1
2
3     ************************************************************************
4     *************** Dalton - An Electronic Structure Program ***************
5     ************************************************************************
6
7    This is output from DALTON (Release Dalton2013 patch 0)
8   ----------------------------------------------------------------------------
9    NOTE:
10
11    Dalton is an experimental code for the evaluation of molecular
12    properties using (MC)SCF, DFT, CI, and CC wave functions.
13    The authors accept no responsibility for the performance of
14    the code or for the correctness of the results.
15
16    The code (in whole or part) is provided under a licence and
17    is not to be reproduced for further distribution without
18    the written permission of the authors or their representatives.
19
20    See the home page "http://daltonprogram.org" for further information.
21
22    If results obtained with this code are published,
23    the appropriate citations would be both of:
24
25       K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast,
26       L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani,
27       P. Dahle, E. K. Dalskov, U. Ekstroem, T. Enevoldsen,
28       J. J. Eriksen, P. Ettenhuber, B. Fernandez, L. Ferrighi,
29       H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Haettig,
30       H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema,
31       E. Hjertenaes, S. Hoest, I.-M. Hoeyvik, M. F. Iozzi,
32       B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Joergensen,
33       J. Kauczor, S. Kirpekar, T. Kjaergaard, W. Klopper,
34       S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp,
35       K. Kristensen, A. Ligabue, O. B. Lutnaes, J. I. Melo,
36       K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen,
37       P. Norman, J. Olsen, J. M. H. Olsen, A. Osted,
38       M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi,
39       S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin,
40       P. Salek, C. C. M. Samson, A. Sanchez de Meras, T. Saue,
41       S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov,
42       A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor,
43       A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen,
44       L. Thoegersen, O. Vahtras, M. A. Watson, D. J. D. Wilson,
45       M. Ziolkowski and H. Agren.
46       The Dalton quantum chemistry program system.
47       WIREs Comput. Mol. Sci. 2013. doi: 10.1002/wcms.1172
48
49    and
50
51       Dalton, a Molecular Electronic Structure Program,
52       Release DALTON2013.0 (2013), see http://daltonprogram.org
53   ----------------------------------------------------------------------------
54
55    Authors in alphabetical order (major contribution(s) in parenthesis):
56
57  Kestutis Aidas,           Vilnius University,           Lithuania   (QM/MM)
58  Celestino Angeli,         University of Ferrara,        Italy       (NEVPT2)
59  Keld L. Bak,              UNI-C,                        Denmark     (AOSOPPA, non-adiabatic coupling, magnetic properties)
60  Vebjoern Bakken,          University of Oslo,           Norway      (DALTON; geometry optimizer, symmetry detection)
61  Radovan Bast,             KTH Stockholm                 Sweden      (DALTON installation and execution frameworks)
62  Linus Boman,              NTNU,                         Norway      (Cholesky decomposition and subsystems)
63  Ove Christiansen,         Aarhus University,            Denmark     (CC module)
64  Renzo Cimiraglia,         University of Ferrara,        Italy       (NEVPT2)
65  Sonia Coriani,            University of Trieste,        Italy       (CC module, MCD in RESPONS)
66  Paal Dahle,               University of Oslo,           Norway      (Parallelization)
67  Erik K. Dalskov,          UNI-C,                        Denmark     (SOPPA)
68  Thomas Enevoldsen,        Univ. of Southern Denmark,    Denmark     (SOPPA)
69  Janus J. Eriksen,         Aarhus University,            Denmark     (PE-MP2/SOPPA, TDA)
70  Berta Fernandez,          U. of Santiago de Compostela, Spain       (doublet spin, ESR in RESPONS)
71  Lara Ferrighi,            Aarhus University,            Denmark     (PCM Cubic response)
72  Heike Fliegl,             University of Oslo,           Norway      (CCSD(R12))
73  Luca Frediani,            UiT The Arctic U. of Norway,  Norway      (PCM)
74  Bin Gao,                  UiT The Arctic U. of Norway,  Norway      (Gen1Int library)
75  Christof Haettig,         Ruhr-University Bochum,       Germany     (CC module)
76  Kasper Hald,              Aarhus University,            Denmark     (CC module)
77  Asger Halkier,            Aarhus University,            Denmark     (CC module)
78  Hanne Heiberg,            University of Oslo,           Norway      (geometry analysis, selected one-electron integrals)
79  Trygve Helgaker,          University of Oslo,           Norway      (DALTON; ABACUS, ERI, DFT modules, London, and much more)
80  Alf Christian Hennum,     University of Oslo,           Norway      (Parity violation)
81  Hinne Hettema,            University of Auckland,       New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry)
82  Eirik Hjertenaes,         NTNU,                         Norway      (Cholesky decomposition)
83  Maria Francesca Iozzi,    University of Oslo,           Norway      (RPA)
84  Brano Jansik              Technical Univ. of Ostrava    Czech Rep.  (DFT cubic response)
85  Hans Joergen Aa. Jensen,  Univ. of Southern Denmark,    Denmark     (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more)
86  Dan Jonsson,              UiT The Arctic U. of Norway,  Norway      (cubic response in RESPONS module)
87  Poul Joergensen,          Aarhus University,            Denmark     (RESPONS, ABACUS, and CC modules)
88  Joanna Kauczor,           Linkoeping University,        Sweden      (Complex polarization propagator (CPP) module)
89  Sheela Kirpekar,          Univ. of Southern Denmark,    Denmark     (Mass-velocity & Darwin integrals)
90  Wim Klopper,              KIT Karlsruhe,                Germany     (R12 code in CC, SIRIUS, and ABACUS modules)
91  Stefan Knecht,            ETH Zurich,                   Switzerland (Parallel CI and MCSCF)
92  Rika Kobayashi,           Australian National Univ.,    Australia   (DIIS in CC, London in MCSCF)
93  Henrik Koch,              NTNU,                         Norway      (CC module, Cholesky decomposition)
94  Jacob Kongsted,           Univ. of Southern Denmark,    Denmark     (Polarizable embedding, QM/MM)
95  Andrea Ligabue,           University of Modena,         Italy       (CTOCD, AOSOPPA)
96  Ola B. Lutnaes,           University of Oslo,           Norway      (DFT Hessian)
97  Juan I. Melo,             University of Buenos Aires,   Argentina   (LRESC, Relativistic Effects on NMR Shieldings)
