1
2
3     ************************************************************************
4     *************** Dalton - An Electronic Structure Program ***************
5     ************************************************************************
6
7    This is output from DALTON (Release Dalton2013 patch 0)
8   ----------------------------------------------------------------------------
9    NOTE:
10
11    Dalton is an experimental code for the evaluation of molecular
12    properties using (MC)SCF, DFT, CI, and CC wave functions.
13    The authors accept no responsibility for the performance of
14    the code or for the correctness of the results.
15
16    The code (in whole or part) is provided under a licence and
17    is not to be reproduced for further distribution without
18    the written permission of the authors or their representatives.
19
20    See the home page "http://daltonprogram.org" for further information.
21
22    If results obtained with this code are published,
23    the appropriate citations would be both of:
24
25       K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
26       L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
27       P. Dahle, E. K. Dalskov, U. Ekstroem, T. Enevoldsen,
28       J. J. Eriksen, P. Ettenhuber, B. Fernandez, L. Ferrighi,
29       H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Haettig,
30       H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema,
31       E. Hjertenaes, S. Hoest, I.-M. Hoeyvik, M. F. Iozzi,
32       B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Joergensen,
33       J. Kauczor, S. Kirpekar, T. Kjaergaard, W. Klopper,
34       S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp,
35       K. Kristensen, A. Ligabue, O. B. Lutnaes, J. I. Melo,
36       K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen,
37       P. Norman, J. Olsen, J. M. H. Olsen, A. Osted,
38       M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi,
39       S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin,
40       P. Salek, C. C. M. Samson, A. Sanchez de Meras, T. Saue,
41       S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov,
42       A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor,
43       A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen,
44       L. Thoegersen, O. Vahtras, M. A. Watson, D. J. D. Wilson,
45       M. Ziolkowski and H. Agren.
46       The Dalton quantum chemistry program system.
47       WIREs Comput. Mol. Sci. 2013. doi: 10.1002/wcms.1172
48
49    and
50
51       Dalton, a Molecular Electronic Structure Program,
52       Release DALTON2013.0 (2013), see http://daltonprogram.org
53   ----------------------------------------------------------------------------
54
55    Authors in alphabetical order (major contribution(s) in parenthesis):
56
57  Kestutis Aidas,           Vilnius University,           Lithuania   (QM/MM)
58  Celestino Angeli,         University of Ferrara,        Italy       (NEVPT2)
59  Keld L. Bak,              UNI-C,                        Denmark     (AOSOPPA, non-adiabatic coupling, magnetic properties)
60  Vebjoern Bakken,          University of Oslo,           Norway      (DALTON; geometry optimizer, symmetry detection)
61  Radovan Bast,             KTH Stockholm                 Sweden      (DALTON installation and execution frameworks)
62  Linus Boman,              NTNU,                         Norway      (Cholesky decomposition and subsystems)
63  Ove Christiansen,         Aarhus University,            Denmark     (CC module)
64  Renzo Cimiraglia,         University of Ferrara,        Italy       (NEVPT2)
65  Sonia Coriani,            University of Trieste,        Italy       (CC module, MCD in RESPONS)
66  Paal Dahle,               University of Oslo,           Norway      (Parallelization)
67  Erik K. Dalskov,          UNI-C,                        Denmark     (SOPPA)
68  Thomas Enevoldsen,        Univ. of Southern Denmark,    Denmark     (SOPPA)
69  Janus J. Eriksen,         Aarhus University,            Denmark     (PE-MP2/SOPPA, TDA)
70  Berta Fernandez,          U. of Santiago de Compostela, Spain       (doublet spin, ESR in RESPONS)
71  Lara Ferrighi,            Aarhus University,            Denmark     (PCM Cubic response)
72  Heike Fliegl,             University of Oslo,           Norway      (CCSD(R12))
73  Luca Frediani,            UiT The Arctic U. of Norway,  Norway      (PCM)
74  Bin Gao,                  UiT The Arctic U. of Norway,  Norway      (Gen1Int library)
75  Christof Haettig,         Ruhr-University Bochum,       Germany     (CC module)
76  Kasper Hald,              Aarhus University,            Denmark     (CC module)
77  Asger Halkier,            Aarhus University,            Denmark     (CC module)
78  Hanne Heiberg,            University of Oslo,           Norway      (geometry analysis, selected one-electron integrals)
79  Trygve Helgaker,          University of Oslo,           Norway      (DALTON; ABACUS, ERI, DFT modules, London, and much more)
80  Alf Christian Hennum,     University of Oslo,           Norway      (Parity violation)
81  Hinne Hettema,            University of Auckland,       New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
82  Eirik Hjertenaes,         NTNU,                         Norway      (Cholesky decomposition)
83  Maria Francesca Iozzi,    University of Oslo,           Norway      (RPA)
84  Brano Jansik              Technical Univ. of Ostrava    Czech Rep.  (DFT cubic response)
85  Hans Joergen Aa. Jensen,  Univ. of Southern Denmark,    Denmark     (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
86  Dan Jonsson,              UiT The Arctic U. of Norway,  Norway      (cubic response in RESPONS module)
87  Poul Joergensen,          Aarhus University,            Denmark     (RESPONS, ABACUS, and CC modules)
88  Joanna Kauczor,           Linkoeping University,        Sweden      (Complex polarization propagator (CPP) module)
89  Sheela Kirpekar,          Univ. of Southern Denmark,    Denmark     (Mass-velocity & Darwin integrals)
90  Wim Klopper,              KIT Karlsruhe,                Germany     (R12 code in CC, SIRIUS, and ABACUS modules)
91  Stefan Knecht,            ETH Zurich,                   Switzerland (Parallel CI and MCSCF)
92  Rika Kobayashi,           Australian National Univ.,    Australia   (DIIS in CC, London in MCSCF)
93  Henrik Koch,              NTNU,                         Norway      (CC module, Cholesky decomposition)
94  Jacob Kongsted,           Univ. of Southern Denmark,    Denmark     (Polarizable embedding, QM/MM)
95  Andrea Ligabue,           University of Modena,         Italy       (CTOCD, AOSOPPA)
96  Ola B. Lutnaes,           University of Oslo,           Norway      (DFT Hessian)
97  Juan I. Melo,             University of Buenos Aires,   Argentina   (LRESC, Relativistic Effects on NMR Shieldings)
