1\chapter{Linear and non-linear response functions, RESPONSE}
2\label{ch:response}
3
4\section{Directives for evaluation of molecular response functions}\label{sec:rspinp}
5
6The directives in the following subsections may be included in the input to \resp.
7They are organized according to the program section names in which they
8appear.
9
10\resp\ is the most general part of the code for calculating
11many different electronic linear, quadratic, or cubic molecular
12response properties based on SCF, MCSCF or CI wave functions, as well as Kohn--Sham-based time-dependent density functional theory.
13No nuclear contributions are added.
14
15If the final wave function from \Sec{*WAVE FUNCTIONS} was \Key{CI}, then
16a configuration interaction\index{Configuration Interaction!response}\index{CI!response}
17response calculation will be performed.
18This is equivalent to a CI sum-over-states\index{response!CI sum-over-states}
19calculation of response properties,
20but of course calculated directly without diagonalization of the full
21CI Hamiltonian matrix.
22
23Some of the SCF/MCSCF response properties can also be requested
24from \Sec{*PROPERTIES} input modules.
25NOTE: for such properties you should request them either here or
26in \Sec{*PROPERTIES}, otherwise you will calculate them twice!
27Usually the output is nicest in
28the \Sec{*PROPERTIES} module ({\it e.g.\/} collected in tables and in
29commonly used units, most properties are only given in atomic
30units in \resp), and nuclear contributions are included if relevant.
31Some specific properties, especially those involving nuclear derivatives,
32can only be calculated via \Sec{*PROPERTIES}.
33
34Calculations of coupled cluster response properties are performed
35by different modules and are described
36in Chapter~\ref{ch:CC} on coupled cluster calculations.
37
38In addition, SOPPA\index{SOPPA}\index{polarization propagator}
39(Second-Order Polarization Propagator approximation),
40SOPPA(CC2)\index{SOPPA(CC2)} or SOPPA(CCSD)\index{SOPPA(CCSD)} (Second
41Order Polarization Propagator Approximation with Coupled Cluster
42Singles and Doubles Amplitudes) for the calculation of linear response
43\index{linear response}\index{response!linear}
44properties and excitation energies with transition moments may be
45requested in this input section. The current implementation of the
46SOPPA method is described in Ref.~\cite{mjpekdtehjajjojcp}, of the
47SOPPA(CC2) method in Ref.~\cite{spas097} and of the SOPPA(CCSD) method
48in Ref.~\cite{soppaccsd}. Note that a SOPPA calculation requires the
49keyword \Key{SOPPA}, whereas a SOPPA(CC2) or SOPPA(CCSD) calculation
50requires the keyword \Key{SOPPA(CCSD)}.
51%M. J. Packer, E. K. Dalskov, T. Enevoldsen, H. J. Aa. Jensen, and
52%J. Oddershede, J. Chem. Phys., submitted.
53
54
55\subsection{General: \Sec{*RESPONSE}}
56
57General-purpose directives are given in the \Sec{*RESPONSE} section.
58
59After the last directive of the \Sec{*RESPONSE} input group
60should follow another {\ttfamily{**<something>}} input group
61(or \Sec{*END OF DALTON INPUT} if this was the last input to \dalton).
62
63\begin{description}
64%\item{\Key{DFT-SO}} Request that the contribution to the spin--orbit
65  %integrals are calculated for a given reference density.
66
67\item{\Key{CIS}}
68Request a CI Singles calculation, which is equivalent to invoking the
69Tamm-Dancoff approximation to RPA/TDHF (invoked by \Key{TDA}).
70
71\item{\Key{HIRPA}}
72Invoke the higher RPA approximation for the calculation of linear
73response properties\index{linear response!higher RPA}.
74This approximation is identical to that of McKoy
75and coworkers~\cite{jrtsvmjcp58,tsjrvmjcp58}. The requirements to the
76preceding wave function
77calculation is the same as for the \Key{SOPPA} keyword.
78This keyword overrides a simultaneous specification of \Key{SOPPA}.
79
80\item{\Key{INPTEST}}
81Input test. For debugging purposes only. The program stops after the
82input section.
83
84\item{\Key{MAXPHP}}\\
85\verb|READ *, MAXPHP|\\
86Change the maximum dimension of $H_0$ subspace.   Default is 100.
87PHP is a subblock of the CI matrix which is calculated explicitly
88in order to obtain improved CI trial vectors compared to the
89straight Davidson algorithm\cite{erdjcp17}.  The configurations
90corresponding to
91the lowest diagonal elements are selected, unless \Key{PHPRESIDUAL} is
92specified. MAXPHP is the maximum dimension of PHP, the
93actual dimension will be less if MAXPHP will split degenerate configurations.
94
95\item{\Key{MAXRM}}\\
96\verb|READ *, MAXRM |\\
97Change the maximum dimension of the reduced space. Default is 600.
98When solving a linear system of equations or an eigenvalue equation,
99the reduced space is increased by the number of
100frequencies/excitations in each iteration. For single root
101calculations this should exceed the number of iterations required.
102MAXRM should be increased if many frequencies or excitation energies
103are to be calculated.
104Sharp convergence thresholds also require
105more iterations and thus larger dimension of the reduced space.
106
107\item{\Key{NOAVDI}}
108Do not use Fock type decoupling of the two-electron density matrix.
109Add $F^ID$ instead of $(F^I+F^A)D$ to $E^{[2]}$ approximate
110orbital diagonal. Not recommended as the approximate orbital diagonal
111normally will become more different from the exact orbital diagonal.
112
113\item{\Key{NODOIT}}
114Turns off direct one-index transformation \cite{ovhahjajjcc15}.
115In this way all one-index transformed integrals are stored on disk.
116
117\item{\Key{NOITRA}}
118No two-electron integral transformation. Normally the two-electron integrals are
119transformed to MO basis in the beginning of a response calculation. In a few cases
120this is not necessary, {\it e.g.\/}, if the response part is only used for
121calculating average values of an operator, or if the transformed two-electron
122integrals have been saved from a previous response calculation (not standard).
123
124\item{\Key{OPTORB}}
125Orbital trial vectors are calculated with the optimal orbital
126trial\index{optimal orbital trial vector} vector
127algorithm \cite{tuhjahjajpjjcp84}.
128
129\item{\Key{ORBSFT}}\\
130\verb|READ *, ORBSFT|\\
131Change the amount for shifting the orbital
132diagonal\index{orbital diagonal Hessian} of the MCSCF Hessian.
133May be used if there is a large number of negative eigenvalues.
134Default is $10^{-4}$.
135
136\item{\Key{ORBSPC}}
137Calculation with only orbital operators.
138
139\item{\Key{PHPRESIDUAL}}
140Select configurations for PHP matrix based on largest residual
141rather than lowest diagonal elements.
142
143%\item[\Key{PROP2A}] Not yet implemented apparently.
144
145\item{\Key{SOPPA}}
146Requests the second order polarization propagator approximation
147in the linear response module.
148The SOPPA\index{SOPPA}\index{polarization propagator!SOPPA}\index{response!SOPPA}
149flag requires that
150the preceding {\sir} calculation has generated the MP2 correlation
151coefficients and written them to disk (set \Key{RUN RESPONSE} in \Sec{*DALTON}
152input as well as \Key{HF} and \Key{MP2} in \Sec{*WAVE FUNCTIONS}). See
153example input in Chapter~\ref{ch:starting}.
154
155\item{\Key{PROPAV}} \\
156\verb|READ '(A)', LABEL|\\
157Property average\index{property average}.
158The average value of an electronic one-electron
159operator is calculated.
160(Thus, no nuclear contributions are added.)
161The line following this option must contain the
162label of the operator given in the integral property file.
163(See section \ref{ch:hermit}.)
164
165\item{\Key{QRREST}}
166Restart quadratic response\index{quadratic response}\index{response!quadratic}
167calculation.
168It is only possible to restart regular quadratic response calculations, not those
169involving residues (as \Key{SINGLE RESIDUE}, \Key{TWO-PHOTON}, and \Key{DOUBLE RESIDUE}).
170because the restarted \dalton\ does not know the excitation energies associated with the
171residues, and the excitation energies are needed to retrieve the right records from
172the \verb|RSPVEC| file.
173% hjaaj Aug 2012: does not work when excitation energies are involved because Dalton
174% does not know them when restarting, and they are needed to get the right records from
175% the RSPVEC file.
176Requires that {\em all} needed linear response solutions % and excitation vectors
177are available on the \verb|RSPVEC| file.
178
179\item{\Key{S0MIX}}
180Sum rule is calculated in mixed representation, that is, calculate
181$N_e=\langle0\mid [r,p] \mid0\rangle$ provided that dipole length and
182velocity integrals are available on the property integral file
183(calculated with \Sec{*HERMIT} options \Key{DIPLEN} and \Key{DIPVEL}).
184The calculated quantity gives a measure of the quality of the basis
185set\index{basis set!quality}.
186
187\item{\Key{SOPPA(CCSD)}}
188Requests the second order polarization propagator approximation with
189coupled cluster singles and doubles amplitudes or the second order
190polarization propagator approximation with CC2 amplitudes in the linear
191response module. The SOPPA(CCSD)\index{SOPPA(CCSD)}\index{polarization
192propagator!SOPPA(CCSD)}
193\index{response!SOPPA(CCSD)} flag requires that the preceding coupled cluster
194calculation has generated the CC2 or CCSD amplitudes and written them
195to disk (set \Key{RUN RESPONSE} in \Sec{*DALTON} input, \Key{HF} and
196\Key{CC} in \Sec{*WAVE FUNCTIONS}  and \Key{SOPPA2}
197 or \Key{SOPPA(CCSD)} in \Sec{CC INPUT}). See example input in
198Chapter~\ref{ch:starting}.
199
200\item{\Key{SOPW4}}
201Calculate explicitly the W4 term described by Oddershede {\it et
202al.\/}~\cite{jopjdycpr2}. This term is already included in the normal
203SOPPA\index{SOPPA}\index{polarization propagator!SOPPA} or
204SOPPA(CCSD)\index{SOPPA(CCSD)} result, and used mostly for comparing to older
205calculations. Note that this keyword requires that \Key{SOPPA} or
206\Key{SOPPA(CCSD)}is set.
207
208\item{\Key{TDA}}
209Invoke the Tamm-Dancoff approximation to RPA/TDHF or TDDFT. Equivalent to the
210use of \Key{CIS} on a Hartree-Fock calculation.
211
212\item{\Key{TRDQF}}
213Invoke the calculation of transition density fitted charges. Only implemented for
214\Sec{LINEAR} with \Key{SINGLE RESIDUE}. The fitted charges will be calculated for
215all \Key{ROOTS}. It requires that \Key{QFIT} has been specified in
216\Sec{*WAVE FUNCTIONS}.
217
218\item{\Key{TRPFLG}}
219Triplet flag. This option is set whenever triplet
220(spin-dependent)\index{triplet response}
221operators must be used in a response calculation
222\cite{jodlypjjcp91,ovhapjhjajthjojcp97}.