98  Kurt V. Mikkelsen,        University of Copenhagen,     Denmark     (MC-SCRF and QM/MM)
99  Rolf H. Myhre,            NTNU,                         Norway      (Cholesky, subsystems and ECC2)
100  Christian Neiss,          Univ. Erlangen-Nuernberg,     Germany     (CCSD(R12))
101  Christian B. Nielsen,     University of Copenhagen,     Denmark     (QM/MM)
102  Patrick Norman,           Linkoeping University,        Sweden      (Cubic response and complex response in RESPONS)
103  Jeppe Olsen,              Aarhus University,            Denmark     (SIRIUS CI/density modules)
104  Jogvan Magnus H. Olsen,   Univ. of Southern Denmark,    Denmark     (Polarizable embedding, PE library, QM/MM)
105  Anders Osted,             Copenhagen University,        Denmark     (QM/MM)
106  Martin J. Packer,         University of Sheffield,      UK          (SOPPA)
107  Filip Pawlowski,          Kazimierz Wielki University   Poland      (CC3)
108  Thomas B. Pedersen,       University of Oslo,           Norway      (Cholesky decomposition)
109  Patricio F. Provasi,      University of Northeastern,   Argentina   (Analysis of coupling constants in localized orbitals)
110  Zilvinas Rinkevicius,     KTH Stockholm,                Sweden      (open-shell DFT, ESR)
111  Elias Rudberg,            KTH Stockholm,                Sweden      (DFT grid and basis info)
112  Torgeir A. Ruden,         University of Oslo,           Norway      (Numerical derivatives in ABACUS)
113  Kenneth Ruud,             UiT The Arctic U. of Norway,  Norway      (DALTON; ABACUS magnetic properties and  much more)
114  Pawel Salek,              KTH Stockholm,                Sweden      (DALTON; DFT code)
115  Claire C. M. Samson       University of Karlsruhe       Germany     (Boys localization, r12 integrals in ERI)
116  Alfredo Sanchez de Meras, University of Valencia,       Spain       (CC module, Cholesky decomposition)
117  Trond Saue,               Paul Sabatier University,     France      (direct Fock matrix construction)
118  Stephan P. A. Sauer,      University of Copenhagen,     Denmark     (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors)
119  Bernd Schimmelpfennig,    Forschungszentrum Karlsruhe,  Germany     (AMFI module)
120  Kristian Sneskov,         Aarhus University,            Denmark     (QM/MM, PE-CC)
121  Arnfinn H. Steindal,      UiT The Arctic U. of Norway,  Norway      (parallel QM/MM)
122  K. O. Sylvester-Hvid,     University of Copenhagen,     Denmark     (MC-SCRF)
123  Peter R. Taylor,          VLSCI/Univ. of Melbourne,     Australia   (Symmetry handling ABACUS, integral transformation)
124  Andrew M. Teale,          University of Nottingham,     England     (DFT-AC, DFT-D)
125  David P. Tew,             University of Bristol,        England     (CCSD(R12))
126  Olav Vahtras,             KTH Stockholm,                Sweden      (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT)
127  David J. Wilson,          La Trobe University,          Australia   (DFT Hessian and DFT magnetizabilities)
128  Hans Agren,               KTH Stockholm,                Sweden      (SIRIUS module, RESPONS, MC-SCRF solvation model)
129 --------------------------------------------------------------------------------
130
131     Date and time (Linux)  : Sun Sep  8 20:42:48 2013
132     Host name              : lpqlx131.ups-tlse.fr
133
134 * Work memory size             :    64000000 =  488.28 megabytes.
135
136 * Directories for basis set searches:
137   1) /home/bast/DALTON-2013.0-Source/build/test_cc3_HF_631G_pol
138   2) /home/bast/DALTON-2013.0-Source/build/basis
139
140
141Compilation information
142-----------------------
143
144 Who compiled             | bast
145 Host                     | lpqlx131.ups-tlse.fr
146 System                   | Linux-3.8.5-201.fc18.x86_64
147 CMake generator          | Unix Makefiles
148 Processor                | x86_64
149 64-bit integers          | OFF
150 MPI                      | OFF
151 Fortran compiler         | /usr/bin/gfortran
152 Fortran compiler version | GNU Fortran (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8)
153 C compiler               | /usr/bin/gcc
154 C compiler version       | gcc (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8)
155 C++ compiler             | /usr/bin/g++
156 C++ compiler version     | g++ (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8)
157 Static linking           | OFF
158 Last Git revision        | f34203295a86316e27f9e7b44f9b6769c4a046c0
159 Configuration time       | 2013-09-08 20:31:27.952056
160
161
162   Content of the .dal input file
163 ----------------------------------
164
165**DALTON
166.RUN WAVE FUNCTIONS
167**INTEGRAL
168.DIPLEN
169.THETA
170**WAVE FUNCTION
171.CC
172*SCF INPUT
173.THRESH
174 1.0D-12
175.NODIIS
176*ORBITAL INPUT
177.NOSUPSYM
178.MOSTART
179.H1DIAG
180*CC INP
181.CC3
182.PRINT
183 1
184.THRENR
1851.0D-12
186.THRLEQ
1871.0D-12
188.MAX IT
189 100
190*CCLR
191.OPERATOR
192YDIPLEN YDIPLEN
193.FREQUE
194 2
1950.00 0.50
196**END OF DALTON
197
198
199   Content of the .mol file
200 ----------------------------
201
202BASIS
2036-31G
204CC3 polarizability
205HF molecule
206    2    2  X  Y  Z   1.00D-15
207        9.0   1    2    1    1
208F     0.0000000000000000   0.000000000   0.08729478
209        1.0   1    1    1
210H     0.0000000000000000   0.000000000  -1.64558444
211
212
213       *******************************************************************
214       *********** Output from DALTON general input processing ***********
215       *******************************************************************
216
217 --------------------------------------------------------------------------------
218   Overall default print level:    0
219   Print level for DALTON.STAT:    1
220
221    HERMIT 1- and 2-electron integral sections will be executed
222    "Old" integral transformation used (limited to max 255 basis functions)
223    Wave function sections will be executed (SIRIUS module)
224 --------------------------------------------------------------------------------
225
226
227   ****************************************************************************
228   *************** Output of molecule and basis set information ***************
229   ****************************************************************************
230
231
232    The two title cards from your ".mol" input:
233    ------------------------------------------------------------------------
234 1: CC3 polarizability
235 2: HF molecule
236    ------------------------------------------------------------------------
237
238  Atomic type no.    1
239  --------------------
240  Nuclear charge:   9.00000
241  Number of symmetry independent centers:    1
242  Number of basis sets to read;    1
243  Basis set file used for this atomic type with Z =   9 :
244     "/home/bast/DALTON-2013.0-Source/build/basis/6-31G"