98  Kurt V. Mikkelsen,        University of Copenhagen,     Denmark     (MC-SCRF and QM/MM)
99  Rolf H. Myhre,            NTNU,                         Norway      (Cholesky, subsystems and ECC2)
100  Christian Neiss,          Univ. Erlangen-Nuernberg,     Germany     (CCSD(R12))
101  Christian B. Nielsen,     University of Copenhagen,     Denmark     (QM/MM)
102  Patrick Norman,           Linkoeping University,        Sweden      (Cubic response and complex response in RESPONS)
103  Jeppe Olsen,              Aarhus University,            Denmark     (SIRIUS CI/density modules)
104  Jogvan Magnus H. Olsen,   Univ. of Southern Denmark,    Denmark     (Polarizable embedding, PE library, QM/MM)
105  Anders Osted,             Copenhagen University,        Denmark     (QM/MM)
106  Martin J. Packer,         University of Sheffield,      UK          (SOPPA)
107  Filip Pawlowski,          Kazimierz Wielki University   Poland      (CC3)
108  Thomas B. Pedersen,       University of Oslo,           Norway      (Cholesky decomposition)
109  Patricio F. Provasi,      University of Northeastern,   Argentina   (Analysis of coupling constants in localized orbitals)
110  Zilvinas Rinkevicius,     KTH Stockholm,                Sweden      (open-shell DFT, ESR)
111  Elias Rudberg,            KTH Stockholm,                Sweden      (DFT grid and basis info)
112  Torgeir A. Ruden,         University of Oslo,           Norway      (Numerical derivatives in ABACUS)
113  Kenneth Ruud,             UiT The Arctic U. of Norway,  Norway      (DALTON; ABACUS magnetic properties and  much more)
114  Pawel Salek,              KTH Stockholm,                Sweden      (DALTON; DFT code)
115  Claire C. M. Samson       University of Karlsruhe       Germany     (Boys localization, r12 integrals in ERI)
116  Alfredo Sanchez de Meras, University of Valencia,       Spain       (CC module, Cholesky decomposition)
117  Trond Saue,               Paul Sabatier University,     France      (direct Fock matrix construction)
118  Stephan P. A. Sauer,      University of Copenhagen,     Denmark     (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
119  Bernd Schimmelpfennig,    Forschungszentrum Karlsruhe,  Germany     (AMFI module)
120  Kristian Sneskov,         Aarhus University,            Denmark     (QM/MM, PE-CC)
121  Arnfinn H. Steindal,      UiT The Arctic U. of Norway,  Norway      (parallel QM/MM)
122  K. O. Sylvester-Hvid,     University of Copenhagen,     Denmark     (MC-SCRF)
123  Peter R. Taylor,          VLSCI/Univ. of Melbourne,     Australia   (Symmetry handling ABACUS, integral transformation)
124  Andrew M. Teale,          University of Nottingham,     England     (DFT-AC, DFT-D)
125  David P. Tew,             University of Bristol,        England     (CCSD(R12))
126  Olav Vahtras,             KTH Stockholm,                Sweden      (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
127  David J. Wilson,          La Trobe University,          Australia   (DFT Hessian and DFT magnetizabilities)
128  Hans Agren,               KTH Stockholm,                Sweden      (SIRIUS module, RESPONS, MC-SCRF solvation model)
129 --------------------------------------------------------------------------------
130
131     Date and time (Linux)  : Sun Sep  8 20:42:43 2013
132     Host name              : lpqlx131.ups-tlse.fr
133
134 * Work memory size             :    64000000 =  488.28 megabytes.
135
136 * Directories for basis set searches:
137   1) /home/bast/DALTON-2013.0-Source/build/test_cc3_CARBON_asym_pol
138   2) /home/bast/DALTON-2013.0-Source/build/basis
139
140
141Compilation information
142-----------------------
143
144 Who compiled             | bast
145 Host                     | lpqlx131.ups-tlse.fr
146 System                   | Linux-3.8.5-201.fc18.x86_64
147 CMake generator          | Unix Makefiles
148 Processor                | x86_64
149 64-bit integers          | OFF
150 MPI                      | OFF
151 Fortran compiler         | /usr/bin/gfortran
152 Fortran compiler version | GNU Fortran (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8)
153 C compiler               | /usr/bin/gcc
154 C compiler version       | gcc (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8)
155 C++ compiler             | /usr/bin/g++
156 C++ compiler version     | g++ (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8)
157 Static linking           | OFF
158 Last Git revision        | f34203295a86316e27f9e7b44f9b6769c4a046c0
159 Configuration time       | 2013-09-08 20:31:27.952056
160
161
162   Content of the .dal input file
163 ----------------------------------
164
165**DALTON
166.RUN WAVE FUNCTIONS
167**INTEGRAL
168.DIPLEN
169.THETA
170.QUADRU
171**WAVE FUNCTION
172.CC
173*SCF INPUT
174.THRESH
175 1.0D-12
176.NODIIS
177*ORBITAL INPUT
178.NOSUPSYM
179.MOSTART
180.H1DIAG
181*CC INP
182.CC3
183.PRINT
184 1
185.THRENR
1861.0D-12
187.THRLEQ
1881.0D-12
189.MAX IT
190 100
191*CCLR
192.ASYMSD
193.OPERATOR
194XYQUADRUXYQUADRU
195.FREQUE
196 2
1970.00 0.50
198**END OF DALTON
199
200
201   Content of the .mol file
202 ----------------------------
203
204INTGRL
205C atom
206CC3 polarizability (asymmetric)
207    1  0 3  X  Y  Z
208        6.    1    2    0    1
209C     0.0     0.0      0.0
210    3    2
211      1.3148331  0.15591627 0.0
212      0.3055389  0.60768372 0.0
213      0.0993707  0.00000000 1.0
214
215
216       *******************************************************************
217       *********** Output from DALTON general input processing ***********
218       *******************************************************************
219
220 --------------------------------------------------------------------------------
221   Overall default print level:    0
222   Print level for DALTON.STAT:    1
223
224    HERMIT 1- and 2-electron integral sections will be executed
225    "Old" integral transformation used (limited to max 255 basis functions)
226    Wave function sections will be executed (SIRIUS module)
227 --------------------------------------------------------------------------------
228
229
230   ****************************************************************************
231   *************** Output of molecule and basis set information ***************
232   ****************************************************************************
233
234
235    The two title cards from your ".mol" input:
236    ------------------------------------------------------------------------
237 1: C atom
238 2: CC3 polarizability (asymmetric)
239    ------------------------------------------------------------------------
240
241  Atomic type no.    1
242  --------------------
243  Nuclear charge:   6.00000
244  Number of symmetry independent centers:    1
245  Number of basis sets to read;    1
246
247
248                         SYMGRP: Point group information
249                         -------------------------------
250
251Point group: D2h
252