223This flag forces triplet linear response for \Sec{LINEAR},
224both for second order properties and electronic excitations
225(without and with \Key{SINGLE RESIDUE}).
226For quadratic response, \Sec{QUADRATIC}, \Key{TRPFLG} is necessary
227whenever singlet-triplet excitations are involved, for the response function as well as  for
228its residues (\Key{SINGLE RESIDUE} and \Key{DOUBLE RESIDUE}).
229See section \ref{sec:quadraticrsp} for more details.
230For cubic response triplet excitations are not implemented.
231
232\end{description}
233
234\subsection{Linear response calculation: \Sec{LINEAR} without \Key{SINGLE RESIDUE}}
235\label{sec:linearrsp}
236
237A\index{linear response}\index{response!linear} linear response
238\cite{jodlypjjcp91,pjhjajjojcp89} calculation is performed for a given
239choice of operators,
240-$\langle\!\langle A; B \rangle\!\rangle_{\omega}$.
241(Note that {\em minus} the linear response properties are written to output.)
242
243In the same \resp\ calculation these linear response properties can be calculated
244together with excitation energies
245and with long range dispersion coefficients, but not
246together with quadratic or cubic response.
247
248Excitation energies and transition properties are requested with the keyword \.Key{SINGLE RESIDUE}.
249Some keywords are specific for excitation properties,
250some keywords are specific for linear response properties.
251This subsection describes the keywords for linear response properties,
252the next subsection describes the keywords for excitation properties.
253
254\begin{description}
255
256\item{\Key{DIPLEN}}
257Add the three dipole component operators to both the $A$ and $B$ operator lists, also known as dipole length operators.\index{dipole length}
258
259\item{\Key{DIPLNX/Y/Z}}
260Sets $A$ and $B$ to the X, Y, or Z component of the dipole length operators, respectively\index{dipole length}.
261
262\item{\Key{DIPMAG}}
263Add the three angular momentum component operators to both the $A$ and $B$ operator lists.\index{angular momentum}
264
265\item{\Key{DIPMGX/Y/Z}}
266Sets $A$ and $B$ to the X, Y, or Z component of the angular momentum operators\index{angular momentum}.
267
268\item{\Key{DIPVEL}}
269Add the three dipole velocity component operators to both the $A$ and $B$ operator lists.\index{dipole velocity}
270
271\item{\Key{DIPVLX/Y/Z}}
272Sets $A$ and $B$ to the X, Y, or Z component of the dipole velocity
273operator, respectively\index{dipole velocity}.
274
275\item{\Key{FERMI}}
276Add all Fermi-contact operators
277found on the file \verb|AOPROPER| to both the $A$ and $B$ operator lists.
278The calculation of Fermi-contact operator matrices must be requested in the \Sec{*INTEGRALS} input module with \Key{FC},
279optionally restricted to selected nuclei with \Key{SELECT}.
280
281\item{\Key{FREQUE}}\\
282\verb|READ *, NFREQ|\\
283\verb|READ *, FREQ(1:NFREQ)|\\
284All linear response equations are evaluated at the \verb|NFREQ| requested
285frequencies\index{frequency}.
286Two lines following
287this option must contain 1) The number of frequencies, 2) Frequencies
288in atomic units.
289Remember to increase \Key{MAXRM} if many frequencies are specified.
290Default: only zero frequency (static calculation).
291
292\item{\Key{MAX IT}}\\
293\verb|READ (LUCMD,*) MAXITL|\\
294Maximum number of iterations for solving a linear response
295equation. Default is 60.
296
297\item{\Key{MAXITO}}\\
298\verb|READ (LUCMD,*) MAXITO|\\
299Maximum number of iterations in the optimal orbital
300algorithm\index{optimal orbital trial vector}
301\cite{tuhjahjajpjjcp84}.
302Default is 5.
303
304\item{\Key{PRINT}}\\
305\verb|READ *,IPRLR|\\
306Sets print level for linear response module. Default is 2.
307
308\item{\Key{PROPRT}}\\
309\verb|READ '(A)', LABEL|\\
310Add the operator with label \verb|LABEL|
311on the file \verb|AOPROPER| to both the $A$ and $B$ operator lists.
312(The calculation of the operator must be specified in the \Sec{*INTEGRALS} input module,
313see section \ref{ch:hermit}.)
314This keyword may be repeated for different properties.
315
316\item{\Key{PV PSO}} Sets $A$ and $B$ in the linear response function
317  to the parity-violating operator and the complete list of
318  paramagnetic spin-orbit integrals. The \Key{TRPFLG} keyword will
319  also be set by this option.
320
321\item{\Key{PV SO}} Sets $A$ and $B$ in the linear response function
322  to the parity-violating operator and the complete list of
323  paramagnetic spin-orbit integrals. The \Key{TRPFLG} keyword will
324  also be set by this option.
325
326\item{\Key{PV SO1}} Sets $A$ and $B$ in the linear response function
327  to the parity-violating operator and the one-electron spin--orbit
328  integrals. The \Key{TRPFLG} keyword will
329  also be set by this option.
330
331\item{\Key{PV SO2}} Sets $A$ and $B$ in the linear response function
332  to the parity-violating operator and the two-electron spin--orbit
333  integrals. The \Key{TRPFLG} keyword will
334  also be set by this option.
335
336\item{\Key{QUADMOM}}
337Add the six cartesian quadrupole\index{quadrupole operator} component operators
338to both the $A$ and $B$ operator lists.
339
340\item{\Key{QUADXX/XY/XZ/YY/YZ/ZZ}}
341Sets $A$ and $B$ to the XX, XY, XZ, YY, YZ, or ZZ component of the
342quadrupole\index{quadrupole operator} operator, respectively.
343
344\item{\Key{RESTLR}}
345Restart\index{restart!linear response} of response calculation. This
346can only be used if the
347operator specified is the same which was used \textit{last} in the previous
348response calculation.
349
350\item{\Key{SPIN-D}} Sets $A$ and $B$ to be all spin-dipole operators
351  found on the file \verb|AOPROPER|, {\it i.e.\/} all spin-dipole
352  operators requested in the \Sec{*INTEGRALS} input module.
353
354\item{\Key{SPIN-O}}
355Sets $A$ and $B$ to Breit-Pauli spin-orbit component operators,
356both the one- and two-electron parts\index{spin-orbit}.
357
358\item{\Key{SPNORX/Y/Z}}
359Sets $A$ and $B$ to the X, Y, or Z component of the spin--orbit
360operator, respectively\index{spin-orbit}.
361
362\item{\Key{THCLR}}\\
363\verb|READ *, THCLR|\\
364Relative convergence threshold for all requested linear response functions.
365Default is 1.0D-3; note that this number should be at least 10 times
366bigger than the final gradient norm in the SCF/MCSCF
367wave function optimization. The accuracy of the linear response
368properties will be quadratic in this threshold; thus the default
369corresponds to convergence to approximately 6 digits.
370
371\item{\Key{TRIPLET}} Defines $A$ and $B$ to be triplet operators.
372Will also make a simultaneous \Sec{LINEAR} \Key{SINGLE RESIDUE} calculation to
373a calculation of triplet excitation energies and transition moments.
374
375\end{description}
376
377Debug keywords
378
379\begin{description}
380
381\item{\Key{ABOCHK}} Sets up the orbital part of the $E^{\left[2\right]}$
382  and $S^{\left[2\right]}$ used in solving the linear response
383  equation. Mainly for debugging purposes.
384
385\item{\Key{ISTOCK}} Selects the starting row in setting up the orbital
386  parts of $E^{\left[2\right]}$
387  and $S^{\left[2\right]}$ using the keyword \Key{ABOCHK}. Default is
388  1. Mainly for debugging purposes.
389
390\item{\Key{MAXOCK}} Selects the last row in setting up the orbital
391  parts of $E^{\left[2\right]}$
392  and $S^{\left[2\right]}$ using the keyword \Key{ABOCHK}. Default is
393  6. Mainly for debugging purposes.
394
395\item{\Key{SOPRSY}} Calculate both $\alpha_{ij}$ and $\alpha_{ji}$ to
396  test the quadratic accuracy of the calculated property. Mainly for
397  debugging purposes.
398
399\end{description}
400
401\subsection{Excitation energies calculation: \Sec{LINEAR} with \Key{SINGLE RESIDUE}}
402
403Single residues\index{single residue!linear response} of the linear
404response\index{linear response!single residue}\index{response!excitations} function is
405computed. Residues of a linear response function correspond to
406transition moments\index{transition moment!linear response} and the associated poles
407correspond to vertical electronic excitation energies.
408%\cite{jodlypjjcp91,pjhjajjojcp89}
409
410In the same \resp\ calculation these excitation properties can be calculated
411together with linear response properties
412and with long range dispersion coefficients, but not
413together with quadratic or cubic response.
414
415Required keywords:
416
417\begin{description}
418
419\item{\Key{SINGLE RESIDUE}} Required to get excitation energies, without
420this keyword the linear response function will be evaluated, see Sec.~\ref{sec:linearrsp}.
421
422\end{description}
423
424Optional keywords
425
426\begin{description}
427
428\item{\Key{CHANNEL}}\\
429\verb|line 1: Number of channel orbitals in each symmetry|\\
430\verb|for each symmetry:|\\
431\verb|   read index of channel orbitals this symmetry (empty line if none)|\\
432Restricted channel RPA (HF or DFT).
433Only the specified occupied orbitals are included in the RPA matrix.
434Primarily intended for core hole RPA calculations.
435See also \Key{VIRTUAL}.
436
437\item{\Key{ECD}}
438Electronic circular dicrhoism.
439Sets $A$ and $B$ to the dipole operators,\index{dipole length}
440the dipole-velocity operators,\index{dipole velocity}
441and the angular momentum operators.\index{angular momentum}
442The needed property integrals must be requested in the \Sec{*INTEGRALS} input module.
443%The property integrals \Key{ROTSTR} must be requested in the \Sec{*INTEGRALS} input module.
444
445\item{\Key{OECD}}
446Oriented Electronic circular dichroism.
447(This option includes also all of the \Key{ECD} option.)
448Sets $A$ and $B$ to the dipole operators,\index{dipole length}
449the dipole-velocity operators,\index{dipole velocity}
450the angular momentum operators,\index{angular momentum}
451the second-order moment (Cartesian electric quadrupole
452length) operators, and
453the Cartesian electric quadrupole velocity operators.
454The needed property integrals must be requested in the \Sec{*INTEGRALS} input module.
455%The property integrals \Key{ROTSTR} and \Key{SECMOM} must be requested in the \Sec{*INTEGRALS} input module.
456
457\item{\Key{DIPLEN}}
458Sets $A$ and $B$ to the X, Y, and Z components of the dipole length operators\index{dipole length}.