245
246  Info about the basis set file: your basis has no documentation.
247  Basis set: 6-31G
248
249  Atomic type no.    2
250  --------------------
251  Nuclear charge:   1.00000
252  Number of symmetry independent centers:    1
253  Number of basis sets to read;    1
254  Basis set file used for this atomic type with Z =   1 :
255     "/home/bast/DALTON-2013.0-Source/build/basis/6-31G"
256
257  Info about the basis set file: your basis has no documentation.
258  Basis set: 6-31G
259
260
261                         SYMGRP: Point group information
262                         -------------------------------
263
264Point group: C2v
265
266   * The point group was generated by:
267
268      Reflection in the yz-plane
269      Reflection in the xz-plane
270
271   * Group multiplication table
272
273        |  E   C2z  Oxz  Oyz
274   -----+--------------------
275     E  |  E   C2z  Oxz  Oyz
276    C2z | C2z   E   Oyz  Oxz
277    Oxz | Oxz  Oyz   E   C2z
278    Oyz | Oyz  Oxz  C2z   E
279
280   * Character table
281
282        |  E   C2z  Oxz  Oyz
283   -----+--------------------
284    A1  |   1    1    1    1
285    B1  |   1   -1    1   -1
286    B2  |   1   -1   -1    1
287    A2  |   1    1   -1   -1
288
289   * Direct product table
290
291        | A1   B1   B2   A2
292   -----+--------------------
293    A1  | A1   B1   B2   A2
294    B1  | B1   A1   A2   B2
295    B2  | B2   A2   A1   B1
296    A2  | A2   B2   B1   A1
297
298
299                                 Isotopic Masses
300                                 ---------------
301
302                           F          18.998403
303                           H           1.007825
304
305                       Total mass:    20.006228 amu
306                       Natural abundance:  99.985 %
307
308 Center-of-mass coordinates (a.u.):    0.000000    0.000000    0.000000
309
310
311  Atoms and basis sets
312  --------------------
313
314  Number of atom types :    2
315  Total number of atoms:    2
316
317  Basis set used is "6-31G" from the basis set library.
318
319  label    atoms   charge   prim   cont     basis
320  ----------------------------------------------------------------------
321  F           1    9.0000    22     9      [10s4p|3s2p]
322  H           1    1.0000     4     2      [4s|2s]
323  ----------------------------------------------------------------------
324  total:      2   10.0000    26    11
325  ----------------------------------------------------------------------
326
327  Threshold for neglecting AO integrals:  1.00D-15
328
329
330  Cartesian Coordinates (a.u.)
331  ----------------------------
332
333  Total number of coordinates:    6
334  F       :     1  x   0.0000000000    2  y   0.0000000000    3  z   0.0872947800
335  H       :     4  x   0.0000000000    5  y   0.0000000000    6  z  -1.6455844400
336
337
338  Symmetry Coordinates
339  --------------------
340
341  Number of coordinates in each symmetry:     2    2    2    0
342
343  Symmetry  A1  ( 1)
344
345    1   F     z    3
346    2   H     z    6
347
348  Symmetry  B1  ( 2)
349
350    3   F     x    1
351    4   H     x    4
352
353  Symmetry  B2  ( 3)
354
355    5   F     y    2
356    6   H     y    5
357
358
359   Interatomic separations (in Angstrom):
360   --------------------------------------
361
362            F           H
363            ------      ------
364 F     :    0.000000
365 H     :    0.917000    0.000000
366
367
368  Max    interatomic separation is    0.9170 Angstrom (    1.7329 Bohr)
369  between atoms    2 and    1, "H     " and "F     ".
