced_die_name(dwarf, die, DW_AT_type, true);
2607 		if (return_type.empty()) {
2608 			return_type =
2609 				get_referenced_die_name(dwarf, spec_die, DW_AT_type, true);
2610 		}
2611 		if (!return_type.empty()) {
2612 			return_type.append(" ");
2613 			function_name.insert(0, return_type);
2614 		}
2615 
2616 		if (dwarf_child(spec_die, &current_die, &error) == DW_DLV_OK) {
2617 			for(;;) {
2618 				Dwarf_Die sibling_die = 0;
2619 
2620 				Dwarf_Half tag_value;
2621 				dwarf_tag(current_die, &tag_value, &error);
2622 
2623 				if (tag_value == DW_TAG_formal_parameter) {
2624 					// Ignore artificial (ie, compiler generated) parameters
2625 					bool is_artificial = false;
2626 					Dwarf_Attribute attr_mem;
2627 					if (dwarf_attr(
2628 							current_die, DW_AT_artificial, &attr_mem, &error)
2629 							== DW_DLV_OK) {
2630 						Dwarf_Bool flag = 0;
2631 						if (dwarf_formflag(attr_mem, &flag, &error)
2632 								== DW_DLV_OK) {
2633 							is_artificial = flag != 0;
2634 						}
2635 						dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2636 					}
2637 
2638 					if (!is_artificial) {
2639 						type_context_t context;
2640 						set_parameter_string(fobj, current_die, context);
2641 
2642 						if (parameters.empty()) {
2643 							parameters.append("(");
2644 						} else {
2645 							parameters.append(", ");
2646 						}
2647 						parameters.append(context.text);
2648 					}
2649 				}
2650 
2651 				int result = dwarf_siblingof(
2652 						dwarf, current_die, &sibling_die, &error);
2653 				if (result == DW_DLV_ERROR) {
2654 					break;
2655 				} else if (result == DW_DLV_NO_ENTRY) {
2656 					break;
2657 				}
2658 
2659 				if (current_die != die) {
2660 					dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
2661 					current_die = 0;
2662 				}
2663 
2664 				current_die = sibling_die;
2665 			}
2666 		}
2667 		if (parameters.empty())
2668 			parameters = "(";
2669 		parameters.append(")");
2670 
2671 		// If we got a spec DIE we need to deallocate it
2672 		if (has_spec)
2673 			dwarf_dealloc(dwarf, spec_die, DW_DLA_DIE);
2674 
2675 		function_name.append(parameters);
2676 	}
2677 
2678 	// defined here because in C++98, template function cannot take locally
2679 	// defined types... grrr.
2680 	struct inliners_search_cb {
operator ()backward::TraceResolverLinuxImpl::inliners_search_cb2681 		void operator()(Dwarf_Die die, std::vector<std::string>& ns) {
2682 			Dwarf_Error error = DW_DLE_NE;
2683 			Dwarf_Half tag_value;
2684 			Dwarf_Attribute attr_mem;
2685 			Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2686 
2687 			dwarf_tag(die, &tag_value, &error);
2688 
2689 			switch (tag_value) {
2690 				char* name;
2691 				case DW_TAG_subprogram:
2692 					if (!trace.source.function.empty())
2693 						break;
2694 					if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
2695 						trace.source.function = std::string(name);
2696 						dwarf_dealloc(dwarf, name, DW_DLA_STRING);
2697 					} else {
2698 						// We don't have a function name in this DIE.
2699 						// Check if there is a referenced non-defining
2700 						// declaration.
2701 						trace.source.function = get_referenced_die_name(
2702 								dwarf, die, DW_AT_abstract_origin, true);
2703 						if (trace.source.function.empty()) {
2704 							trace.source.function = get_referenced_die_name(
2705 									dwarf, die, DW_AT_specification, true);
2706 						}
2707 					}
2708 
2709 					// Append the function parameters, if available
2710 					set_function_parameters(
2711 							trace.source.function, ns, fobj, die);
2712 
2713 					// If the object function name is empty, it's possible that
2714 					// there is no dynamic symbol table (maybe the executable
2715 					// was stripped or not built with -rdynamic). See if we have
2716 					// a DWARF linkage name to use instead. We try both
2717 					// linkage_name and MIPS_linkage_name because the MIPS tag
2718 					// was the unofficial one until it was adopted in DWARF4.
2719 					// Old gcc versions generate MIPS_linkage_name
2720 					if (trace.object_function.empty()) {
2721 						details::demangler demangler;
2722 
2723 						if (dwarf_attr(die, DW_AT_linkage_name,
2724 								&attr_mem, &error) != DW_DLV_OK) {
2725 							if (dwarf_attr(die, DW_AT_MIPS_linkage_name,
2726 									&attr_mem, &error) != DW_DLV_OK) {
2727 								break;
2728 							}
2729 						}
2730 
2731 						char* linkage;
2732 						if (dwarf_formstring(attr_mem, &linkage, &error)
2733 								== DW_DLV_OK) {
2734 							trace.object_function = demangler.demangle(linkage);
2735 							dwarf_dealloc(dwarf, linkage, DW_DLA_STRING);
2736 						}
2737 						dwarf_dealloc(dwarf, name, DW_DLA_ATTR);
2738 					}
2739 					break;
2740 
2741 				case DW_TAG_inlined_subroutine:
2742 					ResolvedTrace::SourceLoc sloc;
2743 
2744 					if (dwarf_diename(die, &name, &error) == DW_DLV_OK) {
2745 						sloc.function = std::string(name);
2746 						dwarf_dealloc(dwarf, name, DW_DLA_STRING);
2747 					} else {
2748 						// We don't have a name for this inlined DIE, it could
2749 						// be that there is an abstract origin instead.