459
460\item{\Key{DIPLNX/Y/Z}}
461Sets $A$ and $B$ to the X, Y, or Z component of the dipole length operators, respectively\index{dipole length}.
462
463\item{\Key{DIPMAG}}
464Sets $A$ and $B$ to angular momentum (aka magnetic dipole) operators\index{angular momentum}.
465
466\item{\Key{DIPMGX/Y/Z}}
467Sets $A$ and $B$ to the X, Y, or Z component of the angular momentum operators\index{angular momentum}.
468
469\item{\Key{DIPVEL}}
470Sets $A$ and $B$ to the dipole velocity (aka momentum) operators\index{dipole velocity}.
471
472\item{\Key{DIPVLX/Y/Z}}
473Sets $A$ and $B$ to the X, Y, or Z component of the dipole velocity
474operator, respectively\index{dipole velocity}.
475
476\item{\Key{MAX IT}}\\
477\verb|READ *, MAXITP|\\
478Maximum number of iterations for solving the single residue
479linear response eigenvalue equation. Default is 60.
480
481\item{\Key{MAXITO}}\\
482\verb|READ *, MAXITO|\\
483Maximum number of iterations in the optimal orbital
484algorithm\index{optimal orbital trial vector}
485\cite{tuhjahjajpjjcp84}.
486Default is 5.
487
488\item{\Key{NSTART}}\\
489\verb|READ (LUCMD,*) (NPPSTV(J),J=1,NSYM)|\\
490 The number of start vectors to be used in the
491  optimization of the transition vectors in each symmetry. By default
492  this is set equal to the number of excited states that have been
493  requested through the keyword \Key{ROOTS}.
494  It can be relevant to make the number of start vectors bigger,
495  for example if the molecule has higher symmetry than used in the
496  calculation. In this case one might need more start vectors to
497  get a representative of each symmetry.
498
499\item{\Key{NSIMUL}}\\
500\verb|READ (LUCMD,*) (NPPSIM(J),J=1,NSYM)|\\
501The number of eigenvectors to solve simultaneously in each
502symmetry. Normally decided automatically by the program depending on
503available memory and size of eigenvectors.
504
505\item{\Key{PRINT}}\\
506\verb|READ *,IPRPP|\\
507Sets print level for single residue linear response module. Default is 2.
508
509\item{\Key{PROPRT}}\\
510\verb|READ '(A)', LABEL|\\
511Calculate either singlet or triplet transition moments for a given operator with label; LABEL.
512(The calculation of the operator must be specified to the integral
513module, see section \ref{ch:hermit}.)
514This keyword may be repeated for different properties.
515
516\item{\Key{QUADMOM}}
517Sets $A$ and $B$ to the quadrupole\index{quadrupole operator} operators.
518
519\item{\Key{QUADXX/XY/XZ/YY/YZ/ZZ}}
520Sets $A$ and $B$ to the XX, XY, XZ, YY, YZ, or ZZ component of the
521quadrupole\index{quadrupole operator} operator, respectively.
522
523\item{\Key{RESTPP}}
524Restart\index{restart!excitation energy} of single residue response
525calculation. This can only be used if the root which is
526specified is the same which was used \textit{last} in the previous
527single residue response calculation.
528
529\item{\Key{ROOTS}}\\
530\verb|READ *,(ROOTS(I) I=1,NSYM)|\\
531Number of roots.  The line following this option contains the number
532of excited states\index{excited state} per symmetry. Excitation
533energies\index{excitation energy} are calculated for each state and if
534any operators are given,
535symmetry-allowed transition moments\index{transition moment} are
536calculated between the
537reference state and the excited states.
538Remember to increase \Key{MAXRM} if many roots are specified.
539Default: one of each symmetry.
540
541\item{\Key{SPIN-O}}
542Sets $A$ and $B$ to spin-orbit operators\index{spin-orbit}.
543Warning: this option implies \Key{TRIPLET} and
544forces the excitations to be of triplet symmetry,
545and all operators---including
546{\it e.g.\/} \Key{DIPLEN}---will be assumed by the program to be of triplet symmetry!!
547
548\item{\Key{SPNORX/Y/Z}}
549Sets $A$ and $B$ to the X, Y, or Z component of the spin--orbit
550operator, respectively\index{spin-orbit}.
551Warning: this option implies \Key{TRIPLET} and
552forces the excitations to be of triplet symmetry,
553and all operators---including
554{\it e.g.\/} \Key{DIPLEN}---will be assumed by the program to be of triplet symmetry!!
555
556\item{\Key{THCPP}}\\
557\verb|READ *, THCPP|\\
558Threshold for solving the single residue linear response eigenvalue equation.
559Default is 1.0D-3; note that this number should be at least 10 times
560bigger than the final gradient norm in the SCF/MCSCF
561wave function optimization, otherwise you may encounter
562numerical problems.
563The accuracy of the pole (excitation energy) will be
564quadratic in this threshold, thus the default corresponds to approximately
5656 digits. The accuracy of transition moments will be linear in this threshold.
566
567\item{\Key{TRIPLET}} Calculate triplet excitation energies and transition moments.
568Will also make a simultaneous linear response calculation of triplet symmetry.
569
570\item{\Key{OLSEN}}
571CI trial vectors are obtained with Olsen algorithm.
572
573\item{\Key{VIRTUAL}}\\
574\verb|Max number of virtual orbitals in each symmetry|\\
575Only the specified virtual orbitals are included in the RPA matrix.
576Primarily intended for core hole RPA (DFT or HF) calculations,
577but works for all RPA calculations.
578See also \Key{CHANNEL}.
579
580\end{description}
581
582Debug keywords
583
584\begin{description}
585
586\item{\Key{ABCHK}} Sets up $E^{\left[2\right]}$
587  and $S^{\left[2\right]}$ used in solving the
588  single residue linear response equation. Only for debugging purposes.
589
590\item{\Key{ABSYM}} Tests the symmetry of $E^{\left[2\right]}$
591  and $S^{\left[2\right]}$ in the reduced space.
592  Only for debugging purposes.
593
594\item{\Key{ANTTES}} Test the antisymmetry of the single residue response
595  vector. Only for debugging purposes.
596
597\end{description}
598
599\subsection{Quadratic response calculation: \Sec{QUADRA}}
600\label{sec:quadraticrsp}
601
602Calculation of third order properties\index{properties!third order}
603 as quadratic response
604functions\index{quadratic response}\index{response!quadratic}.
605$A$, $B$, and $C$-named options refer to the operators in the quadratic
606response function
607$\langle\!\langle A;B,C \rangle\!\rangle_{\omega_b,\omega_c}$
608\cite{ovhapjhjajthjojcp97,hhhjajpjjojcp97,haovhkpjthjcp98}
609
610The second order properties from the linear response functions
611$\langle\!\langle A;B,\rangle\!\rangle_{\omega_b}$ are also printed
612(if $A$ and $B$ operators have the same spin symmetry),
613as they can be obtained at no extra computational cost.
614
615\begin{description}
616
617\item{\Key{A2TEST}}
618Test the contributions to the quadratic response function arising from
619the $A^{\left[2\right]}$ term. Mainly for debugging purposes.
620
621\item{\Key{APROP}, \Key{BPROP}, \Key{CPROP}}\\
622\verb|READ(LUCMD,'( BN,A,I8 )')LABEL, IRANKA|\\
623Specify the operator $A$ and optionally its spin rank. The line following this
624keyword should be the label of the operator as it appears in the file
625AOPROPER. If the line only contains the label it is assumed to be a singlet
626operator. To explicitly specify a triplet operator the label may be followed by the number 1. All variations of spin-orbit operators are always assumed to be triplet.
627
628Note that giving the label \verb|ANGMOM|, \verb|1SPNORB|,
629\verb|2SPNORB|, or \verb|MNFSPNOR|, all the components of angular
630momentum, one-electron spin--orbit, two-electron spin--orbit or the
631atomic mean-field spin--orbit operator will be selected.
632
633By specifying the labels \verb|FERMI CO|, \verb|SPIN-DIP| or
634\verb|PSO|, all components of the Fermi contact, spin--dipole or
635paramagnetic spin--orbit integrals that can be found on the file
636\verb|AOPROPER| will be selected. These integrals are selected by the
637appropriate keywords in the \Sec{*INTEGRALS} input module.
638
639\item{\Key{ASPIN}, \Key{BSPIN}, \Key{CSPIN}}\\
640\verb|READ(LUCMD,*)ISPINA|\\
641Spin information for quadratic response calculations.
642The line following these options contains the spin
643rank\index{spin rank} of the excitation operators that are coupled with the
644physical operators $A$, $B$, and $C$. This means that excitation spin rank may
645be different from operator spin rank.
646This is mostly relevant for open-shell singlet response functions
647where one of physical operators may be triplet.
648Note that the meaning of this keyword is a different from Dalton2011.
649
650\item{\Key{BFREQ}, \Key{CFREQ}}\\
651\verb|READ (LUCMD,*) NBQRFR|\\
652\verb|READ (LUCMD,*) (BQRFR(J),J=1,NBQRFR)|\\
653Individual specification of the frequencies $\omega_b$ and $\omega_c$.
654Input as in \Key{FREQUE} above.
655May not be used for \Key{SHG} and \Key{POCKEL}.
656May not be used together with \Key{FREQUE}.
657Default is one frequency of each type: zero (static).
658
659\item{\Key{DIPLEN}}
660Sets $A$, $B$, and $C$ to dipole operators\index{dipole length}.
661
662\item{\Key{DIPLNX/Y/Z}}
663Sets $A$, $B$, and $C$ operators to the X, Y, or Z component of the
664dipole length operators, respectively\index{dipole length}.
665
666\item{\Key{E3TEST}}
667Test the contributions to the quadratic response function arising from
668the $E^{\left[3\right]}$ and $S^{\left[3\right]}$ terms.  Mainly for
669debugging purposes.
670
671\item{\Key{FREQUE}}\\
672\verb|READ *, NFREQ|\\
673\verb|READ *, FREQ(1:NFREQ)|\\
674Response equations are evaluated at given
675frequencies\index{frequency!quadratic response}. Two lines
676following this option must contain 1) The number of frequencies, 2)
677Frequencies.
678For the Kerr effect only the $B$-frequency is set,
679and in other cases both $B$ and $C$-frequencies are set.
680May not be used together with \Key{BFREQ} or \Key{CFREQ}.
681Default is one frequency of each type: zero (static).
682
683\item{\Key{ISPABC}}\\
684\verb|READ *, ISPINA,ISPINB,ISPINC|\\
685see above, \Key{ISPINA}, \Key{ISPINB}, \Key{ISPINC}
686
687
688\item{\Key{MAX IT}}
689Maximum number of iterations for solving a linear response equation.
690Default is 60.
691
692\item{\Key{MAXITO}}
693Maximum number of iterations in the optimal
694orbital\index{optimal orbital trial vector} algorithm
695\cite{tuhjahjajpjjcp84}.
696Default is 5.