370
371  Min HX interatomic separation is    0.9170 Angstrom (    1.7329 Bohr)
372
373
374  Bond distances (Angstrom):
375  --------------------------
376
377                  atom 1     atom 2       distance
378                  ------     ------       --------
379  bond distance:  H          F            0.917000
380
381
382
383
384 Principal moments of inertia (u*A**2) and principal axes
385 --------------------------------------------------------
386
387   IA       0.000000          0.000000    0.000000    1.000000
388   IB       0.804778          0.000000    1.000000    0.000000
389   IC       0.804778          1.000000    0.000000    0.000000
390
391
392 Rotational constants
393 --------------------
394
395 The molecule is linear.
396
397               B =       627973.52 MHz     (   20.946942 cm-1)
398
399
400@  Nuclear repulsion energy :    5.193668373495 Hartree
401
402
403  Symmetry Orbitals
404  -----------------
405
406  Number of orbitals in each symmetry:           7    2    2    0
407
408
409  Symmetry  A1 ( 1)
410
411    1     F        1s         1
412    2     F        1s         2
413    3     F        1s         3
414    4     F        2pz        6
415    5     F        2pz        9
416    6     H        1s        10
417    7     H        1s        11
418
419
420  Symmetry  B1 ( 2)
421
422    8     F        2px        4
423    9     F        2px        7
424
425
426  Symmetry  B2 ( 3)
427
428   10     F        2py        5
429   11     F        2py        8
430
431
432  No orbitals in symmetry  A2 ( 4)
433
434  Symmetries of electric field:  B1 (2)  B2 (3)  A1 (1)
435
436  Symmetries of magnetic field:  B2 (3)  B1 (2)  A2 (4)
437
438
439                     .---------------------------------------.
440                     | Starting in Integral Section (HERMIT) |
441                     `---------------------------------------'
442
443
444
445    *************************************************************************
446    ****************** Output from HERMIT input processing ******************
447    *************************************************************************
448
449
450 Default print level:        1
451
452 * Nuclear model: Point charge
453
454 Calculation of one- and two-electron Hamiltonian integrals.
455
456 The following one-electron property integrals are calculated as requested:
457          - overlap integrals
458          - dipole length integrals
459          - traceless quadrupole moment integrals
460
461 Center of mass  (bohr):      0.000000000000      0.000000000000      0.000000013595
462 Operator center (bohr):      0.000000000000      0.000000000000      0.000000000000
463 Gauge origin    (bohr):      0.000000000000      0.000000000000      0.000000000000
464 Dipole origin   (bohr):      0.000000000000      0.000000000000      0.000000000000
465
466
467     ************************************************************************
468     ************************** Output from HERINT **************************
469     ************************************************************************
470
471
472 Threshold for neglecting two-electron integrals:  1.00D-15
473 Number of two-electron integrals written:         677 ( 30.6% )
474 Megabytes written:                              0.014
475
476 >>>> Total CPU  time used in HERMIT:   0.00 seconds
477 >>>> Total wall time used in HERMIT:   0.00 seconds
478
479
480                        .----------------------------------.
481                        | End of Integral Section (HERMIT) |
482                        `----------------------------------'
483
484
485
486                   .--------------------------------------------.
487                   | Starting in Wave Function Section (SIRIUS) |
488                   `--------------------------------------------'
489
490
491 **********************************************************************
492 *SIRIUS* a direct, restricted step, second order MCSCF program       *
493 **********************************************************************
494
495
496     Date and time (Linux)  : Sun Sep  8 20:42:48 2013
497     Host name              : lpqlx131.ups-tlse.fr
498
499 Title lines from ".mol" input file:
500     CC3 polarizability
501     HF molecule
502
503 Print level on unit LUPRI =   2 is   0
504 Print level on unit LUW4  =   2 is   5
505
506@    (Integral direct) CC calculation.
507
508@    This is a combination run starting with
509@              a restricted, closed shell Hartree-Fock calculation
510
511
512 Initial molecular orbitals are obtained according to
513 ".MOSTART H1DIAG" input option
514
515     Wave function specification
516     ============================
517
518     For the specification of the Coupled Cluster: see later.
519
520@    For the wave function of type :      >>> CC <<<
521@    Number of closed shell electrons          10
522@    Number of electrons in active shells       0
523@    Total charge of the molecule               0
524
525@    Spin multiplicity and 2 M_S                1         0
526     Total number of symmetries                 4
527@    Reference state symmetry                   1
528
529     Orbital specifications
530     ======================
531     Abelian symmetry species          All |    1    2    3    4
532                                       --- |  ---  ---  ---  ---
533     Total number of orbitals           11 |    7    2    2    0
534     Number of basis functions          11 |    7    2    2    0
535
536      ** Automatic occupation of RHF orbitals **
537
538      -- Initial occupation of symmetries is determined from diagonal of H1 matrix.
539      -- Initial occupation of symmetries is :
540@    Occupied SCF orbitals               5 |    3    1    1    0
541
542     Maximum number of Fock   iterations      0
543     Maximum number of DIIS   iterations      0
544     Maximum number of QC-SCF iterations     60
545     Threshold for SCF convergence     1.00D-12
546
547
548 Changes of defaults for CC:
549 ---------------------------
550
551
552 -Iterative triple excitations included
553 -Linear response properties calculated
554
555
556
557        SIRIUS QC-HF optimization (SIROPT)
558 ================================================
559
560
561   <<< OUTPUT FROM SIRCNO >>>    Keyword = ONLYFD
562
563     (Precalculated two-electron integrals are transformed to P-supermatrix elements.