2750 						// Get the DW_AT_abstract_origin value, which is a
2751 						// reference to the source DIE and try to get its name
2752 						sloc.function = get_referenced_die_name(
2753 								dwarf, die, DW_AT_abstract_origin, true);
2754 					}
2755 
2756 					set_function_parameters(sloc.function, ns, fobj, die);
2757 
2758 					std::string file = die_call_file(dwarf, die, cu_die);
2759 					if (!file.empty())
2760 						sloc.filename = file;
2761 
2762 					Dwarf_Unsigned number = 0;
2763 					if (dwarf_attr(die, DW_AT_call_line, &attr_mem, &error)
2764 							== DW_DLV_OK) {
2765 						if (dwarf_formudata(attr_mem, &number, &error)
2766 								== DW_DLV_OK) {
2767 							sloc.line = number;
2768 						}
2769 						dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2770 					}
2771 
2772 					if (dwarf_attr(die, DW_AT_call_column, &attr_mem, &error)
2773 							== DW_DLV_OK) {
2774 						if (dwarf_formudata(attr_mem, &number, &error)
2775 								== DW_DLV_OK) {
2776 							sloc.col = number;
2777 						}
2778 						dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2779 					}
2780 
2781 					trace.inliners.push_back(sloc);
2782 					break;
2783 			};
2784 		}
2785 		ResolvedTrace& trace;
2786 		dwarf_fileobject& fobj;
2787 		Dwarf_Die cu_die;
inliners_search_cbbackward::TraceResolverLinuxImpl::inliners_search_cb2788 		inliners_search_cb(ResolvedTrace& t, dwarf_fileobject& f, Dwarf_Die c)
2789 			: trace(t), fobj(f), cu_die(c) {}
2790 	};
2791 
find_fundie_by_pc(dwarf_fileobject & fobj,Dwarf_Die parent_die,Dwarf_Addr pc,Dwarf_Die result)2792 	static Dwarf_Die find_fundie_by_pc(dwarf_fileobject& fobj,
2793 					Dwarf_Die parent_die, Dwarf_Addr pc, Dwarf_Die result) {
2794 		Dwarf_Die current_die = 0;
2795 		Dwarf_Error error = DW_DLE_NE;
2796 		Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2797 
2798 		if (dwarf_child(parent_die, &current_die, &error) != DW_DLV_OK) {
2799 			return NULL;
2800 		}
2801 
2802 		for(;;) {
2803 			Dwarf_Die sibling_die = 0;
2804 			Dwarf_Half tag_value;
2805 			dwarf_tag(current_die, &tag_value, &error);
2806 
2807 			switch (tag_value) {
2808 				case DW_TAG_subprogram:
2809 				case DW_TAG_inlined_subroutine:
2810 					if (die_has_pc(fobj, current_die, pc)) {
2811 						return current_die;
2812 					}
2813 			};
2814 			bool declaration = false;
2815 			Dwarf_Attribute attr_mem;
2816 			if (dwarf_attr(current_die, DW_AT_declaration, &attr_mem, &error)
2817 					== DW_DLV_OK) {
2818 				Dwarf_Bool flag = 0;
2819 				if (dwarf_formflag(attr_mem, &flag, &error) == DW_DLV_OK) {
2820 					declaration = flag != 0;
2821 				}
2822 				dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2823 			}
2824 
2825 			if (!declaration) {
2826 				// let's be curious and look deeper in the tree, functions are
2827 				// not necessarily at the first level, but might be nested
2828 				// inside a namespace, structure, a function, an inlined
2829 				// function etc.
2830 				Dwarf_Die die_mem = 0;
2831 				Dwarf_Die indie = find_fundie_by_pc(
2832 						fobj, current_die, pc, die_mem);
2833 				if (indie) {
2834 					result = die_mem;
2835 					return result;
2836 				}
2837 			}
2838 
2839 			int res = dwarf_siblingof(
2840 					dwarf, current_die, &sibling_die, &error);
2841 			if (res == DW_DLV_ERROR) {
2842 				return NULL;
2843 			} else if (res == DW_DLV_NO_ENTRY) {
2844 				break;
2845 			}
2846 
2847 			if (current_die != parent_die) {
2848 				dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
2849 				current_die = 0;
2850 			}
2851 
2852 			current_die = sibling_die;
2853 		}
2854 		return NULL;
2855 	}
2856 
2857 	template <typename CB>
deep_first_search_by_pc(dwarf_fileobject & fobj,Dwarf_Die parent_die,Dwarf_Addr pc,std::vector<std::string> & ns,CB cb)2858 		static bool deep_first_search_by_pc(dwarf_fileobject& fobj,
2859 						Dwarf_Die parent_die, Dwarf_Addr pc,
2860 						std::vector<std::string>& ns, CB cb) {
2861 		Dwarf_Die current_die = 0;
2862 		Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2863 		Dwarf_Error error = DW_DLE_NE;
2864 
2865 		if (dwarf_child(parent_die, &current_die, &error) != DW_DLV_OK) {
2866 			return false;
2867 		}
2868 
2869 		bool branch_has_pc = false;
2870 		bool has_namespace = false;
2871 		for(;;) {
2872 			Dwarf_Die sibling_die = 0;
2873 
2874 			Dwarf_Half tag;
2875 			if (dwarf_tag(current_die, &tag, &error) == DW_DLV_OK) {
2876 				if (tag == DW_TAG_namespace || tag == DW_TAG_class_type) {
2877 					char* ns_name = NULL;
2878 					if (dwarf_diename(current_die, &ns_name, &error)
2879 							== DW_DLV_OK) {
2880 						if (ns_name) {
2881 							ns.push_back(std::string(ns_name));
2882 						} else {
2883 							ns.push_back("<unknown>");
2884 						}
2885 						dwarf_dealloc(dwarf, ns_name,  DW_DLA_STRING);
2886 					} else {
2887 						ns.push_back("<unknown>");
2888 					}
2889 					has_namespace = true;
2890 				}
2891 			}
2892 
2893 			bool declaration = false;
2894 			Dwarf_Attribute attr_mem;
2895 			if (tag != DW_TAG_class_type &&
2896 				dwarf_attr(current_die, DW_AT_declaration, &attr_mem, &error)
2897 					== DW_DLV_OK) {
2898 				Dwarf_Bool flag = 0;
2899 				if (dwarf_formflag(attr_mem, &flag, &error) == DW_DLV_OK) {
2900 					declaration = flag != 0;
2901 				}
2902 				dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2903 			}
2904 
2905 			if (!declaration) {
2906 				// let's be curious and look deeper in the tree, function are
2907 				// not necessarily at the first level, but might be nested
2908 				// inside a namespace, structure, a function, an inlined
2909 				// function etc.