697
698\item{\Key{OPTREF}}
699Only response functions connected with optical rectification
700\index{Optical rectification}\index{response!Optical
701  rectification}\index{quadratic response!Optical rectification}
702$\beta(0; \omega,-\omega)$, are computed.
703Can be specified together with \Key{SHG} and \Key{POCKEL}.
704Frequencies must be specified with \Key{FREQUE}.
705Remember to specify operators as well, {\it e.g.\/} \Key{DIPLEN}.
706
707\item{\Key{POCKEL}}
708Only response functions connected with electro-optical
709Pockels effect\index{Pockels effect}\index{response!Pockels effect}\index{quadratic response!Pockels effect}
710$\beta(-\omega; \omega,0)$, are computed.
711Can be specified together with \Key{SHG} and \Key{OPTREF}.
712Frequencies must be specified with \Key{FREQUE}.
713Remember to specify operators as well, {\it e.g.\/} \Key{DIPLEN}.
714
715\item{\Key{PRINT}}\\
716\verb|READ *,IPRHYP|\\
717Print level. Default is 2.
718
719\item{\Key{REFCHK}} Only used for internal testing.
720
721\item{\Key{SHG}}
722Only response functions connected with second harmonic
723generation\index{second harmonic generation}\index{response!second harmonic generation}\index{quadratic response!second harmonic generation}
724are computed, $\beta(-2\omega,\omega,\omega)$ .
725Can be specified together with \Key{POCKEL}.
726Frequencies must be specified with \Key{FREQUE}.
727Remember to specify operators as well, {\it e.g.\/} \Key{DIPLEN}.
728
729\item{\Key{SOSHIE}}
730Analyze the calculated response equations to give the quadratic
731response spin-orbit contributions to the nuclear shielding
732constants. Will report the spin-orbit corrections to the shieldings in
733ppm. Note that this keyword will not set up the required quadratic
734response functions, only analyze the calculated results if appropriate
735quadratic response functions have been requested.
736
737\item{\Key{SOSPIN}}
738Analyze the calculated response equations to give the quadratic
739response spin-orbit contributions to the indirect spin--spin coupling
740constants. Will calculate the spin-orbit corrections to the reduced spin--spin
741coupling constants. Note that this keyword will not set up the
742required quadratic
743response functions, only analyze the calculated results if appropriate
744quadratic response functions have been requested.
745
746\item{\Key{THCLR}}
747Threshold for solving the linear response equations.
748Default is $10^{-3}$. The error in the calculated property is linear
749in this threshold.
750
751\item{\Key{TSTJEP}}\\
752\verb|READ(LUCMD,*) IAABB|\\
753Include only $\alpha-\alpha$ (IAABB=1) or $\alpha-\beta$ (IAABB=2)
754components of the active density in the construction of the quadratic
755response function. Mainly for debugging purposes.
756
757\item{\Key{X2TEST}}
758Test the contributions to the quadratic response function arising from
759the $X^{\left[2\right]}$ term. Mainly for debugging purposes.
760
761\end{description}
762
763\subsection{Second order transition moments: \Sec{QUADRA} with \Key{SINGLE RESIDUE}}
764
765%Calculation of third order properties as quadratic response
766%functions\index{quadratic response}\index{response!quadratic}.
767%$A, B$, and $C$-named options refer to the operators in the quadratic
768%response function
769%$\langle\!\langle A;B,C \rangle\!\rangle_{\omega_b,\omega_c}$
770%\cite{ovhapjhjajthjojcp97,hhhjajpjjojcp97,haovhkpjthjcp98}
771
772\begin{description}
773
774\item{\Key{A2TEST}}
775Test the contributions to the quadratic response function arising from
776the $A^{\left[2\right]}$ term. Mainly for debugging purposes.
777
778\item[\Key{APROP}, \Key{BPROP}]
779Specify the operators $A$ and $B$, respectively. The line following this
780option should be the label of the operator as it appears in the file
781AOPROPER. See also Sec.\ref{sec:quadraticrsp}
782
783\item{\Key{BFREQ}, \Key{FREQUE}}\\
784\verb|READ *, NFREQ|\\
785\verb|READ *, FREQ(1:NFREQ)|\\
786The frequencies $\omega_b$ in atomic units.
787Response equations are evaluated at given
788frequencies\index{frequency}. Two lines
789following this option must contain 1) The number of frequencies, 2)
790Frequencies.
791
792\item{\Key{CPPHEC}}
793Specifies a circularly polarized phosphorescence\index{circularly polarized phosphorescence}
794calculation using the effective charge approximation for the spin--orbit operator, {\it i.e.\/}
795the spin-orbit\index{spin-orbit}
796induced singlet-triplet transition\index{singlet-triplet transition}. This keyword sets up the
797calculation so that no further response input is required except \Key{ROOTS}; the
798$A$ operator is set to the dipole velocity operators\index{dipole velocity} and
799the $B$ operator is set to the effective charge spin-orbit\index{spin-orbit}
800operators. The set of effective charges is obtained from Koseki et al.
801\cite{skmsgmwsnm99,skmwsmsgjpca102} for atoms with ECP:s and Ref.\cite{skmwsmsgjpc96} for "all-electron" atoms.
802The reference state {\em must} be a singlet spin state. See  also \Key{PHOSPHORESCENCE}, \Key{ECPHOS},
803\Key{CPPHMF}, \Key{CPPHOL}, and \Key{CPPHOV}.
804
805\item{\Key{CPPHMF}}
806Specifies a circularly polarized phosphorescence\index{circularly polarized phosphorescence}
807calculation using the atomic mean-field approximation for the spin--orbit operator, {\it i.e.\/}
808the spin-orbit\index{spin-orbit}
809induced singlet-triplet transition\index{singlet-triplet transition}. This keyword sets up the
810calculation so that no further response input is required except \Key{ROOTS}; the
811$A$ operator is set to the dipole velocity operators\index{dipole velocity} and
812the $B$ operator is set to the atomic mean-field spin-orbit\index{spin-orbit}
813operators.
814The reference state {\em must} be a singlet spin state. See also \Key{PHOSPHORESCENCE}, \Key{MNFPHO},
815\Key{CPPHEC}, \Key{CPPHOL}, and \Key{CPPHOV}.
816
817\item{\Key{CPPHOL}}
818Specifies a circularly polarized phosphorescence\index{circularly polarized phosphorescence}
819calculation, {\it i.e.\/} the spin-orbit\index{spin-orbit}
820induced singlet-triplet transition\index{singlet-triplet transition} in the length gauge.
821This keyword sets up the calculation so that no further response input is required except \Key{ROOTS};
822the $A$ operator is set to the dipole length operators\index{dipole length} and
823the $B$ operator is set to the spin-orbit\index{spin-orbit}
824operators. \cite{ovhapjhjajthjojcp97,haovbmaqc27}
825The reference state {\em must} be a singlet spin state. See also \Key{CPPHEC}, \Key{CPPHMF} and \Key{CPPHOV}.
826
827\item{\Key{CPPHOV}}
828Specifies a circularly polarized phosphorescence\index{circularly polarized phosphorescence}
829calculation, {\it i.e.\/} the spin-orbit\index{spin-orbit}
830induced singlet-triplet transition\index{singlet-triplet transition} in the velocity gauge.
831This keyword sets up the calculation so that no further response input is required except \Key{ROOTS};
832the $A$ operator is set to the dipole velocity operators\index{dipole velocity} and
833the $B$ operator is set to the spin-orbit\index{spin-orbit}
834operators. \cite{ovhapjhjajthjojcp97,haovbmaqc27}
835The reference state {\em must} be a singlet spin state. See also \Key{CPPHEC}, \Key{CPPHMF} and \Key{CPPHOL}.
836
837\item{\Key{DIPLEN}}
838Sets $A$ and $B$ to $x, y, z$ dipole operators\index{dipole length}.
839
840\item{\Key{DIPLNX}}
841Sets $A$ and $B$ to the $x$ dipole operator\index{dipole length}.
842
843\item{\Key{DIPLNY}}
844Sets $A$ and $B$ to the $y$ dipole operator\index{dipole length}.
845
846\item{\Key{DIPLNZ}}
847Sets $A$ and $B$ to the $z$ dipole operator\index{dipole length}.
848
849\item{\Key{DIPVEL}}
850Sets $A$ and $B$ to $x, y, z$ dipole velocity operators\index{dipole velocity}.
851
852\item{\Key{E3TEST}}
853Test the contributions to the quadratic response function arising from
854the $E^{\left[3\right]}$ and $S^{\left[3\right]}$ terms.  Mainly for
855debugging purposes.
856
857\item{\Key{ECPHOS}}
858Specifies a phosphorescence\index{phosphorescence} calculation using
859the effective charge approximation for the spin--orbit operator, {\it i.e.\/}
860the spin-orbit\index{spin-orbit}
861induced singlet-triplet transition\index{singlet-triplet transition}. This keyword sets up the
862calculation so that no further response input is required except \Key{ROOTS}; the
863$A$ operator is set to the dipole operators\index{dipole length} and
864the $B$ operator
865is set to the effective charge spin-orbit\index{spin-orbit}
866operators. The set of effective charges is obtained from Koseki et al.
867\cite{skmsgmwsnm99,skmwsmsgjpca102} for atoms with ECP:s and Ref.\cite{skmwsmsgjpc96} for "all-electron" atoms.
868The reference state {\em must} be a singlet spin state. See  also \Key{PHOSPHORESCENCE}
869
870\item{\Key{ISPABC}}\\
871\verb|READ *, ISPINA,ISPINB,ISPINC|\\
872Spin symmetry of excitation operators associated with physical operators $A$ (ISPINA) and $B$ (ISPINB),
873and the excited states specified with \Key{ROOTS} (ISPINC): "0" for singlet and "1" for triplet.
874Default is "0,0,0", {\it i.e.\/} all of singlet spin symmetry.
875c.f. the same keyword in section \ref{sec:quadraticrsp}.
876{\bf Note: triplet operators are only implemented for singlet reference states.}
877%hjaaj June 2001: .ASPIN etc. should be defined for .SINGLE
878%\item[\Key{ASPIN}, \Key{BSPIN}, \Key{CSPIN}]
879%\index{quadratic response}\index{response!quadratic}
880%Spin information for quadratic response calculations.
881%The line following these options contains the spin
882%rank\index{spin rank} of the operators
883%$A$, $B$, and $C$, respectively, 0 for singlet operators and 1 for triplet
884%operators. If \Key{SINGLE} is specified, \Key{CSPIN} denotes the
885%spin of the excited state. If \Key{DOUBLE} is specified,
886%both \Key{BSPIN} and \Key{CSPIN} denote excited state spins.
887%In a triplet response calculations two of these operators are of rank one,
888%and the remaining operator of rank zero.
889
890\item{\Key{MAXITL}}
891Maximum number of iterations for linear equations in this section.
892Default is 60.
893
894\item{\Key{MAXITP}}
895Maximum number of iterations in solving the linear
896response\index{linear response}\index{response!linear} eigenvalue
897equations.