564      Threshold for discarding integrals :  1.00D-15 )
565
566
567 <<< MACRO ITERATION  1 >>>
568 --------------------------
569
570 Total MCSCF energy       :           -93.678666097950668  (MACRO    1)
571
572 - Nuclear repulsion      :             5.193668373494606
573 - Inactive energy        :           -98.872334471445271
574 - Active energy          :             0.000000000000000
575
576 Norm of total gradient   :             8.327545371430
577 -    of CI gradient      :             0.000000000000
578 -    of orbital gradient :             8.327545371430
579      Virial theorem: -V/T =      1.743130
580@      MULPOP F      -0.95; H       0.95;
581
582 (SIRNEO) iteration (  1,  3)
583 Micro iteration termination criterion met, EVAL(ISTATE+1) = -6.83D+00
584
585   <<< OUTPUT FROM SIRCNO >>>    Keyword = FD+NO
586
587
588
589 <<< MACRO ITERATION  2 >>>
590 --------------------------
591
592 Total MCSCF energy       :           -98.655321581277249  (MACRO    2)
593
594 - Nuclear repulsion      :             5.193668373494606
595 - Inactive energy        :          -103.848989954771852
596 - Active energy          :             0.000000000000000
597
598 Norm of total gradient   :             5.403417048074
599 -    of CI gradient      :             0.000000000000
600 -    of orbital gradient :             5.403417048074
601      Virial theorem: -V/T =      1.889788
602@      MULPOP F      -0.88; H       0.88;
603
604 (SIRNEO) iteration (  2,  3)
605 Micro iteration termination criterion met, EVAL(ISTATE+1) = -8.90D-01
606
607   <<< OUTPUT FROM SIRCNO >>>    Keyword = FD+NO
608
609
610
611 <<< MACRO ITERATION  3 >>>
612 --------------------------
613
614 Total MCSCF energy       :           -99.877932110727230  (MACRO    3)
615
616 - Nuclear repulsion      :             5.193668373494606
617 - Inactive energy        :          -105.071600484221833
618 - Active energy          :             0.000000000000000
619
620 Norm of total gradient   :             1.094012577486
621 -    of CI gradient      :             0.000000000000
622 -    of orbital gradient :             1.094012577486
623      Virial theorem: -V/T =      2.010657
624@      MULPOP F      -0.05; H       0.05;
625
626 Residual norm when dim(red L) =   4
627 NEO root     CSF        orbital          total
628    1     0.00000000     0.04681267     0.04681267 converged
629
630 (NEONEX) NEO vector is converged.
631
632   <<< OUTPUT FROM SIRCNO >>>    Keyword = FD+NO
633
634
635
636 <<< MACRO ITERATION  4 >>>
637 --------------------------
638
639 Total MCSCF energy       :           -99.982833972759494  (MACRO    4)
640
641 - Nuclear repulsion      :             5.193668373494606
642 - Inactive energy        :          -105.176502346254097
643 - Active energy          :             0.000000000000000
644
645 Norm of total gradient   :             0.105320694298
646 -    of CI gradient      :             0.000000000000
647 -    of orbital gradient :             0.105320694298
648      Virial theorem: -V/T =      2.000740
649@      MULPOP F      -0.48; H       0.48;
650
651 Residual norm when dim(red L) =   3
652 NEO root     CSF        orbital          total
653    1     0.00000000     0.00421722     0.00421722 converged
654
655 (NEONEX) NEO vector is converged.
656
657   <<< OUTPUT FROM SIRCNO >>>    Keyword = FD+NO
658
659
660
661 <<< MACRO ITERATION  5 >>>
662 --------------------------
663
664 Total MCSCF energy       :           -99.983407832178813  (MACRO    5)
665
666 - Nuclear repulsion      :             5.193668373494606
667 - Inactive energy        :          -105.177076205673416
668 - Active energy          :             0.000000000000000
669
670 Norm of total gradient   :             0.004129387644
671 -    of CI gradient      :             0.000000000000
672 -    of orbital gradient :             0.004129387644
673      Virial theorem: -V/T =      1.999208
674@      MULPOP F      -0.48; H       0.48;
675
676 Residual norm when dim(red L) =   5
677 NEO root     CSF        orbital          total
678    1     0.00000000     0.00000496     0.00000496 converged
679
680 (NEONEX) NEO vector is converged.
681
682   <<< OUTPUT FROM SIRCNO >>>    Keyword = FD+NO
683
684
685
686 <<< MACRO ITERATION  6 >>>
687 --------------------------
688
689 Total MCSCF energy       :           -99.983408935326651  (MACRO    6)
690
691 - Nuclear repulsion      :             5.193668373494606
692 - Inactive energy        :          -105.177077308821254
693 - Active energy          :             0.000000000000000
694
695 Norm of total gradient   :             0.000005059686
696 -    of CI gradient      :             0.000000000000
697 -    of orbital gradient :             0.000005059686
698      Virial theorem: -V/T =      1.999208
699@      MULPOP F      -0.48; H       0.48;
700
701 Residual norm when dim(red L) =   7
702 NEO root     CSF        orbital          total
703    1     0.00000000     0.00000000     0.00000000 converged
704
705 (NEONEX) NEO vector is converged.
706
707   <<< OUTPUT FROM SIRCNO >>>    Keyword = FD+NO
708
709
710
711 <<< MACRO ITERATION  7 >>>
712 --------------------------
713
714 Total MCSCF energy       :           -99.983408935327233  (MACRO    7)
715
716 - Nuclear repulsion      :             5.193668373494606
717 - Inactive energy        :          -105.177077308821836
718 - Active energy          :             0.000000000000000
719
720 Norm of total gradient   :             0.000000000009
721 -    of CI gradient      :             0.000000000000
722 -    of orbital gradient :             0.000000000009
723      Virial theorem: -V/T =      1.999208
724@      MULPOP F      -0.48; H       0.48;
725
726 (SIRSTP) Close to convergence, ratio set to one.
727 Energy difference; actual and predicted:   -5.82645D-13   -5.93200D-13
728
729 (SIRSTP) Close to convergence, ratio set to one.
730 Energy difference; actual and predicted:    9.82207D-01
731 Close to convergence, ratio set to one.
732
733 Residual norm when dim(red L) =   3
734 NEO root     CSF        orbital          total
735    1     0.00000000     0.00000000     0.00000000 converged
736
737 (NEONEX) NEO vector is converged.
738
739   <<< OUTPUT FROM SIRCNO >>>    Keyword = FD+NO
740
741
742
743 <<< MACRO ITERATION  8 >>>
744 --------------------------
745
746 Total MCSCF energy       :           -99.983408935327219  (MACRO    8)
747
748 - Nuclear repulsion      :             5.193668373494606
749 - Inactive energy        :          -105.177077308821822
750 - Active energy          :             0.000000000000000
751
752 Norm of total gradient   :             0.000000000000
753 -    of CI gradient      :             0.000000000000
754 -    of orbital gradient :             0.000000000000
755      Virial theorem: -V/T =      1.999208
756@      MULPOP F      -0.48; H       0.48;
757
758 (SIRSTP) Close to convergence, ratio set to one.