2910 				branch_has_pc = deep_first_search_by_pc(
2911 												fobj, current_die, pc, ns, cb);
2912 			}
2913 
2914 			if (!branch_has_pc) {
2915 				branch_has_pc = die_has_pc(fobj, current_die, pc);
2916 			}
2917 
2918 			if (branch_has_pc) {
2919 				cb(current_die, ns);
2920 			}
2921 
2922 			int result = dwarf_siblingof(
2923 					dwarf, current_die, &sibling_die, &error);
2924 			if (result == DW_DLV_ERROR) {
2925 				return false;
2926 			} else if (result == DW_DLV_NO_ENTRY) {
2927 				break;
2928 			}
2929 
2930 			if (current_die != parent_die) {
2931 				dwarf_dealloc(dwarf, current_die, DW_DLA_DIE);
2932 				current_die = 0;
2933 			}
2934 
2935 			if (has_namespace) {
2936 				has_namespace = false;
2937 				ns.pop_back();
2938 			}
2939 			current_die = sibling_die;
2940 		}
2941 
2942 		if (has_namespace) {
2943 			ns.pop_back();
2944 		}
2945 		return branch_has_pc;
2946 	}
2947 
die_call_file(Dwarf_Debug dwarf,Dwarf_Die die,Dwarf_Die cu_die)2948 	static std::string die_call_file(
2949 			Dwarf_Debug dwarf, Dwarf_Die die, Dwarf_Die cu_die) {
2950 		Dwarf_Attribute attr_mem;
2951 		Dwarf_Error error = DW_DLE_NE;
2952 		Dwarf_Signed file_index;
2953 
2954 		std::string file;
2955 
2956 		if (dwarf_attr(die, DW_AT_call_file, &attr_mem, &error) == DW_DLV_OK) {
2957 			if (dwarf_formsdata(attr_mem, &file_index, &error) != DW_DLV_OK) {
2958 				file_index = 0;
2959 			}
2960 			dwarf_dealloc(dwarf, attr_mem, DW_DLA_ATTR);
2961 
2962 			if (file_index == 0) {
2963 				return file;
2964 			}
2965 
2966 			char **srcfiles = 0;
2967 			Dwarf_Signed file_count = 0;
2968 			if (dwarf_srcfiles(cu_die, &srcfiles, &file_count, &error)
2969 					== DW_DLV_OK) {
2970 				if (file_index <= file_count)
2971 					file = std::string(srcfiles[file_index - 1]);
2972 
2973 				// Deallocate all strings!
2974 				for (int i = 0; i < file_count; ++i) {
2975 					dwarf_dealloc(dwarf, srcfiles[i], DW_DLA_STRING);
2976 				}
2977 				dwarf_dealloc(dwarf, srcfiles, DW_DLA_LIST);
2978 			}
2979 		}
2980 		return file;
2981 	}
2982 
2983 
find_die(dwarf_fileobject & fobj,Dwarf_Addr addr)2984 	Dwarf_Die find_die(dwarf_fileobject& fobj, Dwarf_Addr addr)
2985 	{
2986 		// Let's get to work! First see if we have a debug_aranges section so
2987 		// we can speed up the search
2988 
2989 		Dwarf_Debug dwarf = fobj.dwarf_handle.get();
2990 		Dwarf_Error error = DW_DLE_NE;
2991 		Dwarf_Arange *aranges;
2992 		Dwarf_Signed arange_count;
2993 
2994 		Dwarf_Die returnDie;
2995 		bool found = false;
2996 		if (dwarf_get_aranges(
2997 				dwarf, &aranges, &arange_count, &error) != DW_DLV_OK) {
2998 			aranges = NULL;
2999 		}
3000 
3001 		if (aranges) {
3002 			// We have aranges. Get the one where our address is.
3003 			Dwarf_Arange arange;
3004 			if (dwarf_get_arange(
3005 					aranges, arange_count, addr, &arange, &error)
3006 						== DW_DLV_OK) {
3007 
3008 				// We found our address. Get the compilation-unit DIE offset
3009 				// represented by the given address range.
3010 				Dwarf_Off cu_die_offset;
3011 				if (dwarf_get_cu_die_offset(arange, &cu_die_offset, &error)
3012 						== DW_DLV_OK) {
3013 					// Get the DIE at the offset returned by the aranges search.
3014 					// We set is_info to 1 to specify that the offset is from
3015 					// the .debug_info section (and not .debug_types)
3016 					int dwarf_result = dwarf_offdie_b(
3017 							dwarf, cu_die_offset, 1, &returnDie, &error);
3018 
3019 					found = dwarf_result == DW_DLV_OK;
3020 				}
3021 				dwarf_dealloc(dwarf, arange, DW_DLA_ARANGE);
3022 			}
3023 		}
3024 
3025 		if (found)
3026 			return returnDie; // The caller is responsible for freeing the die
3027 
3028 		// The search for aranges failed. Try to find our address by scanning
3029 		// all compilation units.
3030 		Dwarf_Unsigned next_cu_header;
3031 		while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
3032 				&next_cu_header, 0, &error) == DW_DLV_OK) {
3033 			if (dwarf_siblingof(dwarf, 0, &returnDie, &error) == DW_DLV_OK) {
3034 				if (die_has_pc(fobj, returnDie, addr)) {
3035 					found = true;
3036 					break;
3037 				}
3038 				dwarf_dealloc(dwarf, returnDie, DW_DLA_DIE);
3039 			}
3040 		}
3041 
3042 		while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
3043 				&next_cu_header, 0, &error) == DW_DLV_OK) {
3044 			// Reset the cu header state. Unfortunately, libdwarf's
3045 			// next_cu_header API keeps its own iterator per Dwarf_Debug that
3046 			// can't be reset. We need to keep fetching elements until the end.