898Default is 60.
899
900\item{\Key{MAXITO}}
901Maximum number of iterations in the optimal
902orbital\index{optimal orbital trial vector} algorithm
903\cite{tuhjahjajpjjcp84}.
904Default is 5.
905
906\item{\Key{MCDBTERM}}
907Specifies the calculation of all individual components to the
908${\cal{B}}(0\to f)$ term of magnetic circular dichroism
909(MCD)\index{magnetic circular dichroism}\index{B-term}\index{MCD}.
910This keyword sets up the calculation so that no further response input is required except \Key{ROOTS}.
911The $A$ operator is set equal to the $\alpha$ component of dipole
912operator\index{dipole length} and
913the $B$ operator to the $\beta$ component of the angular momentum\index{angular momentum}
914operator. The resulting "mixed" two-photon transition moment to state $f$
915is then multiplied the dipole-allowed one-photon transition moment
916from state $f$ (for the $\gamma$ component, with $\alpha \neq \beta \neq \gamma$).
917\cite{Coriani:MCDRSP}
918
919\item{\Key{MNFPHO}}
920Specifies a phosphorescence\index{phosphorescence} calculation using
921the atomic mean-field approximation for the spin--orbit operator, {\it i.e.\/}
922the spin-orbit\index{spin-orbit}
923induced singlet-triplet transition\index{singlet-triplet transition}. This keyword sets up the
924calculation so that no further response input is required except \Key{ROOTS}; the
925$A$ operator is set to the dipole operators\index{dipole length} and
926the $B$ operator
927is set to the atomic mean-field spin-orbit\index{spin-orbit}
928operators.
929The reference state {\em must} be a singlet spin state. See also \Key{PHOSPHORESCENCE}
930
931\item{\Key{PHOSPHORESCENCE}}
932Specifies a phosphorescence\index{phosphorescence} calculation, {\it i.e.\/}
933the spin-orbit\index{spin-orbit}
934induced singlet-triplet transition\index{singlet-triplet transition}. This keyword sets up the
935calculation so that no further response input is required except \Key{ROOTS}; the
936$A$ operator is set to the dipole length operators\index{dipole length} and
937the $B$ operator is set to the spin-orbit\index{spin-orbit}
938operators. \cite{ovhapjhjajthjojcp97,haovbmaqc27}
939The reference state {\em must} be a singlet spin state.
940
941\item{\Key{PHOSPV}}
942Specifies a phosphorescence\index{phosphorescence} calculation, {\it i.e.\/}
943the spin-orbit\index{spin-orbit}
944induced singlet-triplet transition\index{singlet-triplet transition} in the velocity gauge.
945This keyword sets up the calculation so that no further response input is required except \Key{ROOTS};
946the $A$ operator is set to the dipole velocity operators\index{dipole velocity} and
947the $B$ operator is set to the spin-orbit\index{spin-orbit}
948operators. \cite{ovhapjhjajthjojcp97,haovbmaqc27}
949The reference state {\em must} be a singlet spin state.
950
951\item{\Key{PRINT}}\\
952\verb|READ *,IPRSMO|\\
953Print level. Default is 2.
954
955\item{\Key{ROOTS}}\\
956\verb|READ *,(ROOTS(I) I=1,NSYM)|\\
957Number of roots.  The line following this option contains the number
958of excited states\index{excited state!second order moment} per symmetry. Excitation
959energies\index{excitation energy!second order moment} are calculated for each state and if
960any operators are given,
961symmetry-allowed second order transition moments\index{transition moment!second order} are
962calculated between the
963reference state and the excited states.
964Remember to increase \Key{MAXRM} if many frequencies are specified.
965
966\item{\Key{SINGLE RESIDUE}}
967Required to
968compute the single residue\index{single residue!quadratic response} of the quadratic
969response function\index{quadratic response!single residue}\index{response!quadratic, single residue}.
970For the case of dipole operators this corresponds to two-photon
971transition
972moments\index{two-photon!transition moment}\index{transition moment}\index{transition moment!two-photon}.
973
974\item{\Key{THCLR}}\verb| |\newline
975\verb|READ *, THCLR|\\
976Threshold for solving the linear response equations.
977Default is $10^{-3}$.
978
979\item{\Key{THCPP}}\\
980\verb|READ *, THCPP|\\
981Threshold for solving the linear response
982\index{linear response}\index{response!linear}
983eigenvalue equation. Default is $10^{-3}$.
984
985\item{\Key{TPCD}}
986Sets up the calculation of the tensor components of the two-photon circular dichroism rotatory
987strength according to \cite{Rizzo:TPACD}, the TI equation.
988The tensor components are computed for all the excited states
989requested by the keyword \Key{ROOTS}, calculating the necessary
990quadratic response functions using the half-frequency of the
991excitation energy to the given state. The calculation path is identical to the
992one requested by \Key{TWO-PHOTON}, except that different operators are used.
993Please ignore the \mbox{***~FINAL~RESULTS~FROM~TWO-PHOTON~CALCULATION~***} output
994at the bottom of the output file when running TPCD.
995Do not forget to set \Key{DIPVEL}, \Key{ANGMOM} and \Key{ROTSTR} in **INTEGRAL
996input section.
997
998
999\item{\Key{TWO-PHOTON}}
1000Sets up the calculation of the two-photon transition strengths. This
1001calculates two-photon transition strengths for all the excited states
1002requested by the keyword \Key{ROOTS}, calculating the necessary quadratic response functions using the half-frequency of the
1003excitation energy to the given state.
1004
1005\item{\Key{X2TEST}}
1006Test the contributions to the quadratic response function arising from
1007the $X^{\left[2\right]}$ term. Mainly for debugging purposes.
1008\end{description}
1009
1010
1011\subsection{Transition moments between excited states: \Sec{QUADRA} with \Key{DOUBLE RESIDUE}}
1012
1013Required keywords:
1014
1015\begin{description}
1016
1017\item{\Key{DOUBLE RESIDUE}}\\
1018Compute double residues\index{quadratic response!double residue} of quadratic
1019response functions\index{double residue!quadratic response}\index{response!quadratic, double residue}.
1020Double residues of the quadratic response function correspond to transition
1021moments between excited states\index{transition moment!between excited states},
1022$\langle B \mid A \mid C \rangle$.
1023
1024\end{description}
1025
1026\noindent Optional keywords
1027
1028\begin{description}
1029
1030\item{\Key{A2TEST}}
1031Test the contributions to the quadratic response function arising from
1032the $A^{\left[2\right]}$ term. Mainly for debugging purposes.
1033
1034\item{\Key{DIPLEN}}
1035Sets $A$ to dipole operators\index{dipole length}.
1036
1037\item{\Key{DIPLNX}}
1038Sets $A$ to the $x$ dipole operator\index{dipole length}.
1039
1040\item{\Key{DIPLNY}}
1041Sets $A$ to the $y$ dipole operator\index{dipole length}.
1042
1043\item{\Key{DIPLNZ}}
1044Sets $A$ to the $z$ dipole operator\index{dipole length}.
1045
1046\item{\Key{DIPMAG}}
1047Sets $A$ to angular momentum operators\index{angular momentum}.
1048
1049\item{\Key{DIPMGX/Y/Z}}
1050Sets $A$ to the $x$, $y$, or $z$ component of the angular momentum operators\index{angular momentum}.
1051
1052\item{\Key{DIPVEL}}
1053Sets $A$ to the dipole velocity operators\index{dipole velocity}.
1054
1055\item{\Key{DIPVLX/Y/Z}}
1056Sets $A$ to the $x$, $y$, or $z$ component of the dipole velocity
1057operator, respectively\index{dipole velocity}.
1058
1059\item{\Key{E3TEST}}
1060Test the contributions to the quadratic response function arising from
1061the $E^{\left[3\right]}$ and $S^{\left[3\right]}$ terms.  Mainly for
1062debugging purposes.
1063
1064\item{\Key{EXMTES}}
1065Test that the transition moment is symmetric, {\it i.e.\/} that
1066$\left<i\left|A\right|j\right> =
1067\left<j\left|A\right|i\right>$. Mainly for debugging purposes.
1068
1069\item{\Key{IPREXM}}\\
1070\verb|READ *,IPREXM|\\
1071Print level for special excited state transition moment routines.
1072
1073\item{\Key{ISPABC}}\\
1074\verb|READ *, ISPINA,ISPINB,ISPINC|\\
1075Spin symmetry of excitation operators associated with physical operator $A$ (ISPINA)
1076and the left and right excitation operators (ISPINB and ISPINC) defined to
1077generate excited states defined in  given in by \Key{ROOTS}:
1078"0" for singlet and "1" for triplet.
1079C.f. the same keyword in section \ref{sec:quadraticrsp}.
1080Default is "0,0,0", {\it i.e.\/} all of singlet spin symmetry.
1081{\bf Note: triplet operators are only implemented for singlet reference states.}
1082%hjaaj June 2001: .ASPIN etc. should be defined for .DOUBLE
1083%\item[\Key{ASPIN}, \Key{BSPIN}, \Key{CSPIN}]
1084%\index{quadratic response}\index{response!quadratic}
1085%Spin information for quadratic response calculations.
1086%The line following these options contains the spin
1087%rank\index{spin rank} of the operators
1088%$A$, $B$, and $C$, respectively, 0 for singlet operators and 1 for triplet
1089%operators. If \Key{SINGLE} is specified, \Key{CSPIN} denotes the
1090%spin of the excited state. If \Key{DOUBLE} is specified,
1091%both \Key{BSPIN} and \Key{CSPIN} denote excited state spins.
1092%In a triplet response calculations two of these operators are of rank one,
1093%and the remaining operator of rank zero.
1094
1095\item{\Key{MAX IT}}
1096Maximum number of iterations for solving linear response
1097eigenvalue equation in this section.
1098
1099\item{\Key{MAXITO}}
1100Maximum number of iterations in the optimal
1101orbital\index{optimal orbital trial vector} algorithm
1102\cite{tuhjahjajpjjcp84}.
1103Default is 5.
1104
1105\item{\Key{PRINT}}\\
1106\verb|READ *,IPRPP|\\
1107Print level for solving linear response eigenvalue equations.
1108
1109\item{\Key{PROPRT}}
1110Specify another $A$ operator. \\
1111The line following this
1112option should be the label of the operator as it appears in the file
1113AOPROPER. This option may be repeated for different property operators.
1114%hjaaj June 2001, ought to define as well: \item[\Key{APROP}]
1115
1116\item{\Key{QUADMOM}}
1117Sets $A$ to the quadrupole\index{quadrupole operator} operators.
1118
1119\item{\Key{QUADXX/XY/XZ/YY/YZ/ZZ}}
1120Sets $A$ to the XX, XY, XZ, YY, YZ, or ZZ component of the
1121quadrupole\index{quadrupole operator} operator, respectively.