253   * The point group was generated by:
254
255      Reflection in the yz-plane
256      Reflection in the xz-plane
257      Reflection in the xy-plane
258
259   * Group multiplication table
260
261        |  E   C2z  C2y  C2x   i   Oxy  Oxz  Oyz
262   -----+----------------------------------------
263     E  |  E   C2z  C2y  C2x   i   Oxy  Oxz  Oyz
264    C2z | C2z   E   C2x  C2y  Oxy   i   Oyz  Oxz
265    C2y | C2y  C2x   E   C2z  Oxz  Oyz   i   Oxy
266    C2x | C2x  C2y  C2z   E   Oyz  Oxz  Oxy   i
267     i  |  i   Oxy  Oxz  Oyz   E   C2z  C2y  C2x
268    Oxy | Oxy   i   Oyz  Oxz  C2z   E   C2x  C2y
269    Oxz | Oxz  Oyz   i   Oxy  C2y  C2x   E   C2z
270    Oyz | Oyz  Oxz  Oxy   i   C2x  C2y  C2z   E
271
272   * Character table
273
274        |  E   C2z  C2y  C2x   i   Oxy  Oxz  Oyz
275   -----+----------------------------------------
276    Ag  |   1    1    1    1    1    1    1    1
277    B3u |   1   -1   -1    1   -1    1    1   -1
278    B2u |   1   -1    1   -1   -1    1   -1    1
279    B1g |   1    1   -1   -1    1    1   -1   -1
280    B1u |   1    1   -1   -1   -1   -1    1    1
281    B2g |   1   -1    1   -1    1   -1    1   -1
282    B3g |   1   -1   -1    1    1   -1   -1    1
283    Au  |   1    1    1    1   -1   -1   -1   -1
284
285   * Direct product table
286
287        | Ag   B3u  B2u  B1g  B1u  B2g  B3g  Au
288   -----+----------------------------------------
289    Ag  | Ag   B3u  B2u  B1g  B1u  B2g  B3g  Au
290    B3u | B3u  Ag   B1g  B2u  B2g  B1u  Au   B3g
291    B2u | B2u  B1g  Ag   B3u  B3g  Au   B1u  B2g
292    B1g | B1g  B2u  B3u  Ag   Au   B3g  B2g  B1u
293    B1u | B1u  B2g  B3g  Au   Ag   B3u  B2u  B1g
294    B2g | B2g  B1u  Au   B3g  B3u  Ag   B1g  B2u
295    B3g | B3g  Au   B1u  B2g  B2u  B1g  Ag   B3u
296    Au  | Au   B3g  B2g  B1u  B1g  B2u  B3u  Ag
297
298
299                                 Isotopic Masses
300                                 ---------------
301
302                           C          12.000000
303
304                       Total mass:    12.000000 amu
305                       Natural abundance:  98.900 %
306
307 Center-of-mass coordinates (a.u.):    0.000000    0.000000    0.000000
308
309
310  Atoms and basis sets
311  --------------------
312
313  Number of atom types :    1
314  Total number of atoms:    1
315
316  label    atoms   charge   prim   cont     basis
317  ----------------------------------------------------------------------
318  C           1    6.0000     9     6      [3p|2p]
319  ----------------------------------------------------------------------
320  total:      1    6.0000     9     6
321  ----------------------------------------------------------------------
322
323  Threshold for neglecting AO integrals:  1.00D-12
324
325
326  Cartesian Coordinates (a.u.)
327  ----------------------------
328
329  Total number of coordinates:    3
330  C       :     1  x   0.0000000000    2  y   0.0000000000    3  z   0.0000000000
331
332
333  Symmetry Coordinates
334  --------------------
335
336  Number of coordinates in each symmetry:     0    1    1    0    1    0    0    0
337
338  Symmetry  B3u ( 2)
339
340    1   C     x    1
341
342  Symmetry  B2u ( 3)
343
344    2   C     y    2
345
346  Symmetry  B1u ( 5)
347
348    3   C     z    3
349
350
351@ This is an atomic calculation.
352
353
354  Symmetry Orbitals
355  -----------------
356
357  Number of orbitals in each symmetry:           0    2    2    0    2    0    0    0
358
359
360  No orbitals in symmetry  Ag ( 1)
361
362
363  Symmetry  B3u( 2)
364
365    1     C        2px        1
366    2     C        2px        4
367
368
369  Symmetry  B2u( 3)
370
371    3     C        2py        2
372    4     C        2py        5
373
374
375  No orbitals in symmetry  B1g( 4)
376
377
378  Symmetry  B1u( 5)
379
380    5     C        2pz        3
381    6     C        2pz        6
382
383
384  No orbitals in symmetry  B2g( 6)
385
386
387  No orbitals in symmetry  B3g( 7)
388
389
390  No orbitals in symmetry  Au ( 8)
391
392  Symmetries of electric field:  B3u(2)  B2u(3)  B1u(5)
393
394  Symmetries of magnetic field:  B3g(7)  B2g(6)  B1g(4)
395
396
397                     .---------------------------------------.
398                     | Starting in Integral Section (HERMIT) |
399                     `---------------------------------------'
400
401
402
403    *************************************************************************
404    ****************** Output from HERMIT input processing ******************
405    *************************************************************************
406
407
408 Default print level:        1
409
410 * Nuclear model: Point charge
411
412 Calculation of one- and two-electron Hamiltonian integrals.
413
414 The following one-electron property integrals are calculated as requested:
415          - overlap integrals
416          - dipole length integrals
417          - quadrupole moment integrals
418          - traceless quadrupole moment integrals
419
420 Center of mass  (bohr):      0.000000000000      0.000000000000      0.000000000000
421 Operator center (bohr):      0.000000000000      0.000000000000      0.000000000000
422 Gauge origin    (bohr):      0.000000000000      0.000000000000      0.000000000000
423 Dipole origin   (bohr):      0.000000000000      0.000000000000      0.000000000000
424
425
426     ************************************************************************
427     ************************** Output from HERINT **************************
428     ************************************************************************
429
430
431 Threshold for neglecting two-electron integrals:  1.00D-12
432 Number of two-electron integrals written:          75 ( 32.5% )
433 Megabytes written:                              0.007
434
435 >>>> Total CPU  time used in HERMIT:   0.00 seconds
436 >>>> Total wall time used in HERMIT:   0.00 seconds
437
438
439                        .----------------------------------.
440                        | End of Integral Section (HERMIT) |
441                        `----------------------------------'
442
443
444
445                   .--------------------------------------------.
446                   | Starting in Wave Function Section (SIRIUS) |
447                   `--------------------------------------------'
448
449
450 **********************************************************************
451 *SIRIUS* a direct, restricted step, second order MCSCF program       *
452 **********************************************************************
453
454
455     Date and time (Linux)  : Sun Sep  8 20:42:43 2013
456     Host name              : lpqlx131.ups-tlse.fr
457
458 Title lines from ".mol" input file:
459     C atom
460     CC3 polarizability (asymmetric)
461
462 Print level on unit LUPRI =   2 is   0
463 Print level on unit LUW4  =   2 is   5
464
465@    (Integral direct) CC calculation.