3047 		}
3048 
3049 		if (found)
3050 			return returnDie;
3051 
3052 
3053 		// We couldn't find any compilation units with ranges or a high/low pc.
3054 		// Try again by looking at all DIEs in all compilation units.
3055 		Dwarf_Die cudie;
3056 		while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
3057 				&next_cu_header, 0, &error) == DW_DLV_OK) {
3058 			if (dwarf_siblingof(dwarf, 0, &cudie, &error) == DW_DLV_OK) {
3059 				Dwarf_Die die_mem = 0;
3060 				Dwarf_Die resultDie = find_fundie_by_pc(
3061 						fobj, cudie, addr, die_mem);
3062 
3063 				if (resultDie) {
3064 					found = true;
3065 					break;
3066 				}
3067 			}
3068 		}
3069 
3070 		while (dwarf_next_cu_header_d(dwarf, 1, 0, 0, 0, 0, 0, 0, 0, 0,
3071 				&next_cu_header, 0, &error) == DW_DLV_OK) {
3072 			// Reset the cu header state. Unfortunately, libdwarf's
3073 			// next_cu_header API keeps its own iterator per Dwarf_Debug that
3074 			// can't be reset. We need to keep fetching elements until the end.
3075 		}
3076 
3077 		if (found)
3078 			return cudie;
3079 
3080 		// We failed.
3081 		return NULL;
3082 	}
3083 };
3084 #endif // BACKWARD_HAS_DWARF == 1
3085 
3086 template<>
3087 class TraceResolverImpl<system_tag::linux_tag>:
3088 	public TraceResolverLinuxImpl<trace_resolver_tag::current> {};
3089 
3090 #endif // BACKWARD_SYSTEM_LINUX
3091 
3092 #ifdef BACKWARD_SYSTEM_DARWIN
3093 
3094 template <typename STACKTRACE_TAG>
3095 class TraceResolverDarwinImpl;
3096 
3097 template <>
3098 class TraceResolverDarwinImpl<trace_resolver_tag::backtrace_symbol>:
3099 	public TraceResolverImplBase {
3100 public:
3101 	template <class ST>
load_stacktrace(ST & st)3102 		void load_stacktrace(ST& st) {
3103 			using namespace details;
3104 			if (st.size() == 0) {
3105 				return;
3106 			}
3107 			_symbols.reset(
3108 					backtrace_symbols(st.begin(), st.size())
3109 					);
3110 		}
3111 
resolve(ResolvedTrace trace)3112 	ResolvedTrace resolve(ResolvedTrace trace) {
3113 		// parse:
3114 		// <n>  <file>  <addr>  <mangled-name> + <offset>
3115 		char* filename = _symbols[trace.idx];
3116 
3117 		// skip "<n>  "
3118 		while(*filename && *filename != ' ') filename++;
3119 		while(*filename == ' ') filename++;
3120 
3121 		// find start of <mangled-name> from end (<file> may contain a space)
3122 		char* p = filename + strlen(filename) - 1;
3123 		// skip to start of " + <offset>"
3124 		while(p > filename && *p != ' ') p--;
3125 		while(p > filename && *p == ' ') p--;
3126 		while(p > filename && *p != ' ') p--;
3127 		while(p > filename && *p == ' ') p--;
3128 		char *funcname_end = p + 1;
3129 
3130 		// skip to start of "<manged-name>"
3131 		while(p > filename && *p != ' ') p--;
3132 		char *funcname = p + 1;
3133 
3134 		// skip to start of "  <addr>  "
3135 		while(p > filename && *p == ' ') p--;
3136 		while(p > filename && *p != ' ') p--;
3137 		while(p > filename && *p == ' ') p--;
3138 
3139 		// skip "<file>", handling the case where it contains a
3140 		char* filename_end = p + 1;
3141 		if (p == filename) {
3142 			// something went wrong, give up
3143 			filename_end = filename + strlen(filename);
3144 			funcname = filename_end;
3145 		}
3146 		trace.object_filename.assign(filename, filename_end); // ok even if filename_end is the ending \0 (then we assign entire string)
3147 
3148 		if (*funcname) { // if it's not end of string
3149 			*funcname_end = '\0';
3150 
3151 			trace.object_function = this->demangle(funcname);
3152 			trace.object_function += " ";
3153 			trace.object_function += (funcname_end + 1);
3154 			trace.source.function = trace.object_function; // we cannot do better.
3155 		}
3156 		return trace;
3157 	}
3158 
3159 private:
3160 	details::handle<char**> _symbols;
3161 };
3162 
3163 template<>
3164 class TraceResolverImpl<system_tag::darwin_tag>:
3165 	public TraceResolverDarwinImpl<trace_resolver_tag::current> {};
3166 
3167 #endif // BACKWARD_SYSTEM_DARWIN
3168 
3169 class TraceResolver:
3170 	public TraceResolverImpl<system_tag::current_tag> {};
3171 
3172 /*************** CODE SNIPPET ***************/
3173 
3174 class SourceFile {
3175 public:
3176 	typedef std::vector<std::pair<unsigned, std::string> > lines_t;
3177 
SourceFile()3178 	SourceFile() {}
SourceFile(const std::string & path)3179 	SourceFile(const std::string& path): _file(new std::ifstream(path.c_str())) {}
is_open() const3180 	bool is_open() const { return _file->is_open(); }
3181 
get_lines(unsigned line_start,unsigned line_count,lines_t & lines)3182 	lines_t& get_lines(unsigned line_start, unsigned line_count, lines_t& lines) {
3183 		using namespace std;
3184 		// This function make uses of the dumbest algo ever:
3185 		//	1) seek(0)
3186 		//	2) read lines one by one and discard until line_start
3187 		//	3) read line one by one until line_start + line_count
3188 		//
3189 		// If you are getting snippets many time from the same file, it is
3190 		// somewhat a waste of CPU, feel free to benchmark and propose a
3191 		// better solution ;)
3192 
3193 		_file->clear();
3194 		_file->seekg(0);
3195 		string line;
3196 		unsigned line_idx;
3197 
3198 		for (line_idx = 1; line_idx < line_start; ++line_idx) {
3199 			std::getline(*_file, line);
3200 			if (!*_file) {
3201 				return lines;
3202 			}
3203 		}
3204 
3205 		// think of it like a lambda in C++98 ;)
3206 		// but look, I will reuse it two times!