759 Energy difference; actual and predicted:    1.42109D-14   -3.14358D-24
760
761 (SIRSTP) Close to convergence, ratio set to one.
762 Energy difference; actual and predicted:   -4.52060D+09
763 Close to convergence, ratio set to one.
764
765 *** Optimization control: QC-HF converged ***
766     Number of macro iterations used            8
767     Number of micro iterations used           23
768     Total number of CPU seconds used         0.01
769
770
771 *** SCF orbital energy analysis ***
772
773 Only the five lowest virtual orbital energies printed in each symmetry.
774
775 Number of electrons :   10
776 Orbital occupations :    3    1    1    0
777
778 Sym       Hartree-Fock orbital energies
779
780  1    -26.27571500    -1.58960660    -0.73897545     0.20969364     1.11681422
781         1.59320394     2.00611368
782
783  2     -0.63103111     1.48947018
784
785  3     -0.63103111     1.48947018
786
787    E(LUMO) :     0.20969364 au (symmetry 1)
788  - E(HOMO) :    -0.63103111 au (symmetry 2)
789  ------------------------------------------
790    gap     :     0.84072475 au
791
792 >>>> CPU and wall time for SCF :       0.007       0.007
793
794
795                     .----------------------------------------.
796                     | >>> SIRIUS OPTIMIZATION STATISTICS <<< |
797                     `----------------------------------------'
798
799
800
801     Date and time (Linux)  : Sun Sep  8 20:42:48 2013
802     Host name              : lpqlx131.ups-tlse.fr
803
804
805  ITER ITMIC     EMCSCF           GRDNRM        RATIO      STPLNG
806 ---------------------------------------------------------------------
807    1    3    -93.678666097951   8.3275453714  0.000000   0.7022268700
808    2    3    -98.655321581277   5.4034170481  0.814512   0.6941495403
809    3    3    -99.877932110727   1.0940125775  0.649461   0.2390892023
810    4    2    -99.982833972759   0.1053206943  1.014946   0.0140232661
811    5    4    -99.983407832179   0.0041293876  1.005328   0.0007971767
812    6    6    -99.983408935327   0.0000050597  1.000050   0.0000000000
813    7    2    -99.983408935327   0.0000000000  1.000000   0.0000000000
814    8    0    -99.983408935327   0.0000000000  1.000000   0.0000000000
815
816
817  ITER  INDGCM  GCIMAX      GCINRM     INDGOM  GOBMAX      GOBNRM      GRDNRM
818 ------------------------------------------------------------------------------
819    1      0    0.000000    0.000000      8    4.466548    8.327545    8.327545
820    2      0    0.000000    0.000000     13   -2.685118    5.403417    5.403417
821    3      0    0.000000    0.000000      9    0.798803    1.094013    1.094013
822    4      0    0.000000    0.000000     14    0.048202    0.105321    0.105321
823    5      0    0.000000    0.000000      3   -0.002098    0.004129    0.004129
824    6      0    0.000000    0.000000      3    0.000003    0.000005    0.000005
825    7      0    0.000000    0.000000      1    0.000000    0.000000    0.000000
826    8      0    0.000000    0.000000      4    0.000000    0.000000    0.000000
827
828
829  ITER ITMIC NCLIN NOLIN   TIMMAC    TIMITR    TIMMIC    TIMLIN    TIMMIC/ITMIC
830 ------------------------------------------------------------------------------
831
832    1     3     0     3      0.00      0.00      0.00      0.00      0.00
833    2     3     0     3      0.00      0.00      0.00      0.00      0.00
834    3     3     0     3      0.00      0.00      0.00      0.00      0.00
835    4     2     0     2      0.00      0.00      0.00      0.00      0.00
836    5     4     0     4      0.00      0.00      0.00      0.00      0.00
837    6     6     0     6      0.00      0.00      0.00      0.00      0.00
838    7     2     0     2      0.00      0.00      0.00      0.00      0.00
839    8     0     0     0      0.00      0.00      0.00      0.00
840
841
842 ITER         EMY                 EACTIV              EMCSCF
843
844    1    -98.872334471445      0.000000000000    -93.678666097951
845    2   -103.848989954772      0.000000000000    -98.655321581277
846    3   -105.071600484222      0.000000000000    -99.877932110727
847    4   -105.176502346254      0.000000000000    -99.982833972759
848    5   -105.177076205673      0.000000000000    -99.983407832179
849    6   -105.177077308821      0.000000000000    -99.983408935327
850    7   -105.177077308822      0.000000000000    -99.983408935327
851    8   -105.177077308822      0.000000000000    -99.983408935327
852
853
854 ITER         DEPRED              DEACT               RATIO
855
856    1      0.000000000000      0.000000000000      0.000000000000
857    2     -6.109987193722     -4.976655483327      0.814511606250
858    3     -1.882500306959     -1.222610529450      0.649460998721
859    4     -0.103357097194     -0.104901862032      1.014945899989
860    5     -0.000570817827     -0.000573859419      1.005328481556
861    6     -0.000001103092     -0.000001103148      1.000050402497
862    7     -0.000000000001     -0.000000000001      1.000000000000
863    8     -0.000000000000      0.000000000000      1.000000000000
864
865
866 ITER    BETA           GAMMA             STPLNG              RTRUST
867
868    1      1.54178847  1.00000000      0.702226869984      0.700000000000
869    2      0.83560172  1.00000000      0.694149540252      0.700000000000
870    3      0.20000000  1.00000000      0.239089202291      0.700000000000
871    4      0.20000000  1.00000000      0.014023266079      0.700000000000
872    5      0.20000000  1.00000000      0.000797176748      0.700000000000
873    6      0.20000000  1.00000000      0.000000000000      0.700000000000
874    7      0.20000000  1.00000000      0.000000000000      0.700000000000
875    8      0.00000000  0.00000000      0.000000000000      0.700000000000
876
877
878 Reduced L root no.  1
879 ITER         EVAL              EVEC(1)           EVEC(2)           EVEC(3)
880 ----------------------------------------------------------------------------
881    1  -13.372684137624    0.678499217314   -0.706685427149   -0.184090133809
882    2   -1.967048030244    0.865018969202   -0.376853698473   -0.289279462324
883    3   -0.008249704448    0.998858683948   -0.037660850969   -0.029270119505
884    4   -0.000045665067    0.999996066983   -0.002681078570   -0.000823307651
885    5   -0.000000088247    0.999999987290   -0.000157855416   -0.000021345263
886    6   -0.000000000000    1.000000000000   -0.000000080672   -0.000000013372
887    7   -0.000000000000    1.000000000000   -0.000000000000   -0.000000000000
888    8    0.000000000000    0.000000000000    0.000000000000    0.000000000000
889
890
891                       .-----------------------------------.