466
467@    This is a combination run starting with
468@              a restricted, closed shell Hartree-Fock calculation
469
470
471 Initial molecular orbitals are obtained according to
472 ".MOSTART H1DIAG" input option
473
474     Wave function specification
475     ============================
476
477     For the specification of the Coupled Cluster: see later.
478
479@    For the wave function of type :      >>> CC <<<
480@    Number of closed shell electrons           6
481@    Number of electrons in active shells       0
482@    Total charge of the molecule               0
483
484@    Spin multiplicity and 2 M_S                1         0
485     Total number of symmetries                 8
486@    Reference state symmetry                   1
487
488     Orbital specifications
489     ======================
490     Abelian symmetry species          All |    1    2    3    4    5    6    7    8
491                                       --- |  ---  ---  ---  ---  ---  ---  ---  ---
492     Total number of orbitals            6 |    0    2    2    0    2    0    0    0
493     Number of basis functions           6 |    0    2    2    0    2    0    0    0
494
495      ** Automatic occupation of RHF orbitals **
496
497      -- Initial occupation of symmetries is determined from diagonal of H1 matrix.
498      -- Initial occupation of symmetries is :
499@    Occupied SCF orbitals               3 |    0    1    1    0    1    0    0    0
500
501     Maximum number of Fock   iterations      0
502     Maximum number of DIIS   iterations      0
503     Maximum number of QC-SCF iterations     60
504     Threshold for SCF convergence     1.00D-12
505
506
507 Changes of defaults for CC:
508 ---------------------------
509
510
511 -Iterative triple excitations included
512 -Linear response properties calculated
513
514
515
516        SIRIUS QC-HF optimization (SIROPT)
517 ================================================
518
519
520   <<< OUTPUT FROM SIRCNO >>>    Keyword = ONLYFD
521
522     (Precalculated two-electron integrals are transformed to P-supermatrix elements.
523      Threshold for discarding integrals :  1.00D-12 )
524
525
526 <<< MACRO ITERATION  1 >>>
527 --------------------------
528
529 Total MCSCF energy       :           -11.202588104231971  (MACRO    1)
530
531 - Nuclear repulsion      :             0.000000000000000
532 - Inactive energy        :           -11.202588104231971
533 - Active energy          :             0.000000000000000
534
535 Norm of total gradient   :             2.925557607659
536 -    of CI gradient      :             0.000000000000
537 -    of orbital gradient :             2.925557607659
538      Virial theorem: -V/T =      1.630989
539@      MULPOP C       0.00;
540
541 Residual norm when dim(red L) =   2
542 NEO root     CSF        orbital          total
543    1     0.00000000     0.00000000     0.00000000 converged
544
545 (NEONEX) NEO vector is converged.
546
547   <<< OUTPUT FROM SIRCNO >>>    Keyword = FD+NO
548
549
550
551 <<< MACRO ITERATION  2 >>>
552 --------------------------
553
554 Total MCSCF energy       :           -12.666589373848407  (MACRO    2)
555
556 - Nuclear repulsion      :             0.000000000000000
557 - Inactive energy        :           -12.666589373848407
558 - Active energy          :             0.000000000000000
559
560 Norm of total gradient   :             0.737219797736
561 -    of CI gradient      :             0.000000000000
562 -    of orbital gradient :             0.737219797736
563      Virial theorem: -V/T =      2.070148
564@      MULPOP C       0.00;
565
566 Residual norm when dim(red L) =   2
567 NEO root     CSF        orbital          total
568    1     0.00000000     0.00000000     0.00000000 converged
569
570 (NEONEX) NEO vector is converged.
571
572   <<< OUTPUT FROM SIRCNO >>>    Keyword = FD+NO
573
574
575
576 <<< MACRO ITERATION  3 >>>
577 --------------------------
578
579 Total MCSCF energy       :           -12.706304076850222  (MACRO    3)
580
581 - Nuclear repulsion      :             0.000000000000000
582 - Inactive energy        :           -12.706304076850222
583 - Active energy          :             0.000000000000000
584
585 Norm of total gradient   :             0.039572002949
586 -    of CI gradient      :             0.000000000000
587 -    of orbital gradient :             0.039572002949
588      Virial theorem: -V/T =      2.189817
589@      MULPOP C      -0.00;
590
591 Residual norm when dim(red L) =   2
592 NEO root     CSF        orbital          total
593    1     0.00000000     0.00000000     0.00000000 converged
594
595 (NEONEX) NEO vector is converged.
596
597   <<< OUTPUT FROM SIRCNO >>>    Keyword = FD+NO
598
599
600
601 <<< MACRO ITERATION  4 >>>
602 --------------------------
603
604 Total MCSCF energy       :           -12.706411938684106  (MACRO    4)
605
606 - Nuclear repulsion      :             0.000000000000000
607 - Inactive energy        :           -12.706411938684106
608 - Active energy          :             0.000000000000000
609
610 Norm of total gradient   :             0.000072746071
611 -    of CI gradient      :             0.000000000000
612 -    of orbital gradient :             0.000072746071
613      Virial theorem: -V/T =      2.183575
614@      MULPOP C      -0.00;
615
616 Residual norm when dim(red L) =   2
617 NEO root     CSF        orbital          total
618    1     0.00000000     0.00000000     0.00000000 converged
619
620 (NEONEX) NEO vector is converged.
621
622   <<< OUTPUT FROM SIRCNO >>>    Keyword = FD+NO
623
624
625
626 <<< MACRO ITERATION  5 >>>
627 --------------------------
628
629 Total MCSCF energy       :           -12.706411939049516  (MACRO    5)
630
631 - Nuclear repulsion      :             0.000000000000000
632 - Inactive energy        :           -12.706411939049516
633 - Active energy          :             0.000000000000000
634
635 Norm of total gradient   :             0.000000000252
636 -    of CI gradient      :             0.000000000000
637 -    of orbital gradient :             0.000000000252
638      Virial theorem: -V/T =      2.183563
639@      MULPOP C       0.00;
640
641 (SIRSTP) Close to convergence, ratio set to one.
642 Energy difference; actual and predicted:   -3.65411D-10   -3.65413D-10
643
644 (SIRSTP) Close to convergence, ratio set to one.
645 Energy difference; actual and predicted:    9.99993D-01
646 Close to convergence, ratio set to one.
647
648 Residual norm when dim(red L) =   2
649 NEO root     CSF        orbital          total
650    1     0.00000000     0.00000000     0.00000000 converged
651
652 (NEONEX) NEO vector is converged.
653
654   <<< OUTPUT FROM SIRCNO >>>    Keyword = FD+NO
655
656
657
658 <<< MACRO ITERATION  6 >>>
659 --------------------------
660
661 Total MCSCF energy       :           -12.706411939049520  (MACRO    6)
662
663 - Nuclear repulsion      :             0.000000000000000
664 - Inactive energy        :           -12.706411939049520
665 - Active energy          :             0.000000000000000
666
667 Norm of total gradient   :             0.000000000000
668 -    of CI gradient      :             0.000000000000
669 -    of orbital gradient :             0.000000000000
670      Virial theorem: -V/T =      2.183563
671@      MULPOP C      -0.00;
672
673 (SIRSTP) Close to convergence, ratio set to one.