3207 		// What a good boy am I.
3208 		struct isspace {
3209 			bool operator()(char c) {
3210 				return std::isspace(c);
3211 			}
3212 		};
3213 
3214 		bool started = false;
3215 		for (; line_idx < line_start + line_count; ++line_idx) {
3216 			getline(*_file, line);
3217 			if (!*_file) {
3218 				return lines;
3219 			}
3220 			if (!started) {
3221 				if (std::find_if(line.begin(), line.end(),
3222 							not_isspace()) == line.end())
3223 					continue;
3224 				started = true;
3225 			}
3226 			lines.push_back(make_pair(line_idx, line));
3227 		}
3228 
3229 		lines.erase(
3230 				std::find_if(lines.rbegin(), lines.rend(),
3231 					not_isempty()).base(), lines.end()
3232 				);
3233 		return lines;
3234 	}
3235 
get_lines(unsigned line_start,unsigned line_count)3236 	lines_t get_lines(unsigned line_start, unsigned line_count) {
3237 		lines_t lines;
3238 		return get_lines(line_start, line_count, lines);
3239 	}
3240 
3241 	// there is no find_if_not in C++98, lets do something crappy to
3242 	// workaround.
3243 	struct not_isspace {
operator ()backward::SourceFile::not_isspace3244 		bool operator()(char c) {
3245 			return !std::isspace(c);
3246 		}
3247 	};
3248 	// and define this one here because C++98 is not happy with local defined
3249 	// struct passed to template functions, fuuuu.
3250 	struct not_isempty {
operator ()backward::SourceFile::not_isempty3251 		bool operator()(const lines_t::value_type& p) {
3252 			return !(std::find_if(p.second.begin(), p.second.end(),
3253 						not_isspace()) == p.second.end());
3254 		}
3255 	};
3256 
swap(SourceFile & b)3257 	void swap(SourceFile& b) {
3258 		_file.swap(b._file);
3259 	}
3260 
3261 #ifdef BACKWARD_ATLEAST_CXX11
SourceFile(SourceFile && from)3262 	SourceFile(SourceFile&& from): _file(0) {
3263 		swap(from);
3264 	}
operator =(SourceFile && from)3265 	SourceFile& operator=(SourceFile&& from) {
3266 		swap(from); return *this;
3267 	}
3268 #else
SourceFile(const SourceFile & from)3269 	explicit SourceFile(const SourceFile& from) {
3270 		// some sort of poor man's move semantic.
3271 		swap(const_cast<SourceFile&>(from));
3272 	}
operator =(const SourceFile & from)3273 	SourceFile& operator=(const SourceFile& from) {
3274 		// some sort of poor man's move semantic.
3275 		swap(const_cast<SourceFile&>(from)); return *this;
3276 	}
3277 #endif
3278 
3279 private:
3280 	details::handle<std::ifstream*,
3281 		details::default_delete<std::ifstream*>
3282 			> _file;
3283 
3284 #ifdef BACKWARD_ATLEAST_CXX11
3285 	SourceFile(const SourceFile&) = delete;
3286 	SourceFile& operator=(const SourceFile&) = delete;
3287 #endif
3288 };
3289 
3290 class SnippetFactory {
3291 public:
3292 	typedef SourceFile::lines_t lines_t;
3293 
get_snippet(const std::string & filename,unsigned line_start,unsigned context_size)3294 	lines_t get_snippet(const std::string& filename,
3295 			unsigned line_start, unsigned context_size) {
3296 
3297 		SourceFile& src_file = get_src_file(filename);
3298 		unsigned start = line_start - context_size / 2;
3299 		return src_file.get_lines(start, context_size);
3300 	}
3301 
get_combined_snippet(const std::string & filename_a,unsigned line_a,const std::string & filename_b,unsigned line_b,unsigned context_size)3302 	lines_t get_combined_snippet(
3303 			const std::string& filename_a, unsigned line_a,
3304 			const std::string& filename_b, unsigned line_b,
3305 			unsigned context_size) {
3306 		SourceFile& src_file_a = get_src_file(filename_a);
3307 		SourceFile& src_file_b = get_src_file(filename_b);
3308 
3309 		lines_t lines = src_file_a.get_lines(line_a - context_size / 4,
3310 				context_size / 2);
3311 		src_file_b.get_lines(line_b - context_size / 4, context_size / 2,
3312 				lines);
3313 		return lines;
3314 	}
3315 
get_coalesced_snippet(const std::string & filename,unsigned line_a,unsigned line_b,unsigned context_size)3316 	lines_t get_coalesced_snippet(const std::string& filename,
3317 			unsigned line_a, unsigned line_b, unsigned context_size) {
3318 		SourceFile& src_file = get_src_file(filename);
3319 
3320 		using std::min; using std::max;
3321 		unsigned a = min(line_a, line_b);
3322 		unsigned b = max(line_a, line_b);
3323 
3324 		if ((b - a) < (context_size / 3)) {
3325 			return src_file.get_lines((a + b - context_size + 1) / 2,
3326 					context_size);
3327 		}
3328 
3329 		lines_t lines = src_file.get_lines(a - context_size / 4,
3330 				context_size / 2);
3331 		src_file.get_lines(b - context_size / 4, context_size / 2, lines);
3332 		return lines;
3333 	}
3334 
3335 
3336 private:
3337 	typedef details::hashtable<std::string, SourceFile>::type src_files_t;
3338 	src_files_t _src_files;
3339 
get_src_file(const std::string & filename)3340 	SourceFile& get_src_file(const std::string& filename) {
3341 		src_files_t::iterator it = _src_files.find(filename);