1122
1123\item{\Key{ROOTS}}\\
1124\verb|READ (LUCMD,*) (NPPCNV(J),J=1,NSYM)|\\
1125Number of roots (excited states) to converge for each spatial symmetry.\\
1126Used for $\langle B \mid$ as well as for $ \mid C \rangle$,
1127singlet or triplet as specified by \Key{ISPABC}.\\
1128Default: one root for each symmetry.
1129
1130\item{\Key{SPIN-O}}
1131Sets $A$ to spin-orbit operators\index{spin-orbit}.
1132Warning: this option implies \Key{TRIPLET} and
1133forces the excitations to be of triplet symmetry,
1134and all operators---including
1135{\it e.g.\/} \Key{DIPLEN}---will be assumed by the program to be of triplet symmetry!!
1136
1137\item{\Key{SPNORX/Y/Z}}
1138Sets $A$ to the X, Y, or Z component of the spin--orbit
1139operator, respectively\index{spin-orbit}.
1140Warning: this option implies \Key{TRIPLET} and
1141forces the excitations to be of triplet symmetry,
1142and all operators---including
1143{\it e.g.\/} \Key{DIPLEN}---will be assumed by the program to be of triplet symmetry!!
1144
1145\item{\Key{THCPP}}\\
1146\verb|READ *, THCPP|\\
1147Threshold for solving the linear response
1148eigenvalue equation. Default is $10^{-3}$.
1149
1150\item{\Key{X2TEST}}
1151Test the contributions to the quadratic response function arising from
1152the $X^{\left[2\right]}$ term. Mainly for debugging purposes.
1153\end{description}
1154
1155
1156\subsection{Cubic response calculation: \Sec{CUBIC}}
1157Calculation of fourth-order properties as cubic response functions\index{cubic response}\index{response!cubic}
1158\cite{pndjovhacpl242,djpnhajcp105,pndjhapdkrthhkcpl253}.
1159$A,B$,$C$, and $D$-named options refer to the operators in the cubic
1160response function
1161$\langle\!\langle A;B,C,D \rangle\!\rangle_{\omega_b,\omega_c,\omega_d}$
1162
1163\begin{description}
1164
1165\item[\Key{APROP}, \Key{BPROP}, \Key{CPROP}, \Key{DPROP}]
1166Specify the operators $A$, $B$, $C$, and $D$. The line following this
1167option should be the label of the operator as it appears in the file
1168AOPROPER.
1169
1170\item[\Key{BFREQ}, \Key{CFREQ}, \Key{DFREQ}]
1171The frequencies\index{frequency!cubic response}
1172$\omega_b$, $\omega_c$, and $\omega_d$, respectively. Input as in
1173\Key{FREQUE}.
1174
1175\item{\Key{DC-SHG}}
1176Only response functions connected to the static electric field-induced
1177second harmonic generation\index{electric field!induced SHG} are computed,
1178$\gamma(-2\omega;\omega,\omega,0)$.
1179
1180\item{\Key{DC-KERR}}
1181Only response functions connected to the static electric field induced
1182Kerr effect\index{electric field!induced Kerr} are computed,
1183$\gamma(-\omega;\omega,0,0)$.
1184
1185\item{\Key{DIPLEN}}
1186Sets $A$, $B$, $C$, and $D$ to dipole operators\index{dipole length}.
1187
1188\item{\Key{DIPLNX}}
1189Sets $A$, $B$, $C$, and $D$ to the $x$ dipole operator\index{dipole length}.
1190
1191\item{\Key{DIPLNY}}
1192Sets $A$, $B$, $C$, and $D$ to the $y$ dipole operator\index{dipole length}.
1193
1194\item{\Key{DIPLNZ}}
1195Sets $A$, $B$, $C$ and $D$ to the $z$ dipole operator\index{dipole length}.
1196
1197\item{\Key{FREQUE}}\\
1198\verb|READ *, NFREQ|\\
1199\verb|READ *, FREQ(1:NFREQ)|\\
1200Sets the frequencies\index{frequency!cubic response} whenever a optical process is specified.
1201Can also be used for the residue calculation and in which case
1202both $\omega_b$ and $\omega_c$ for the single residue and only
1203$\omega_b$ for the double residue.
1204
1205\item{\Key{IDRI  }}
1206Only response functions connected to the intensity dependent
1207refractive\index{refractive index!intensity dependent} index are computed,
1208$\gamma(-\omega;\omega,-\omega,\omega)$.
1209
1210\item{\Key{INVEXP}} Solve the linear set of equations for the
1211  second-order perturbed wave function through explicit matrix
1212  inversion. Mainly for debugging purposes.
1213
1214\item{\Key{ISPABC}}\\
1215\verb|READ *, ISPINA,ISPINB,ISPINC|\\
1216Spin symmetry of $A$, $B$, $C$, and $D$-operators (ISPINA/B/C/D),
1217"0" for singlet and "1" for triplet. Note that currently only singlet
1218triplet response functions have been implemented. Do not use.
1219
1220\item{\Key{MAX IT}}
1221Maximum number of iterations for solving linear equations, default value is 60.
1222
1223\item{\Key{MAXITO}}
1224Maximum number of optimal orbital trial vector microiterations,
1225default value is 5.
1226
1227\item{\Key{PRINT}}
1228Print flag for output, default value is 2. Timer information is printed
1229out if print flag greater than 5. Response vectors printed out if
1230print flag greater than 10.
1231
1232\item{\Key{THCLR}}
1233Threshold for convergence of response vectors, default value is $10^{-3}$.
1234
1235\item{\Key{THG   }}
1236Only response functions connected to the third harmonic
1237generation\index{third harmonic generation} are
1238computed, $\gamma(-3\omega;\omega,\omega,\omega)$ \cite{djpnylhajcp105}.
1239
1240\item{\Key{THRNRM}}
1241Threshold for norm of property vector $X^{[1]}$ to be considered to be
1242greater than zero in order to solve the linear
1243equation \\
1244$\left( E^{[2]} - S^{[2]} \right)N^{X} = X^{[1]}$, default
1245value is $10^{-9}$.
1246
1247%hjaaj June 2001: is triplet tested ?? (was not listed in dalton1.1 manual)
1248%item{\Key{ISABCD}}\\
1249%verb|READ *, ISPINA,ISPINB,ISPINC,ISPIND|\\
1250
1251%hjaaj June 2001
1252%\Key{INVEXP} is a programmers test option
1253
1254\end{description}
1255
1256\subsection{Third-order transition moments: \Sec{CUBIC} with \Key{SINGLE RESIDUE}}
1257Calculation of single residues\index{single residue!cubic response} of
1258cubic response functions\index{cubic response!single residue}\index{response!cubic, single residue}
1259\cite{pndjovhacpl242,djpnhajcp105,pndjhapdkrthhkcpl253}.
1260$A,B$,$C$, and $D$-named options refer to the operators in the cubic
1261response function
1262$\langle\!\langle A;B,C,D \rangle\!\rangle_{\omega_b,\omega_c,\omega_d}$
1263
1264\begin{description}
1265
1266\item[\Key{APROP}, \Key{BPROP}, \Key{CPROP}]
1267Specify the operators $A$, $B$, and $C$, respectively.
1268The line following this
1269option should be the label of the operator as it appears in the file
1270AOPROPER.
1271
1272\item[\Key{BFREQ}, \Key{CFREQ}]
1273The frequencies\index{frequency!cubic response single residue}
1274$\omega_b$ and $\omega_c$, respectively. Input as in
1275\Key{FREQUE}.
1276
1277\item{\Key{DIPLEN}}
1278Sets $A$, $B$, $C$, and $D$ to dipole operators\index{dipole length}.
1279
1280\item{\Key{DIPLNX}}
1281Sets $A$, $B$, $C$, and $D$ to the $x$ dipole operator\index{dipole length}.
1282
1283\item{\Key{DIPLNY}}
1284Sets $A$, $B$, $C$, and $D$ to the $y$ dipole operator\index{dipole length}.
1285
1286\item{\Key{DIPLNZ}}
1287Sets $A$, $B$, $C$ and $D$ to the $z$ dipole operator\index{dipole length}.
1288
1289\item{\Key{FREQUE}}\\
1290\verb|READ *, NFREQ|\\
1291\verb|READ *, FREQ(1:NFREQ)|\\
1292Sets the frequencies\index{frequency!cubic response} whenever a optical process is specified.
1293Can also be used for the residue calculation in which case it sets
1294both $\omega_b$ and $\omega_c$ for the single residue and only
1295$\omega_b$ for the double residue.
1296
1297\item{\Key{MAX IT}}
1298Maximum number of iterations for solving linear equations, default value is 60.
1299
1300\item{\Key{MAXITO}}
1301Maximum number of optimal orbital trial vector microiterations,
1302default value is 5.
1303
1304\item{\Key{MAXITP}}
1305Maximum number of iteration for solving eigenvalue equation, default
1306value is 60.
1307
1308\item{\Key{NOHG}} Do not restrict the calculation to the 'harmonic
1309  generation case', that is, allow a different number and different
1310  numerical values for the frequencies of the $B$ and $C$
1311  operators. By default, it is assumed that the $B$ and $C$ operator
1312  frequencies are identical.
1313
1314\item{\Key{PRINT}}
1315Print flag for output, default value is 2. Timer information is printed
1316out if print flag greater than 5. Response vectors printed out if
1317print flag greater than 10.
1318
1319\item{\Key{ROOTS}}
1320\verb|READ (LUCMD,*) (NTMCNV(J),J=1,NSYM)|\\
1321Number of roots (excited states) to converge for each spatial symmetry. \\
1322Default: one of each symmetry.
1323
1324\item{\Key{SINGLE}}
1325Computes the single residue\index{single residue!cubic response} of the cubic
1326response function\index{cubic response!single residue}.
1327In the case of dipole operators this corresponds to
1328three-photon absorption\index{three-photon!absorption}.
1329
1330\item{\Key{THCLR}}
1331Threshold for convergence of response vectors, default value is $10^{-3}$.
1332
1333\item{\Key{THCPP}}
1334Threshold for convergence of eigenvector, default value is $10^{-3}$.
1335
1336\item{\Key{THREE-PHOTON}}
1337Sets up the calculation of the three-photon transition strengths. This
1338calculates two-photon transition strengths for all the excited states
1339requested by the keyword \Key{ROOTS}, calculating the necessary
1340cubic response functions using  a third of the frequency of the
1341excitation energy to the given state.
1342
1343\end{description}
1344
1345
1346\subsection{Second order moments between excited states and excited state polarizabilities:
1347\Sec{CUBIC} with \Key{DOUBLE RESIDUE}}
1348Calculation of double residues\index{double residue!cubic response} of
1349cubic response functions\index{cubic response!double residue}\index{response!cubic, double residue}
1350\cite{pndjovhacpl242,djpnhajcp105,pndjhapdkrthhkcpl253}.