674 Energy difference; actual and predicted:   -3.55271D-15   -4.36773D-21
675
676 (SIRSTP) Close to convergence, ratio set to one.
677 Energy difference; actual and predicted:    8.13400D+05
678 Close to convergence, ratio set to one.
679
680 *** Optimization control: QC-HF converged ***
681     Number of macro iterations used            6
682     Number of micro iterations used            5
683     Total number of CPU seconds used         0.00
684
685
686 *** SCF orbital energy analysis ***
687
688 Only the five lowest virtual orbital energies printed in each symmetry.
689
690 Number of electrons :    6
691 Orbital occupations :    0    1    1    0    1    0    0    0
692
693 Sym       Hartree-Fock orbital energies
694
695  2     -0.59853018     0.53749590
696
697  3     -0.59853018     0.53749590
698
699  5     -0.59853018     0.53749590
700
701    E(LUMO) :     0.53749590 au (symmetry 2)
702  - E(HOMO) :    -0.59853018 au (symmetry 3)
703  ------------------------------------------
704    gap     :     1.13602608 au
705
706 >>>> CPU and wall time for SCF :       0.005       0.004
707
708
709                     .----------------------------------------.
710                     | >>> SIRIUS OPTIMIZATION STATISTICS <<< |
711                     `----------------------------------------'
712
713
714
715     Date and time (Linux)  : Sun Sep  8 20:42:43 2013
716     Host name              : lpqlx131.ups-tlse.fr
717
718
719  ITER ITMIC     EMCSCF           GRDNRM        RATIO      STPLNG
720 ---------------------------------------------------------------------
721    1    1    -11.202588104232   2.9255576077  0.000000   0.6946243788
722    2    1    -12.666589373848   0.7372197977  0.708439   0.1119566232
723    3    1    -12.706304076850   0.0395720029  0.961871   0.0054447735
724    4    1    -12.706411938684   0.0000727461  1.001220   0.0000100461
725    5    1    -12.706411939050   0.0000000003  1.000000   0.0000000000
726    6    0    -12.706411939050   0.0000000000  1.000000   0.0000000000
727
728
729  ITER  INDGCM  GCIMAX      GCINRM     INDGOM  GOBMAX      GOBNRM      GRDNRM
730 ------------------------------------------------------------------------------
731    1      0    0.000000    0.000000      3    1.689071    2.925558    2.925558
732    2      0    0.000000    0.000000      1    0.425634    0.737220    0.737220
733    3      0    0.000000    0.000000      3   -0.022847    0.039572    0.039572
734    4      0    0.000000    0.000000      3   -0.000042    0.000073    0.000073
735    5      0    0.000000    0.000000      3   -0.000000    0.000000    0.000000
736    6      0    0.000000    0.000000      1    0.000000    0.000000    0.000000
737
738
739  ITER ITMIC NCLIN NOLIN   TIMMAC    TIMITR    TIMMIC    TIMLIN    TIMMIC/ITMIC
740 ------------------------------------------------------------------------------
741
742    1     1     0     1      0.00      0.00      0.00      0.00      0.00
743    2     1     0     1      0.00      0.00      0.00      0.00      0.00
744    3     1     0     1      0.00      0.00      0.00      0.00      0.00
745    4     1     0     1      0.00      0.00      0.00      0.00      0.00
746    5     1     0     1      0.00      0.00      0.00      0.00      0.00
747    6     0     0     0      0.00      0.00      0.00      0.00
748
749
750 ITER         EMY                 EACTIV              EMCSCF
751
752    1    -11.202588104232      0.000000000000    -11.202588104232
753    2    -12.666589373848      0.000000000000    -12.666589373848
754    3    -12.706304076850      0.000000000000    -12.706304076850
755    4    -12.706411938684      0.000000000000    -12.706411938684
756    5    -12.706411939050      0.000000000000    -12.706411939050
757    6    -12.706411939050      0.000000000000    -12.706411939050
758
759
760 ITER         DEPRED              DEACT               RATIO
761
762    1      0.000000000000      0.000000000000      0.000000000000
763    2     -2.066517830161     -1.464001269616      0.708438731207
764    3     -0.041289010320     -0.039714703002      0.961871032851
765    4     -0.000107730424     -0.000107861834      1.001219805034
766    5     -0.000000000365     -0.000000000365      1.000000000000
767    6     -0.000000000000     -0.000000000000      1.000000000000
768
769
770 ITER    BETA           GAMMA             STPLNG              RTRUST
771
772    1      1.46376190  1.00000000      0.694624378830      0.700000000000
773    2      0.20000000  1.00000000      0.111956623223      0.700000000000
774    3      0.20000000  1.00000000      0.005444773476      0.700000000000
775    4      0.20000000  1.00000000      0.000010046135      0.700000000000
776    5      0.20000000  1.00000000      0.000000000000      0.700000000000
777    6      0.00000000  0.00000000      0.000000000000      0.700000000000
778
779
780 Reduced L root no.  1
781 ITER         EVAL              EVEC(1)           EVEC(2)           EVEC(3)
782 ----------------------------------------------------------------------------
783    1   -4.354111588762   -0.701204608359    0.712960095108    0.712960095108
784    2   -0.003301465565    0.999749408516   -0.022385713569    0.022385713569
785    3   -0.000008618424    0.999999407089   -0.001088954050    0.001088954050
786    4   -0.000000000029    0.999999999998   -0.000002009254    0.000002009254
787    5   -0.000000000000    1.000000000000   -0.000000000007    0.000000000007
788    6    0.000000000000    0.000000000000    0.000000000000    0.000000000000
789
790
791                       .-----------------------------------.
792                       | >>> Final results from SIRIUS <<< |
793                       `-----------------------------------'
794
795
796@    Spin multiplicity:           1
797@    Spatial symmetry:            1
798@    Total charge of molecule:    0
799
800@    Final HF energy:             -12.706411939050
801@    Nuclear repulsion:             0.000000000000
802@    Electronic energy:           -12.706411939050
803
804@    Final gradient norm:           0.000000000000
805
806
807     Date and time (Linux)  : Sun Sep  8 20:42:43 2013
808     Host name              : lpqlx131.ups-tlse.fr
809
810 (Only coefficients >0.0100 are printed.)