3342 		if (it != _src_files.end()) {
3343 			return it->second;
3344 		}
3345 		SourceFile& new_src_file = _src_files[filename];
3346 		new_src_file = SourceFile(filename);
3347 		return new_src_file;
3348 	}
3349 };
3350 
3351 /*************** PRINTER ***************/
3352 
3353 namespace ColorMode {
3354 	enum type {
3355 		automatic,
3356 		never,
3357 		always
3358 	};
3359 }
3360 
3361 class cfile_streambuf: public std::streambuf {
3362 public:
cfile_streambuf(FILE * _sink)3363 	cfile_streambuf(FILE *_sink): sink(_sink) {}
underflow()3364 	int_type underflow() override { return traits_type::eof(); }
overflow(int_type ch)3365 	int_type overflow(int_type ch) override {
3366 		if (traits_type::not_eof(ch) && fwrite(&ch, sizeof ch, 1, sink) == 1) {
3367 				return ch;
3368 		}
3369 		return traits_type::eof();
3370 	}
3371 
xsputn(const char_type * s,std::streamsize count)3372 	std::streamsize xsputn(const char_type* s, std::streamsize count) override {
3373 		return fwrite(s, sizeof *s, count, sink);
3374 	}
3375 
3376 #ifdef BACKWARD_ATLEAST_CXX11
3377 public:
3378 	cfile_streambuf(const cfile_streambuf&) = delete;
3379 	cfile_streambuf& operator=(const cfile_streambuf&) = delete;
3380 #else
3381 private:
3382 	cfile_streambuf(const cfile_streambuf &);
3383 	cfile_streambuf &operator= (const cfile_streambuf &);
3384 #endif
3385 
3386 private:
3387 	FILE *sink;
3388 	std::vector<char> buffer;
3389 };
3390 
3391 #ifdef BACKWARD_SYSTEM_LINUX
3392 
3393 namespace Color {
3394 	enum type {
3395 		yellow = 33,
3396 		purple = 35,
3397 		reset  = 39
3398 	};
3399 } // namespace Color
3400 
3401 class Colorize {
3402 public:
Colorize(std::ostream & os)3403 	Colorize(std::ostream& os):
3404 		_os(os), _reset(false), _enabled(false) {}
3405 
activate(ColorMode::type mode)3406 	void activate(ColorMode::type mode) {
3407 		_enabled = mode == ColorMode::always;
3408 	}
3409 
activate(ColorMode::type mode,FILE * fp)3410 	void activate(ColorMode::type mode, FILE* fp) {
3411 		activate(mode, fileno(fp));
3412 	}
3413 
set_color(Color::type ccode)3414 	void set_color(Color::type ccode) {
3415 		if (!_enabled) return;
3416 
3417 		// I assume that the terminal can handle basic colors. Seriously I
3418 		// don't want to deal with all the termcap shit.
3419 		_os << "\033[" << static_cast<int>(ccode) << "m";
3420 		_reset = (ccode != Color::reset);
3421 	}
3422 
~Colorize()3423 	~Colorize() {
3424 		if (_reset) {
3425 			set_color(Color::reset);
3426 		}
3427 	}
3428 
3429 private:
activate(ColorMode::type mode,int fd)3430 	void activate(ColorMode::type mode, int fd) {
3431 		activate(mode == ColorMode::automatic && isatty(fd) ? ColorMode::always : mode);
3432 	}
3433 
3434 	std::ostream& _os;
3435 	bool          _reset;
3436 	bool          _enabled;
3437 };
3438 
3439 #else // ndef BACKWARD_SYSTEM_LINUX
3440 
3441 namespace Color {
3442 	enum type {
3443 		yellow = 0,
3444 		purple = 0,
3445 		reset  = 0
3446 	};
3447 } // namespace Color
3448 
3449 class Colorize {
3450 public:
Colorize(std::ostream &)3451 	Colorize(std::ostream&) {}
activate(ColorMode::type)3452 	void activate(ColorMode::type) {}
activate(ColorMode::type,FILE *)3453 	void activate(ColorMode::type, FILE*) {}
set_color(Color::type)3454 	void set_color(Color::type) {}
3455 };
3456 
3457 #endif // BACKWARD_SYSTEM_LINUX
3458 
3459 class Printer {
3460 public:
3461 
3462 	bool snippet;
3463 	ColorMode::type color_mode;
3464 	bool address;
3465 	bool object;
3466 	int inliner_context_size;
3467 	int trace_context_size;
3468 
Printer()3469 	Printer():
3470 		snippet(true),
3471 		color_mode(ColorMode::automatic),
3472 		address(false),
3473 		object(false),
3474 		inliner_context_size(5),
3475 		trace_context_size(7)
3476 		{}
3477 
3478 	template <typename ST>
print(ST & st,FILE * fp=stderr)3479 		FILE* print(ST& st, FILE* fp = stderr) {
3480 			cfile_streambuf obuf(fp);
3481 			std::ostream os(&obuf);
3482 			Colorize colorize(os);
3483 			colorize.activate(color_mode, fp);
3484 			print_stacktrace(st, os, colorize);
3485 			return fp;
3486 		}
3487 
3488 	template <typename ST>
print(ST & st,std::ostream & os)3489 		std::ostream& print(ST& st, std::ostream& os) {
3490 			Colorize colorize(os);
3491 			colorize.activate(color_mode);
3492 			print_stacktrace(st, os, colorize);
3493 			return os;
3494 		}
3495 
3496 	template <typename IT>
print(IT begin,IT end,FILE * fp=stderr,size_t thread_id=0)3497 		FILE* print(IT begin, IT end, FILE* fp = stderr, size_t thread_id = 0) {
3498 			cfile_streambuf obuf(fp);
3499 			std::ostream os(&obuf);
3500 			Colorize colorize(os);
3501 			colorize.activate(color_mode, fp);
3502 			print_stacktrace(begin, end, os, thread_id, colorize);
3503 			return fp;
3504 		}
3505 
3506 	template <typename IT>