1351$A,B$,$C$, and $D$-named options refer to the operators in the cubic
1352response function
1353$\langle\!\langle A;B,C,D \rangle\!\rangle_{\omega_b,\omega_c,\omega_d}$.
1354$C$ and $D$ refer to the left hand state and right hand state
1355after the double residue has been taken.
1356
1357Excited state polarizabilites are only calculated if one or more of the keywords
1358\Key{DIPLEN}, \Key{DIPLNX}, \Key{DIPLNY}, and \Key{DIPLNZ}
1359are specified.
1360Only singlet excitations and singlet property operators are implemented.
1361
1362\begin{description}
1363
1364\item[\Key{APROP}, \Key{BPROP}]
1365Specify the operators $A$ and $B$, respectively. The line following this
1366option should be the label of the operator as it appears in the file
1367AOPROPER. These two keywords can be repeated for different properties.
1368
1369\item[\Key{BFREQ}]
1370The frequencies\index{frequency!cubic response}
1371$\omega_b$. Input as in \Key{FREQUE}.
1372Default only zero frequency (static).
1373
1374\item{\Key{DIPLEN}}
1375Sets $A$ and $B$ to all three dipole component operators\index{dipole length}.
1376
1377\item{\Key{DIPLNX}}
1378Sets $A$ and $B$ to the $x$ dipole operator\index{dipole length}.
1379
1380\item{\Key{DIPLNY}}
1381Sets $A$ and $B$ to the $y$ dipole operator\index{dipole length}.
1382
1383\item{\Key{DIPLNZ}}
1384Sets $A$ and $B$ to the $z$ dipole operator\index{dipole length}.
1385
1386\item{\Key{DOUBLE}}
1387REQUIRED.
1388Computes the double\index{double residue} residue of the cubic
1389response function\index{cubic response}\index{response!cubic}.
1390In the case of dipole operators this corresponds to excited
1391state polarizabilities and two-photon transition
1392moments\index{two-photon!transition moment!excited states}\index{excited state!polarizability}
1393between excited states \cite{djpnylhajcp105}.
1394
1395\item{\Key{FREQUE}}\\
1396\verb|READ *, NFREQ|\\
1397\verb|READ *, FREQ(1:NFREQ)|\\
1398Sets the frequencies\index{frequency!cubic response} whenever a optical process is specified.
1399Can also be used for the residue calculation and it does then set
1400both $\omega_b$ and $\omega_c$ for the single residue and only
1401$\omega_b$ for the double residue.
1402Default only zero frequency (static).
1403
1404\item{\Key{MAX IT}}
1405Maximum number of iterations for solving linear equations, default value is 60.
1406
1407\item{\Key{MAXITO}}
1408Maximum number of optimal orbital trial vector microiterations,
1409default value is 5.
1410
1411\item{\Key{MAXITP}}
1412Maximum number of iteration for solving eigenvalue equation, default
1413value is 20.
1414
1415\item{\Key{PRINT}}
1416Print flag for output, default value is 2. Timer information is printed
1417out if print flag greater than 5. Response vectors printed out if
1418print flag greater than 10.
1419
1420\item{\Key{ROOTS}}
1421\verb|READ (LUCMD,*) (NTMCNV(J),J=1,NSYM)|\\
1422Number of roots (excited states) to converge for each spatial symmetry.\\
1423Used for $<C|$ as well as for $|D>$.\\
1424Default: one of each symmetry.
1425
1426\item{\Key{THCLR}}
1427Threshold for convergence of $A$ response vectors, default value is $10^{-3}$.
1428
1429\item{\Key{THCPP}}
1430Threshold for convergence of excitation eigenvectors, default value is $10^{-3}$.
1431
1432\end{description}
1433
1434\subsection{Module for C6, C8, C10 coefficients and more\Sec{C6}}
1435
1436
1437\begin{description}
1438
1439\item{\Key{C6ATM}, \Key{C8ATM}, \Key{C10ATM}}
1440\Key{C6ATM}, \Key{C8ATM}, \Key{C10ATM} do the same as \Key{C6SPH} etc. for
1441atoms. Only $M_L=0$ is
1442calculated and written to file (all $M_L$ values give same multipole moment
1443for atoms).
1444
1445\item{\Key{C6LMO}, \Key{C8LMO}, \Key{C10LMO}}
1446\Key{C6LMO}, \Key{C8LMO}, \Key{C10LMO} is \Key{C6SPH} etc. for linear
1447molecules\index{linear molecule}. Only
1448multipole moments\index{multipole moment} with zero or positive $M_L$
1449are calculated and written to file.
1450
1451\item{\Key{C6SPH}, \Key{C8SPH}, \Key{C10SPH}}
1452Specification of one of \Key{C6SPH}, \Key{C8SPH}, \Key{C10SPH}
1453calculates and writes to a formatted interface file (RESPONSE.C8) the spherical multipole
1454moments in the specified/default grid points needed for C6, C8, and C10
1455coefficients, respectively ($L=1$, $L=1,2,3$, or $L=1,2,3,4,5$;
1456all for $M_L = -L,\ldots,0,\ldots,L$).
1457
1458\item{\Key{DIPLEN}}
1459Sets $A$ and $B$ to dipole operators\index{dipole length}.
1460
1461\item{\Key{DIPLNX/Y/Z}}
1462Sets $A$ and $B$ to the X, Y, or Z component of the dipole length operators, respectively\index{dipole length}.
1463
1464\item{\Key{DIPMAG}}
1465Sets $A$ and $B$ to angular momentum operators\index{angular momentum}.
1466
1467\item{\Key{DIPMGX/Y/Z}}
1468Sets $A$ and $B$ to the X, Y, or Z component of the angular momentum operators\index{angular momentum}.
1469
1470\item{\Key{DIPVEL}}
1471Sets $A$ and $B$ to the dipole velocity operators\index{dipole velocity}.
1472
1473\item{\Key{DIPVLX/Y/Z}}
1474Sets $A$ and $B$ to the X, Y, or Z component of the dipole velocity
1475operator, respectively\index{dipole velocity}.
1476
1477\item{\Key{FREQUE}}\\
1478\verb|READ *, NCFREQ|\\
1479\verb|READ *, CFREQ(1:NCFREQ)|\\
1480Response equations are evaluated at given
1481frequencies\index{frequency}. Two lines following
1482this option must contain 1) The number of frequencies, 2) Frequencies
1483in atomic units.
1484
1485\item{\Key{GSLEGN}} Use a Gauss--Legendre grid for calculating imaginary polarizabilities.
1486
1487\item{\Key{MAX IT}}\\
1488\verb|READ (LUCMD,*) MAXITC|\\
1489Maximum number of iterations for solving a linear response
1490equation. Default is 60.
1491
1492\item{\Key{MAXITO}}\\
1493\verb|READ (LUCMD,*) MAXITO|\\
1494Maximum number of iterations in the optimal orbital
1495algorithm\index{optimal orbital trial vector}
1496\cite{tuhjahjajpjjcp84}.
1497Default is 5.
1498
1499\item{\Key{MAXMOM}}\\
1500\verb|READ (LUCMD,*) MAXMOM|\\
1501The maximum order of the Cauchy moments calculated. The default order is 6.
1502
1503\item{\Key{GRID}}\\
1504\verb|READ (LUCMD,*) NGRID|\\
1505Read in the number of grid points to use in the numerical integration of the Cauchy moments. Default is 10.
1506
1507\item{\Key{QUADMOM}}
1508Sets $A$ and $B$ to the quadrupole\index{quadrupole operator} operators.
1509
1510\item{\Key{QUADXX/XY/XZ/YY/YZ/ZZ}}
1511Sets $A$ and $B$ to the XX, XY, XZ, YY, YZ, or ZZ component of the
1512quadrupole\index{quadrupole operator} operator, respectively.
1513
1514\item{\Key{PRINT}}     \\
1515\verb|READ (LUCMD,*),IPRC6 |\\
1516   The line following gives the print level for the calculation of Cauchy moments.
1517
1518\item{\Key{PROPRT}}\\
1519\verb|READ '(A)', LABEL|\\
1520Sets $A$ and $B$ to a given operator with label; LABEL.
1521(The calculation of the operator must be specified to the integral
1522module, see section \ref{ch:hermit}.)
1523This keyword may be repeated for different properties.
1524
1525\item{\Key{THCC6}}\\
1526\verb|READ *, THCC6|\\
1527Relative convergence threshold for all requested linear response functions.
1528Default is 1.0D-3; note that this number should be at least 10 times
1529bigger than the final gradient norm in the SCF/MCSCF
1530wave function optimization.<
1531\end{description}
1532
1533
1534\noindent{\bf Comments:}
1535
1536You must tell the integral module to calculate the necessary one-electron integrals.
1537For \Key{C8SPH}, \Key{C8ATM}, or \Key{C8LMO} you will need
1538
1539\begin{verbatim}
1540**INTEGRALS
1541.SPHMOM
1542   3
1543\end{verbatim}
1544
1545which calculate spherical moments for $L = 0, \ldots, 3$.
1546For the \Key{C6xxx} and the \Key{C10xxx} options
1547you will need $L = 0, 1$ and $L = 0, \ldots, 5$, respectively.
1548
1549\subsection{Damped response calculation: \Sec{ABSORP}}
1550\label{sec:absorprsp}
1551
1552Input for specification of a damped response
1553calculation.
1554\index{damped response}\index{response!damped}\\
1555By default, the solver
1556with symmetrized trial vectors \cite{kauczor:2011} is used.
1557
1558\begin{description}
1559\item{\Key{ALPHA}} \\
1560Calculate the linear polarizability.
1561
1562\item{\Key{MCD}} \\
1563Calculate the magnetic circular dichroism (MCD) and the Magnetic Optical Rotation Dispersion.
1564
1565\item{\Key{NSCD}} \\
1566Calculate the Nuclear Spin Circular Dichroism (NSCD) and the Nuclear Spin Optical Rotation~\cite{vaara2014}.
1567It requires specification of the \verb|.PSO| integrals in
1568the \verb|*INTEGRALS| input section.
1569Note that at present NSCD calculations only work {\bf{without symmetry}}.
1570See \verb|rsp_cpp_nscd| for an example of NSCD calculations.
1571
1572\item{\Key{BETA}}\\
1573Calculate the first-order hyperpolarizability.
1574
1575\item{\Key{SHG}}\\
1576Only response functions connected with second harmonic
1577generation\index{second harmonic generation}\index{response!second harmonic generation}\index{quadratic response!second harmonic generation}
1578are computed, $\beta(-2\omega,\omega,\omega)$ .
1579
1580\item{\Key{FREQUE}} \\
1581\verb|READ (LUCMD,*),ABS_NFREQ_ALPHA |\\
1582\verb|READ (LUCMD,*) (ABS_FREQ_ALPHA(I), I = 1, ABS_NFREQ_ALPHA) | \\
1583Select frequencies for which linear polarizability will be calculated.
1584The first line contains number of frequencies and in the second line the
1585frequencies of interest are specified.