811
812 Molecular orbitals for symmetry species  2
813 ------------------------------------------
814
815    Orbital         1        2
816   1 C   :2px    0.5798  -1.1969
817   2 C   :2px    0.5178   1.2250
818
819 Molecular orbitals for symmetry species  3
820 ------------------------------------------
821
822    Orbital         1        2
823   1 C   :2py    0.5798  -1.1969
824   2 C   :2py    0.5178   1.2250
825
826 Molecular orbitals for symmetry species  5
827 ------------------------------------------
828
829    Orbital         1        2
830   1 C   :2pz    0.5798  -1.1969
831   2 C   :2pz    0.5178   1.2250
832
833
834
835 >>>> Total CPU  time used in SIRIUS :      0.01 seconds
836 >>>> Total wall time used in SIRIUS :      0.01 seconds
837
838
839     Date and time (Linux)  : Sun Sep  8 20:42:43 2013
840     Host name              : lpqlx131.ups-tlse.fr
841
842
843                     .---------------------------------------.
844                     | End of Wave Function Section (SIRIUS) |
845                     `---------------------------------------'
846
847
848
849                    .------------------------------------------.
850                    | Starting in Coupled Cluster Section (CC) |
851                    `------------------------------------------'
852
853
854
855 *******************************************************************************
856 *******************************************************************************
857 *                                                                             *
858 *                                                                             *
859 *                    START OF COUPLED CLUSTER CALCULATION                     *
860 *                                                                             *
861 *                                                                             *
862 *******************************************************************************
863 *******************************************************************************
864
865
866
867 CCR12 ANSATZ =   0
868
869 CCR12 APPROX =   0
870
871
872
873 *******************************************************************
874 *                                                                 *
875 *<<<<<<<<<<                                             >>>>>>>>>>*
876 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM  >>>>>>>>>>*
877 *<<<<<<<<<<                                             >>>>>>>>>>*
878 *                                                                 *
879 *******************************************************************
880
881
882             The Direct Coupled Cluster Energy Program
883             -----------------------------------------
884
885
886          Number of t1 amplitudes                 :         3
887          Number of t2 amplitudes                 :        15
888          Total number of amplitudes in ccsd      :        18
889
890 Iter.  1: Coupled cluster MP2   energy :     -12.7830171936085382
891 Iter.  1: Coupled cluster CC3   energy :     -12.7824726405609344
892 Iter.  2: Coupled cluster CC3   energy :     -12.7837062569350266
893 Iter.  3: Coupled cluster CC3   energy :     -12.7839359527614977
894 Iter.  4: Coupled cluster CC3   energy :     -12.7839688983654547
895 Iter.  5: Coupled cluster CC3   energy :     -12.7839653262203576
896 Iter.  6: Coupled cluster CC3   energy :     -12.7839653259962862
897 Iter.  7: Coupled cluster CC3   energy :     -12.7839653222398510
898 Iter.  8: Coupled cluster CC3   energy :     -12.7839653361185306
899 Iter.  9: Coupled cluster CC3   energy :     -12.7839653355562923
900 Iter. 10: Coupled cluster CC3   energy :     -12.7839653357462417
901 Iter. 11: Coupled cluster CC3   energy :     -12.7839653357625913
902 Iter. 12: Coupled cluster CC3   energy :     -12.7839653357664655
903 Iter. 13: Coupled cluster CC3   energy :     -12.7839653357665188
904
905 CC3   energy converged to within   0.10D-11 is          -12.783965335767
906 Final 2-norm of the CC vector function:  4.79155258D-12
907
908
909
910
911
912             +-------------------------------------------------------+
913             ! Final results from the Coupled Cluster energy program !
914             +-------------------------------------------------------+
915
916
917
918            Total SCF   energy:                   -12.7064119390
919
920            Total MP2   energy:                   -12.7830171936
921
922            Total CC3   energy:                   -12.7839653358
923
924
925
926
927                   +--------------------------------------------+
928                   ! Calculating singlet intermediates for CCLR !
929                   +--------------------------------------------+
930
931
932
933            E-intermediates calculated
934            Fock-intermediate calculated
935            Gamma-intermediate calculated
936            BF-intermediate calculated
937            C-intermediate calculated
938            D-intermediate calculated
939
940
941
942
943 *******************************************************************
944 *                                                                 *
945 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE  >>>>>>>>>>>>>*
946 *                                                                 *
947 *******************************************************************
948
949
950
951                         +-------------------------------+
952                         ! Coupled Cluster model is: CC3 !
953                         +-------------------------------+
954
955 RPA: call cceq_str
956     Start vector generated from gradient
957 RPA: exit cceq_str
958
959
960
961 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<<
962
963    Iter  #Vectors  time (min)   residual
964    --------------------------------------
965      1       1         0.00     0.22E+00
966      2       1         0.00     0.53E-01
967      3       1         0.00     0.55E-02
968      4       1         0.00     0.37E-15
969    --------------------------------------
970    converged in  4 iterations
971    threshold:    0.10E-11
972
973
974         Routine          Time (min)
975         ---------------------------
976         CC_TRDRV            0.00
977         CCRED               0.00
978         CCNEX               0.00
979         ---------------------------
980         Total time          0.00
981
982
983 >>>> Total CPU  time used in CCEQ_SOLV:   0.01 seconds
984 >>>> Total wall time used in CCEQ_SOLV:   0.07 seconds
985
986
987 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<
988
989 There are no amplitudes of symmetry            2 !
990 There are no amplitudes of symmetry            3 !
991 There are no amplitudes of symmetry            5 !
992 There are no amplitudes of symmetry            8 !
993
994
995
996   *******************************************************************
997   *                                                                 *
998   *<<<<<<<<   OUTPUT FROM PROPERTY AND SYMMETRY ANALYSIS   >>>>>>>>>*
999   *                                                                 *
1000   *******************************************************************
1001
1002
1003     Prepare CC3 quadratic response calculation.
1004
1005
1006     Prepare CC3 cubic response calculation.
1007
1008
1009
1010                         +-------------------------------+
1011                         ! REQUESTED PROPERTY OPERATORS: !
1012                         +-------------------------------+
1013
1014             Index   Oper. Label  Symmetry  Transp.  PDBS  Atom
1015             --------------------------------------------------
1016                1     HAM0            1        1      T      0
1017                2     XYQUADRU        4        1      F      0
1018             --------------------------------------------------
1019
1020
1021
1022
1023                         +-------------------------------+
1024                         ! REQUESTED EXPECTATION VALUES: !
1025                         +-------------------------------+
1026
1027                       Index   Oper. Label  Symmetry
1028                       -----------------------------
1029                       -----------------------------
1030
1031
1032
1033
1034                       +------------------------------------+
1035                       ! REQUESTED EFFECTIVE FOCK MATRICES: !
1036                       +------------------------------------+
1037
1038                       Index   Oper. Label  Symmetry
1039                       -----------------------------
1040                       -----------------------------
1041
1042
1043
1044
1045                       +-----------------------------------+
1046                       ! REQUESTED FIRST ORDER XI VECTORS: !