print(IT begin,IT end,std::ostream & os,size_t thread_id=0)3507 		std::ostream& print(IT begin, IT end, std::ostream& os, size_t thread_id = 0) {
3508 			Colorize colorize(os);
3509 			colorize.activate(color_mode);
3510 			print_stacktrace(begin, end, os, thread_id, colorize);
3511 			return os;
3512 		}
3513 
3514 private:
3515 	TraceResolver  _resolver;
3516 	SnippetFactory _snippets;
3517 
3518 	template <typename ST>
print_stacktrace(ST & st,std::ostream & os,Colorize & colorize)3519 		void print_stacktrace(ST& st, std::ostream& os, Colorize& colorize) {
3520 			print_header(os, st.thread_id());
3521 			_resolver.load_stacktrace(st);
3522 			for (size_t trace_idx = st.size(); trace_idx > 0; --trace_idx) {
3523 				print_trace(os, _resolver.resolve(st[trace_idx-1]), colorize);
3524 			}
3525 		}
3526 
3527 	template <typename IT>
print_stacktrace(IT begin,IT end,std::ostream & os,size_t thread_id,Colorize & colorize)3528 		void print_stacktrace(IT begin, IT end, std::ostream& os, size_t thread_id, Colorize& colorize) {
3529 			print_header(os, thread_id);
3530 			for (; begin != end; ++begin) {
3531 				print_trace(os, *begin, colorize);
3532 			}
3533 		}
3534 
print_header(std::ostream & os,size_t thread_id)3535 	void print_header(std::ostream& os, size_t thread_id) {
3536 		os << "Stack trace (most recent call last)";
3537 		if (thread_id) {
3538 			os << " in thread " << thread_id;
3539 		}
3540 		os << ":\n";
3541 	}
3542 
print_trace(std::ostream & os,const ResolvedTrace & trace,Colorize & colorize)3543 	void print_trace(std::ostream& os, const ResolvedTrace& trace,
3544 			Colorize& colorize) {
3545 		os << "#"
3546 		   << std::left << std::setw(2) << trace.idx
3547 		   << std::right;
3548 		bool already_indented = true;
3549 
3550 		if (!trace.source.filename.size() || object) {
3551 			os << "   Object \""
3552 			   << trace.object_filename
3553 			   << "\", at "
3554 			   << trace.addr
3555 			   << ", in "
3556 			   << trace.object_function
3557 			   << "\n";
3558 			already_indented = false;
3559 		}
3560 
3561 		for (size_t inliner_idx = trace.inliners.size();
3562 				inliner_idx > 0; --inliner_idx) {
3563 			if (!already_indented) {
3564 				os << "   ";
3565 			}
3566 			const ResolvedTrace::SourceLoc& inliner_loc
3567 				= trace.inliners[inliner_idx-1];
3568 			print_source_loc(os, " | ", inliner_loc);
3569 			if (snippet) {
3570 				print_snippet(os, "    | ", inliner_loc,
3571 						colorize, Color::purple, inliner_context_size);
3572 			}
3573 			already_indented = false;
3574 		}
3575 
3576 		if (trace.source.filename.size()) {
3577 			if (!already_indented) {
3578 				os << "   ";
3579 			}
3580 			print_source_loc(os, "   ", trace.source, trace.addr);
3581 			if (snippet) {
3582 				print_snippet(os, "      ", trace.source,
3583 						colorize, Color::yellow, trace_context_size);
3584 			}
3585 		}
3586 	}
3587 
print_snippet(std::ostream & os,const char * indent,const ResolvedTrace::SourceLoc & source_loc,Colorize & colorize,Color::type color_code,int context_size)3588 	void print_snippet(std::ostream& os, const char* indent,
3589 			const ResolvedTrace::SourceLoc& source_loc,
3590 			Colorize& colorize, Color::type color_code,
3591 			int context_size)
3592 	{
3593 		using namespace std;
3594 		typedef SnippetFactory::lines_t lines_t;
3595 
3596 		lines_t lines = _snippets.get_snippet(source_loc.filename,
3597 				source_loc.line, context_size);
3598 
3599 		for (lines_t::const_iterator it = lines.begin();
3600 				it != lines.end(); ++it) {
3601 			if (it-> first == source_loc.line) {
3602 				colorize.set_color(color_code);
3603 				os << indent << ">";
3604 			} else {
3605 				os << indent << " ";
3606 			}
3607 			os << std::setw(4) << it->first
3608 			   << ": "
3609 			   << it->second
3610 			   << "\n";
3611 			if (it-> first == source_loc.line) {
3612 				colorize.set_color(Color::reset);
3613 			}
3614 		}
3615 	}
3616 
print_source_loc(std::ostream & os,const char * indent,const ResolvedTrace::SourceLoc & source_loc,void * addr=0)3617 	void print_source_loc(std::ostream& os, const char* indent,
3618 			const ResolvedTrace::SourceLoc& source_loc,
3619 			void* addr=0) {
3620 		os << indent
3621 		   << "Source \""
3622 		   << source_loc.filename
3623 		   << "\", line "
3624 		   << source_loc.line
3625 		   << ", in "
3626 		   << source_loc.function;
3627 
3628 		if (address && addr != 0) {
3629 			os << " [" << addr << "]";
3630 		}
3631 		os << "\n";
3632 	}
3633 };
3634 
3635 /*************** SIGNALS HANDLING ***************/
3636 
3637 #if defined(BACKWARD_SYSTEM_LINUX) || defined(BACKWARD_SYSTEM_DARWIN)
3638 
3639 
3640 class SignalHandling {
3641 public:
make_default_signals()3642    static std::vector<int> make_default_signals() {
3643        const int posix_signals[] = {
3644 		// Signals for which the default action is "Core".