892                       | >>> Final results from SIRIUS <<< |
893                       `-----------------------------------'
894
895
896@    Spin multiplicity:           1
897@    Spatial symmetry:            1
898@    Total charge of molecule:    0
899
900@    Final HF energy:             -99.983408935327
901@    Nuclear repulsion:             5.193668373495
902@    Electronic energy:          -105.177077308822
903
904@    Final gradient norm:           0.000000000000
905
906
907     Date and time (Linux)  : Sun Sep  8 20:42:48 2013
908     Host name              : lpqlx131.ups-tlse.fr
909
910 (Only coefficients >0.0100 are printed.)
911
912 Molecular orbitals for symmetry species  1
913 ------------------------------------------
914
915    Orbital         1        2        3        4        5
916   1 F   :1s     0.9955  -0.2305  -0.0617  -0.0630   0.0355
917   2 F   :1s     0.0214   0.4972   0.1370   0.0799  -0.1266
918   3 F   :1s    -0.0058   0.5295   0.2441   0.7310  -0.0010
919   4 F   :2pz   -0.0015  -0.0843   0.5483  -0.2669   0.4120
920   5 F   :2pz    0.0014  -0.0471   0.3497  -0.4490   0.2792
921   6 H   :1s     0.0003   0.1324  -0.2930  -0.0957   1.3943
922   7 H   :1s     0.0018  -0.0140  -0.1078  -1.3594  -0.8297
923
924 Molecular orbitals for symmetry species  2
925 ------------------------------------------
926
927    Orbital         1        2
928   1 F   :2px    0.6605  -0.9467
929   2 F   :2px    0.4902   1.0451
930
931 Molecular orbitals for symmetry species  3
932 ------------------------------------------
933
934    Orbital         1        2
935   1 F   :2py    0.6605  -0.9467
936   2 F   :2py    0.4902   1.0451
937
938
939
940 >>>> Total CPU  time used in SIRIUS :      0.01 seconds
941 >>>> Total wall time used in SIRIUS :      0.01 seconds
942
943
944     Date and time (Linux)  : Sun Sep  8 20:42:48 2013
945     Host name              : lpqlx131.ups-tlse.fr
946
947
948                     .---------------------------------------.
949                     | End of Wave Function Section (SIRIUS) |
950                     `---------------------------------------'
951
952
953
954                    .------------------------------------------.
955                    | Starting in Coupled Cluster Section (CC) |
956                    `------------------------------------------'
957
958
959
960 *******************************************************************************
961 *******************************************************************************
962 *                                                                             *
963 *                                                                             *
964 *                    START OF COUPLED CLUSTER CALCULATION                     *
965 *                                                                             *
966 *                                                                             *
967 *******************************************************************************
968 *******************************************************************************
969
970
971
972 CCR12 ANSATZ =   0
973
974 CCR12 APPROX =   0
975
976
977
978 *******************************************************************
979 *                                                                 *
980 *<<<<<<<<<<                                             >>>>>>>>>>*
981 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM  >>>>>>>>>>*
982 *<<<<<<<<<<                                             >>>>>>>>>>*
983 *                                                                 *
984 *******************************************************************
985
986
987             The Direct Coupled Cluster Energy Program
988             -----------------------------------------
989
990
991          Number of t1 amplitudes                 :        14
992          Number of t2 amplitudes                 :       164
993          Total number of amplitudes in ccsd      :       178
994
995 Iter.  1: Coupled cluster MP2   energy :    -100.1121031641595778
996 Iter.  1: Coupled cluster CC3   energy :    -100.1123514982621145
997 Iter.  2: Coupled cluster CC3   energy :    -100.1150579136371732
998 Iter.  3: Coupled cluster CC3   energy :    -100.1153354972539091
999 Iter.  4: Coupled cluster CC3   energy :    -100.1153462455241936
1000 Iter.  5: Coupled cluster CC3   energy :    -100.1153453606227117
1001 Iter.  6: Coupled cluster CC3   energy :    -100.1153430011048329
1002 Iter.  7: Coupled cluster CC3   energy :    -100.1153427485189553
1003 Iter.  8: Coupled cluster CC3   energy :    -100.1153427698462508
1004 Iter.  9: Coupled cluster CC3   energy :    -100.1153427631502808
1005 Iter. 10: Coupled cluster CC3   energy :    -100.1153427597562029
1006 Iter. 11: Coupled cluster CC3   energy :    -100.1153427592869036
1007 Iter. 12: Coupled cluster CC3   energy :    -100.1153427592456637
1008 Iter. 13: Coupled cluster CC3   energy :    -100.1153427592364551
1009 Iter. 14: Coupled cluster CC3   energy :    -100.1153427592339398
1010 Iter. 15: Coupled cluster CC3   energy :    -100.1153427592340250
1011
1012 CC3   energy converged to within   0.10D-11 is         -100.115342759234
1013 Final 2-norm of the CC vector function:  8.03316122D-12
1014
1015
1016
1017
1018
1019             +-------------------------------------------------------+
1020             ! Final results from the Coupled Cluster energy program !