1586
1587\item{\Key{FREQ I}} \\
1588\verb|READ (LUCMD,*),FREQ1 FREQ2 STEP |\\
1589Select the frequency interval for which linear polarizability will be calculated.
1590\verb|FREQ1| and \verb|FREQ2| refer to the first and the last frequency of
1591the interval, and \verb|STEP| is a step between frequencies of interest.
1592
1593\item{\Key{BFREQ}} \\
1594\verb|READ (LUCMD,*),ABS_NFREQ_BETA_B |\\
1595\verb|READ (LUCMD,*) (ABS_FREQ_BETA_B(I), I = 1, ABS_NFREQ_BETA_B) | \\
1596The frequencies\index{frequency!cubic response}
1597$\omega_b$. Input as in \Key{FREQUE}.
1598Default only zero frequency (static).
1599
1600\item{\Key{BFREQI}} \\
1601\verb|READ (LUCMD,*),FREQ1 FREQ2 STEP |\\
1602Select the frequency interval for $\omega_b$.
1603\verb|FREQ1| and \verb|FREQ2| refer to the first and the last frequency in
1604the interval, and \verb|STEP| is a step between frequencies of interest.
1605
1606\item{\Key{CFREQ}} \\
1607\verb|READ (LUCMD,*),ABS_NFREQ_BETA_C |\\
1608\verb|READ (LUCMD,*) (ABS_FREQ_BETA_C(I), I = 1, ABS_NFREQ_BETA_C) | \\
1609The frequencies\index{frequency!cubic response}
1610$\omega_c$. Input as in \Key{FREQUE}.
1611Default only zero frequency (static).
1612
1613\item{\Key{DAMPING}}      \\
1614\verb|READ (LUCMD,*),ABS_DAMP |\\
1615   Select the broadening (damping) parameter $\gamma$.
1616
1617\item{\Key{MAXIT}}      \\
1618\verb|READ (LUCMD,*),ABS_MAXITER |\\
1619   The maximum number of iterations.  (Default
1620= 150 )
1621
1622\item{\Key{MAXRM}}      \\
1623\verb|READ (LUCMD,*),ABS_MAXRM |\\
1624   The maximum dimension of the reduced space.
1625(Default = 200) The damped response equations are solved in
1626a reduced space, which is increased
1627in each iteration. MAXRM should be increased, if equations for many
1628frequencies are to be solved. Sharp convergence thresholds also require
1629more iterations and thus larger dimension of the reduced space.
1630
1631\item{\Key{THCLR}}     \\
1632\verb|READ (LUCMD,*),ABS_THCLR|\\
1633   The threshold for convergence (Default = 1.0D-3)
1634
1635\item{\Key{PRINT}}     \\
1636\verb|READ (LUCMD,*),IPRABSLRS |\\
1637   The print level for the ABSLRS routines.
1638
1639\item{\Key{XX/YY/ZZCOMP}}     \\
1640     Only XX, YY or ZZ component of linear polarizability is calculated.
1641
1642\item{\Key{IMAG F}} \\
1643   Select calculations for $i\omega$, {\it i.e.} when C$_6$ dispersion
1644coefficients are determined, linear polarizability $\alpha(i\omega)$ is
1645calculated. When \verb|.IMAG F| is specified, \verb|.FREQUE| and \verb|.FREQ I|
1646refer to imaginary frequencies, and the damping
1647parameter $\gamma = 0$.
1648
1649\item{\Key{ANALYZ}} \\
1650   Analyze the composition of the wave function.
1651
1652\item{\Key{NBATCH}}     \\
1653\verb|READ (LUCMD,*),ABS_NBATCHMAX|\\
1654   The number of linear transformations performed in one batch. Used in
1655calculations for many frequencies on large systems.
1656If calculations are performed using DFT, it is recommended to use
1657a multiplicity of 4 to obtain full efficiency.
1658
1659\item{\Key{OLDCPP}}\\
1660 The old complex polarization propagator
1661solver \cite{pndmbhjajjojcp123,pndmbhjajjojcp115} is used
1662in the damped response calculations. For {\Key{MCSCF}} calculations, the
1663old CPP solver is always used.
1664\item{\Key{EXCITA}}\\
1665\verb|READ (LUCMD,*),NEXCITED_STATES|\\
1666 Number of first eigenvectors used as the trial vectors in the CPP solver.
1667It is neglected in the input unless the
1668{\Key{OLDCPP}} is specified.
1669
1670\end{description}
1671\subsection{Electron Spin Resonance: \Sec{ESR}}
1672
1673Calculation of ESR parameters\index{ESR}
1674
1675\subsubsection{Hyperfine coupling}
1676
1677Default\index{hyperfine coupling}: hyperfine coupling tensors using
1678the Restricted-Unrestricted Approach\index{restricted-unrestricted method}.
1679
1680\begin{description}
1681\item{\Key{FCCALC}} \\
1682Calculate the isotropic Fermi-contact contributions to hyperfine coupling tensors
1683
1684\item{\Key{SDCALC}} \\
1685Calculate the spin-dipole contributions to the hyperfine coupling tensor
1686
1687\item{\Key{ATOMS}} \\
1688\verb|READ (LUCMD,*),ESRNUC |\\
1689\verb|READ (LUCMD,*) (NUCINF(IG), IG = 1, ESRNUC) | \\
1690Select atoms for which to calculate hyperfine coupling constants.
1691The first line contains  the number of atoms and the second line the
1692index of each atom (ordered as in the molecule input file \molinp)
1693
1694\item{\Key{MAX IT}}      \\
1695\verb|READ (LUCMD,*),MAXESR |\\
1696   The line following gives the maximum number of iterations.  (Default = 60)
1697
1698\item{\Key{PRINT}}     \\
1699\verb|READ (LUCMD,*),IPRESR |\\
1700   The line following gives the print level for the ESR routines.
1701
1702\item{\Key{THCESR}}     \\
1703\verb|READ (LUCMD,*),THCESR|\\
1704   The line following is the threshold for convergence (Default = 1.0D-5)
1705
1706\end{description}
1707The following options are obsolete but are kept for backward compatibility.
1708They are replaced by \Key{FCCALC} and \Key{SDCALC} above which also
1709enables the printing of the tensors of the most important isotopes of the
1710atoms in commonly used units.
1711\begin{description}
1712
1713\item{\Key{SNGPRP}}    \\
1714\verb|READ (LUCMD,'(A)'), LABEL|\\
1715   Singlet Operator. The line following is the label in the AOPROPER file.
1716
1717\item{\Key{TRPPRP}}    \\
1718\verb|READ (LUCMD,'(A)'), LABEL |\\
1719   Triplet Operator. The line following is the label in the AOPROPER file.
1720
1721
1722\end{description}
1723
1724\subsubsection{Zero-field splitting: \Key{ZFS}}
1725
1726Calculation of the the electronic spin--spin contribution to the zero-field splitting
1727tensor:
1728
1729\begin{description}
1730  \item{\Key{ZFS}} \\
1731\end{description}
1732
1733\subsubsection{Electronic g-tensors:  \Key{G-TENSOR}}
1734\label{sec:g-tensor}
1735Calculation of the electronic g-tensor:
1736
1737\begin{description}
1738  \item{\Key{G-TENSOR}} \\
1739   Initializes input block for g-tensor related options
1740\end{description}
1741The default is to calculate all contributions. The following
1742options selects individual contributions
1743\begin{description}
1744   \item{\Key{RMC}}
1745   Relativistic mass correction
1746   \item{\Key{OZSO1}}
1747   Second-order (paramagnetic) orbital-Zeeman + 1-electron spin-orbit contributions
1748   \item{\Key{OZSO2}}
1749   Second-order (paramagnetic) orbital-Zeeman + 2-electron spin-orbit contributions
1750   \item{\Key{GC1}}
1751   1-electron gauge correction (diamagnetic) contributions
1752   \item{\Key{GC2}}
1753   2-electron gauge correction (diamagnetic) contributions
1754   \item{\Key{ECC}}
1755   Choose electron center of charge (ECC) as gauge origin.
1756\end{description}
1757The following are utility options for modifying the default calculational
1758procedure.
1759\begin{description}
1760  \item{\Key{ADD-SO}}
1761  Adds the 1- and 2-electron spin-orbit operators. This
1762  option may be used when one is not interested in the individual
1763  1- and 2-electron contribution to the paramagnetic g-tensor,
1764  since it reduces the number of response equations to be solved.
1765   \item{\Key{MEAN-FIELD}}
1766   Uses the approximate atomic mean field (AMFI) spin-orbit operator
1767   for evaluating the paramagnetic contributions.
1768%   \item{\Key{OWN-OT}} Calculates separately the spin-own-orbit and
1769%   spin-other-orbit contributions to the 2-electron spin-orbit
1770%   operator contribution to the g tensor.
1771   \item{\Key{SCALED}}
1772   Uses the approximate 1-electron spin-orbit operator with scaled nuclear
1773   charges taken from Ref.~\cite{skmwsmsgjpca102} for evaluating the paramagnetic contributions.
1774%\item{\Key{TEST A}}
1775  \item{\Key{ZERO}}
1776  \verb|READ(LUCMD,'(A80)')G_LINE |\\
1777  This option is mainly for linear molecules in a $\Sigma$ state.
1778  Specifying e.g. "ZZ" on the input line instructs the program
1779  to skip the calculation of the paramagnetic contribution to $g_{zz}$.
1780\end{description}
1781
1782\subsection{Hyperfine Coupling Constants: \Sec{HFC}}
1783
1784Calculation of hyperfine coupling constants using restricted-unrestricted Kohn-Sham method\index{HFC}
1785
1786\begin{description}
1787\item{\Key{HFC-FC}} \\
1788Calculate the isotropic Fermi-contact contributions to hyperfine coupling tensors of all nuclei in
1789molecule with nonzero nuclear spin.
1790
1791\item{\Key{HFC-SD}} \\
1792Calculate the spin-dipole contributions to the hyperfine coupling tensor of all nuclei in molecule
1793with nonzero nuclear spin.
1794
1795\item{\Key{HFC-SO}} \\
1796Calculate the spin-orbit contributions to the hyperfine coupling tensor of all nuclei in molecule
1797with nonzero nuclear spin. By default mean field approximation is used for spin-orbit interaction.
1798
1799\item{\Key{BRT-SO}} \\
1800Requests usage of two-electron spin-orbit interaction integrals in computation of spin-orbit contribution
1801to hyperfine coupling tensor. This keyword must be combined with \Key{SPIN-ORBIT} in the \Sec{*INTEGRALS} input module.
1802
1803\item{\Key{EFF-SO}} \\
1804Requests usage of effective scaled charge spin-orbit interaction integrals in computation of spin-orbit contribution
1805to hyperfine coupling tensor.
1806
1807\item{\Key{PRINT}}     \\
1808\verb|READ (LUCMD,*),IPRESR |\\
1809   The line following gives the print level for the HFC routines.
1810
1811\end{description}
1812