1047                       +-----------------------------------+
1048
1049             Index   Oper. Label  relaxed  Sym.     Frequency
1050             --------------------------------------------------
1051                1      XYQUADRU       F     4     -5.000000D-01
1052                2      XYQUADRU       F     4      0.000000D+00
1053                3      XYQUADRU       F     4      5.000000D-01
1054             --------------------------------------------------
1055
1056
1057
1058
1059                        +----------------------------------+
1060                        ! REQUESTED FIRST ORDER T VECTORS: !
1061                        +----------------------------------+
1062
1063             Index   Oper. Label  relaxed  Sym.     Frequency
1064             --------------------------------------------------
1065                1      XYQUADRU       F     4     -5.000000D-01
1066                2      XYQUADRU       F     4      0.000000D+00
1067                3      XYQUADRU       F     4      5.000000D-01
1068             --------------------------------------------------
1069
1070
1071
1072
1073                       +------------------------------------+
1074                       ! REQUESTED FIRST ORDER ETA VECTORS: !
1075                       +------------------------------------+
1076
1077             Index   Oper. Label  relaxed  Sym.     Frequency
1078             --------------------------------------------------
1079                1      XYQUADRU       F     4     -5.000000D-01
1080                2      XYQUADRU       F     4      0.000000D+00
1081                3      XYQUADRU       F     4      5.000000D-01
1082             --------------------------------------------------
1083
1084
1085
1086
1087                      +-------------------------------------+
1088                      ! REQUESTED FIRST ORDER ZETA VECTORS: !
1089                      +-------------------------------------+
1090
1091             Index   Oper. Label  relaxed  Sym.     Frequency
1092             --------------------------------------------------
1093                1      XYQUADRU       F     4     -5.000000D-01
1094                2      XYQUADRU       F     4      0.000000D+00
1095                3      XYQUADRU       F     4      5.000000D-01
1096             --------------------------------------------------
1097
1098
1099
1100
1101    *******************************************************************
1102    *          SOLVING COUPLED CLUSTER RESPONSE EQUATIONS             *
1103    *******************************************************************
1104
1105
1106
1107
1108 +======================================================================+
1109 !                     RHS & ETA VECTORS TO COMPUTE:                    !
1110 +======================================================================+
1111 | TYPE | # VEC. |  NEEDED FOR:                                         |
1112 +----------------------------------------------------------------------+
1113 |  O1  |    3   |  first-order amplitude equations                     |
1114 |  X1  |    3   |  first-order multipliers equations                   |
1115 +======================================================================+
1116
1117
1118
1119 +======================================================================+
1120 !                       LINEAR EQUATIONS TO SOLVE:                     !
1121 +======================================================================+
1122 | TYPE | # VEC. |  EQUATION:                                           |
1123 +----------------------------------------------------------------------+
1124 |  R1  |    3   |  first-order amplitude response                      |
1125 |  L1  |    3   |  first-order multiplier response                     |
1126 +======================================================================+
1127
1128
1129
1130 +======================================================================+
1131 !                F MATRIX TRANSFORMATIONS TO COMPUTE:                  !
1132 +======================================================================+
1133 | TYPE | # VEC. |  TRANSFORMED:                                        |
1134 +----------------------------------------------------------------------+
1135 |  F1  |    3   |  first-order amplitude response (R1) vector          |
1136 +======================================================================+
1137
1138
1139
1140
1141 -------------------------------------------------------------------
1142 |          OUTPUT FROM AMPLITUDE RHS VECTOR SECTION               |
1143 -------------------------------------------------------------------
1144
1145
1146
1147   For the requested  3 1th.-order amplitude rhs vectors "O1 ".
1148         -   0 D matrix transformations
1149         -   0 C matrix transformations
1150         -   0 B matrix transformations
1151         -   0 C{O} matrix transformations
1152         -   0 B{O} matrix transformations
1153         -   0 A{O} matrix transformations
1154         -   3Xi{O} vector calculations
1155   will be performed.