3645 		SIGABRT,    // Abort signal from abort(3)
3646 		SIGBUS,     // Bus error (bad memory access)
3647 		SIGFPE,     // Floating point exception
3648 		SIGILL,     // Illegal Instruction
3649 		SIGIOT,     // IOT trap. A synonym for SIGABRT
3650 		SIGQUIT,    // Quit from keyboard
3651 		SIGSEGV,    // Invalid memory reference
3652 		SIGSYS,     // Bad argument to routine (SVr4)
3653 		SIGTRAP,    // Trace/breakpoint trap
3654 		SIGXCPU,    // CPU time limit exceeded (4.2BSD)
3655 		SIGXFSZ,    // File size limit exceeded (4.2BSD)
3656 #if defined(BACKWARD_SYSTEM_DARWIN)
3657 		SIGEMT,     // emulation instruction executed
3658 #endif
3659 	};
3660         return std::vector<int>(posix_signals, posix_signals + sizeof posix_signals / sizeof posix_signals[0] );
3661    }
3662 
SignalHandling(const std::vector<int> & posix_signals=make_default_signals ())3663   SignalHandling(const std::vector<int>& posix_signals = make_default_signals()):
3664 	  _loaded(false) {
3665 		bool success = true;
3666 
3667 		const size_t stack_size = 1024 * 1024 * 8;
3668 		_stack_content.reset((char*)malloc(stack_size));
3669 		if (_stack_content) {
3670 			stack_t ss;
3671 			ss.ss_sp = _stack_content.get();
3672 			ss.ss_size = stack_size;
3673 			ss.ss_flags = 0;
3674 			if (sigaltstack(&ss, 0) < 0) {
3675 				success = false;
3676 			}
3677 		} else {
3678 			success = false;
3679 		}
3680 
3681 		for (size_t i = 0; i < posix_signals.size(); ++i) {
3682 			struct sigaction action;
3683 			memset(&action, 0, sizeof action);
3684 			action.sa_flags = (SA_SIGINFO | SA_ONSTACK | SA_NODEFER |
3685 					SA_RESETHAND);
3686 			sigfillset(&action.sa_mask);
3687 			sigdelset(&action.sa_mask, posix_signals[i]);
3688 			action.sa_sigaction = &sig_handler;
3689 
3690 			int r = sigaction(posix_signals[i], &action, 0);
3691 			if (r < 0) success = false;
3692 		}
3693 
3694 		_loaded = success;
3695 	}
3696 
loaded() const3697 	bool loaded() const { return _loaded; }
3698 
handleSignal(int,siginfo_t * info,void * _ctx)3699 	static void handleSignal(int, siginfo_t* info, void* _ctx) {
3700 		ucontext_t *uctx = (ucontext_t*) _ctx;
3701 
3702 		StackTrace st;
3703 		void* error_addr = 0;
3704 #ifdef REG_RIP // x86_64
3705 		error_addr = reinterpret_cast<void*>(uctx->uc_mcontext.gregs[REG_RIP]);
3706 #elif defined(REG_EIP) // x86_32
3707 		error_addr = reinterpret_cast<void*>(uctx->uc_mcontext.gregs[REG_EIP]);
3708 #elif defined(__arm__)
3709 		error_addr = reinterpret_cast<void*>(uctx->uc_mcontext.arm_pc);
3710 #elif defined(__aarch64__)
3711 		error_addr = reinterpret_cast<void*>(uctx->uc_mcontext.pc);
3712 #elif defined(__ppc__) || defined(__powerpc) || defined(__powerpc__) || defined(__POWERPC__)
3713 		error_addr = reinterpret_cast<void*>(uctx->uc_mcontext.regs->nip);
3714 #elif defined(__s390x__)
3715                 error_addr = reinterpret_cast<void*>(uctx->uc_mcontext.psw.addr);
3716 #elif defined(__APPLE__) && defined(__x86_64__)
3717 		error_addr = reinterpret_cast<void*>(uctx->uc_mcontext->__ss.__rip);
3718 #elif defined(__APPLE__)
3719 		error_addr = reinterpret_cast<void*>(uctx->uc_mcontext->__ss.__eip);
3720 #else
3721 #	warning ":/ sorry, ain't know no nothing none not of your architecture!"
3722 #endif
3723 		if (error_addr) {
3724 			st.load_from(error_addr, 32);
3725 		} else {
3726 			st.load_here(32);
3727 		}
3728 
3729 		Printer printer;
3730 		printer.address = true;
3731 		printer.print(st, stderr);
3732 
3733 #if _XOPEN_SOURCE >= 700 || _POSIX_C_SOURCE >= 200809L
3734 		psiginfo(info, 0);
3735 #else
3736 		(void)info;
3737 #endif
3738 	}
3739 
3740 private:
3741 	details::handle<char*> _stack_content;
3742 	bool                   _loaded;
3743 
3744 #ifdef __GNUC__
3745 	__attribute__((noreturn))
3746 #endif
sig_handler(int signo,siginfo_t * info,void * _ctx)3747 	static void sig_handler(int signo, siginfo_t* info, void* _ctx) {
3748 		handleSignal(signo, info, _ctx);
3749 
3750 		// try to forward the signal.
3751 		raise(info->si_signo);
3752 
3753 		// terminate the process immediately.
3754 		puts("watf? exit");
3755 		_exit(EXIT_FAILURE);
3756 	}
3757 };
3758 
3759 #endif // BACKWARD_SYSTEM_LINUX || BACKWARD_SYSTEM_DARWIN
3760 
3761 #ifdef BACKWARD_SYSTEM_UNKNOWN
3762 
3763 class SignalHandling {
3764 public:
SignalHandling(const std::vector<int> &=std::vector<int> ())3765 	SignalHandling(const std::vector<int>& = std::vector<int>()) {}
init()3766 	bool init() { return false; }
loaded()3767 	bool loaded() { return false; }
3768 };
3769 
3770 #endif // BACKWARD_SYSTEM_UNKNOWN
3771 
3772 } // namespace backward
3773 
3774 #endif /* H_GUARD */
3775