1156
1157
1158 There are no amplitudes of symmetry            2 !
1159 There are no amplitudes of symmetry            3 !
1160 RPA: call cceq_str
1161     R1  start vector nr.  1 of symmetry  4 generated from gradient
1162 RPA: exit cceq_str
1163
1164
1165
1166 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<<
1167
1168    Iter  #Vectors  time (min)   residual
1169    --------------------------------------
1170      1       1         0.00     0.13E+00
1171      2       1         0.00     0.45E-02
1172      3       1         0.00     0.33E-03
1173      4       1         0.00     0.14E-05
1174      5       1         0.00     0.11E-15
1175    --------------------------------------
1176    converged in  5 iterations
1177    threshold:    0.10E-11
1178
1179
1180         Routine          Time (min)
1181         ---------------------------
1182         CC_TRDRV            0.00
1183         CCRED               0.00
1184         CCNEX               0.00
1185         ---------------------------
1186         Total time          0.00
1187
1188
1189 >>>> Total CPU  time used in CCEQ_SOLV:   0.01 seconds
1190 >>>> Total wall time used in CCEQ_SOLV:   0.07 seconds
1191
1192
1193 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<
1194
1195 RPA: call cceq_str
1196     R1  start vector nr.  2 of symmetry  4 generated from gradient
1197 RPA: exit cceq_str
1198
1199
1200
1201 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<<
1202
1203    Iter  #Vectors  time (min)   residual
1204    --------------------------------------
1205      1       1         0.00     0.13E+00
1206      2       1         0.00     0.54E-02
1207      3       1         0.00     0.52E-03
1208      4       1         0.00     0.29E-05
1209      5       1         0.00     0.69E-16
1210    --------------------------------------
1211    converged in  5 iterations
1212    threshold:    0.10E-11
1213
1214
1215         Routine          Time (min)
1216         ---------------------------
1217         CC_TRDRV            0.00
1218         CCRED               0.00
1219         CCNEX               0.00
1220         ---------------------------
1221         Total time          0.00
1222
1223
1224 >>>> Total CPU  time used in CCEQ_SOLV:   0.01 seconds
1225 >>>> Total wall time used in CCEQ_SOLV:   0.12 seconds
1226
1227
1228 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<
1229
1230 RPA: call cceq_str
1231     R1  start vector nr.  3 of symmetry  4 generated from gradient
1232 RPA: exit cceq_str
1233
1234
1235
1236 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<<
1237
1238    Iter  #Vectors  time (min)   residual
1239    --------------------------------------
1240      1       1         0.00     0.12E+00
1241      2       1         0.00     0.66E-02
1242      3       1         0.00     0.94E-03
1243      4       1         0.00     0.86E-05
1244      5       1         0.00     0.26E-15
1245    --------------------------------------
1246    converged in  5 iterations
1247    threshold:    0.10E-11
1248
1249
1250         Routine          Time (min)
1251         ---------------------------
1252         CC_TRDRV            0.00
1253         CCRED               0.00
1254         CCNEX               0.00
1255         ---------------------------
1256         Total time          0.00
1257
1258
1259 >>>> Total CPU  time used in CCEQ_SOLV:   0.01 seconds
1260 >>>> Total wall time used in CCEQ_SOLV:   0.08 seconds
1261
1262
1263 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<
1264
1265 There are no amplitudes of symmetry            5 !
1266 There are no amplitudes of symmetry            8 !
1267 There are no amplitudes of symmetry            2 !
1268 There are no amplitudes of symmetry            3 !
1269 RPA: call cceq_str
1270     L1  start vector nr.  1 of symmetry  4 generated from gradient
1271 RPA: exit cceq_str
1272
1273
1274
1275 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<<
1276
1277    Iter  #Vectors  time (min)   residual
1278    --------------------------------------
1279      1       1         0.00     0.14E+00
1280      2       1         0.00     0.14E-01
1281      3       1         0.00     0.87E-03
1282      4       1         0.00     0.61E-05
1283      5       1         0.00     0.29E-15
1284    --------------------------------------
1285    converged in  5 iterations
1286    threshold:    0.10E-11
1287
1288
1289         Routine          Time (min)
1290         ---------------------------
1291         CC_TRDRV            0.00
1292         CCRED               0.00
1293         CCNEX               0.00
1294         ---------------------------
1295         Total time          0.00
1296
1297
1298 >>>> Total CPU  time used in CCEQ_SOLV:   0.01 seconds
1299 >>>> Total wall time used in CCEQ_SOLV:   0.14 seconds
1300
1301
1302 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<
1303
1304 RPA: call cceq_str
1305     L1  start vector nr.  2 of symmetry  4 generated from gradient
1306 RPA: exit cceq_str
1307
1308
1309
1310 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<<
1311
1312    Iter  #Vectors  time (min)   residual
1313    --------------------------------------
1314      1       1         0.00     0.15E+00
1315      2       1         0.00     0.12E-01
1316      3       1         0.00     0.48E-03
1317      4       1         0.00     0.19E-05
1318      5       1         0.00     0.18E-15
1319    --------------------------------------
1320    converged in  5 iterations
1321    threshold:    0.10E-11
1322
1323
1324         Routine          Time (min)
1325         ---------------------------
1326         CC_TRDRV            0.00
1327         CCRED               0.00
1328         CCNEX               0.00
1329         ---------------------------
1330         Total time          0.00
1331
1332
1333 >>>> Total CPU  time used in CCEQ_SOLV:   0.01 seconds
1334 >>>> Total wall time used in CCEQ_SOLV:   0.14 seconds
1335
1336
1337 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<
1338
1339 RPA: call cceq_str
1340     L1  start vector nr.  3 of symmetry  4 generated from gradient
1341 RPA: exit cceq_str
1342
1343
1344
1345 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<<
1346
1347    Iter  #Vectors  time (min)   residual
1348    --------------------------------------
1349      1       1         0.00     0.16E+00
1350      2       1         0.00     0.10E-01
1351      3       1         0.00     0.30E-03
1352      4       1         0.00     0.61E-06
1353      5       1         0.00     0.38E-16
1354    --------------------------------------
1355    converged in  5 iterations
1356    threshold:    0.10E-11
1357
1358
1359         Routine          Time (min)
1360         ---------------------------
1361         CC_TRDRV            0.00
1362         CCRED               0.00
1363         CCNEX               0.00
1364         ---------------------------
1365         Total time          0.00
1366
1367
1368 >>>> Total CPU  time used in CCEQ_SOLV:   0.01 seconds
1369 >>>> Total wall time used in CCEQ_SOLV:   0.13 seconds
1370
1371
1372 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<
1373
1374 There are no amplitudes of symmetry            5 !
1375 There are no amplitudes of symmetry            8 !
1376
1377 Solution of CC response equations completed.
1378
1379
1380 *******************************************************************
1381 *                                                                 *
1382 *<<<<<<<<  OUTPUT FROM COUPLED CLUSTER LINEAR RESPONSE   >>>>>>>>>*
1383 *                                                                 *
1384 *<<<<<<<<     CALCULATION OF SECOND ORDER PROPERTIES     >>>>>>>>>*
1385 *                                                                 *
1386 *******************************************************************
1387
1388
1389
1390
1391   For the requested  2 second-order properties
1392         -   0 F matrix transformations with R1 vectors
1393         -   0 J matrix transformations with L1 vectors
1394         -   1 ETA and XKSI vector calculations
1395         -   0 X intermediate calculations
1396         -   0 2. order reortho./relax. contributions
1397   will be performed.
1398
1399
1400
1401>>> Time used for    1 O1/X1 vector calculation:        0.01 seconds.
1402
1403>>> Total time for   2 linear response function:        0.01 seconds.
1404
1405
1406             +--------------------------------------------------------+
1407             !      FINAL CC3 RESULTS FOR THE SECOND-ORDER PROPERTIES !
1408             +--------------------------------------------------------+
1409
1410
1411  A operator                  B operator                     property
1412------------------------------------------------------------------------
1413
1414 XYQUADRU (unrel.) -0.0000   XYQUADRU (unrel.)  0.0000     0.52547754
1415                   -0.5000                      0.5000     0.95888344
1416------------------------------------------------------------------------
1417
1418
1419
1420 requested model not yet implemented
1421
1422
1423 *******************************************************************************
1424 *******************************************************************************
1425 *                                                                             *
1426 *                                                                             *
1427 *                   SUMMARY OF COUPLED CLUSTER CALCULATION                    *
1428 *                                                                             *
1429 *                                                                             *
1430 *******************************************************************************
1431 *******************************************************************************
1432
1433
1434
1435            Total SCF   energy:                   -12.7064119390
1436            Total MP2   energy:                   -12.7830171936
1437            Total CC3   energy:                   -12.7839653358
1438
1439
1440 *******************************************************************************
1441 *******************************************************************************
1442 *                                                                             *
1443 *                                                                             *
1444 *                      END OF COUPLED CLUSTER CALCULATION                     *
1445 *                                                                             *
1446 *                                                                             *
1447 *******************************************************************************
1448 *******************************************************************************
1449
1450
1451 >>>> CPU and wall time for CC :       0.147       1.134
1452
1453
1454     Date and time (Linux)  : Sun Sep  8 20:42:44 2013
1455     Host name              : lpqlx131.ups-tlse.fr
1456
1457
1458                      .-------------------------------------.
1459                      | End of Coupled Cluster Section (CC) |
1460                      `-------------------------------------'
1461
1462 >>>> Total CPU  time used in DALTON:   0.16 seconds
1463 >>>> Total wall time used in DALTON:   1.15 seconds
1464
1465
1466     Date and time (Linux)  : Sun Sep  8 20:42:44 2013
1467     Host name              : lpqlx131.ups-tlse.fr
1468