1021             +-------------------------------------------------------+
1022
1023
1024
1025            Total SCF   energy:                   -99.9834089353
1026
1027            Total MP2   energy:                  -100.1121031642
1028
1029            Total CC3   energy:                  -100.1153427592
1030
1031
1032
1033
1034                   +--------------------------------------------+
1035                   ! Calculating singlet intermediates for CCLR !
1036                   +--------------------------------------------+
1037
1038
1039
1040            E-intermediates calculated
1041            Fock-intermediate calculated
1042            Gamma-intermediate calculated
1043            BF-intermediate calculated
1044            C-intermediate calculated
1045            D-intermediate calculated
1046
1047
1048
1049
1050 *******************************************************************
1051 *                                                                 *
1052 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE  >>>>>>>>>>>>>*
1053 *                                                                 *
1054 *******************************************************************
1055
1056
1057
1058                         +-------------------------------+
1059                         ! Coupled Cluster model is: CC3 !
1060                         +-------------------------------+
1061
1062 RPA: call cceq_str
1063     Start vector generated from gradient
1064 RPA: exit cceq_str
1065
1066
1067
1068 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<<
1069
1070    Iter  #Vectors  time (min)   residual
1071    --------------------------------------
1072      1       1         0.00     0.48E+00
1073      2       1         0.00     0.89E-01
1074      3       1         0.00     0.17E-01
1075      4       1         0.00     0.33E-02
1076      5       1         0.00     0.72E-03
1077      6       1         0.00     0.15E-03
1078      7       1         0.00     0.33E-04
1079      8       1         0.00     0.61E-05
1080      9       1         0.00     0.66E-06
1081     10       1         0.00     0.94E-07
1082     11       1         0.00     0.14E-07
1083     12       1         0.00     0.27E-08
1084     13       1         0.00     0.39E-09
1085     14       1         0.00     0.54E-10
1086     15       1         0.00     0.92E-11
1087     16       1         0.00     0.14E-11
1088     17       1         0.00     0.16E-12
1089    --------------------------------------
1090    converged in 17 iterations
1091    threshold:    0.10E-11
1092
1093
1094         Routine          Time (min)
1095         ---------------------------
1096         CC_TRDRV            0.00
1097         CCRED               0.00
1098         CCNEX               0.00
1099         ---------------------------
1100         Total time          0.00
1101
1102
1103 >>>> Total CPU  time used in CCEQ_SOLV:   0.12 seconds
1104 >>>> Total wall time used in CCEQ_SOLV:   0.39 seconds
1105
1106
1107 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<
1108
1109
1110
1111
1112   *******************************************************************
1113   *                                                                 *
1114   *<<<<<<<<   OUTPUT FROM PROPERTY AND SYMMETRY ANALYSIS   >>>>>>>>>*
1115   *                                                                 *
1116   *******************************************************************
1117
1118
1119     Prepare CC3 quadratic response calculation.
1120
1121
1122     Prepare CC3 cubic response calculation.
1123
1124
1125
1126                         +-------------------------------+
1127                         ! REQUESTED PROPERTY OPERATORS: !
1128                         +-------------------------------+
1129
1130             Index   Oper. Label  Symmetry  Transp.  PDBS  Atom
1131             --------------------------------------------------
1132                1     HAM0            1        1      T      0
1133                2     YDIPLEN         3        1      F      0
1134             --------------------------------------------------
1135
1136
1137
1138
1139                         +-------------------------------+
1140                         ! REQUESTED EXPECTATION VALUES: !
1141                         +-------------------------------+
1142
1143                       Index   Oper. Label  Symmetry
1144                       -----------------------------
1145                       -----------------------------
1146
1147
1148
1149
1150                       +------------------------------------+
1151                       ! REQUESTED EFFECTIVE FOCK MATRICES: !
1152                       +------------------------------------+
1153
1154                       Index   Oper. Label  Symmetry
1155                       -----------------------------
1156                       -----------------------------
1157
1158
1159
1160
1161                       +-----------------------------------+
1162                       ! REQUESTED FIRST ORDER XI VECTORS: !
1163                       +-----------------------------------+
1164
1165             Index   Oper. Label  relaxed  Sym.     Frequency
1166             --------------------------------------------------
1167                1      YDIPLEN        F     3     -5.000000D-01
1168                2      YDIPLEN        F     3      0.000000D+00
1169                3      YDIPLEN        F     3      5.000000D-01
1170             --------------------------------------------------
1171
1172
1173
1174
1175                        +----------------------------------+
1176                        ! REQUESTED FIRST ORDER T VECTORS: !
1177                        +----------------------------------+
1178
1179             Index   Oper. Label  relaxed  Sym.     Frequency
1180             --------------------------------------------------
1181                1      YDIPLEN        F     3     -5.000000D-01
1182                2      YDIPLEN        F     3      0.000000D+00
1183                3      YDIPLEN        F     3      5.000000D-01
1184             --------------------------------------------------
1185
1186
1187
1188
1189    *******************************************************************
1190    *          SOLVING COUPLED CLUSTER RESPONSE EQUATIONS             *
1191    *******************************************************************
1192
1193
1194
1195
1196 +======================================================================+
1197 !                     RHS & ETA VECTORS TO COMPUTE:                    !
1198 +======================================================================+
1199 | TYPE | # VEC. |  NEEDED FOR:                                         |
1200 +----------------------------------------------------------------------+
1201 |  O1  |    3   |  first-order amplitude equations                     |
1202 +======================================================================+
1203
1204
1205
1206 +======================================================================+
1207 !                       LINEAR EQUATIONS TO SOLVE:                     !
1208 +======================================================================+
1209 | TYPE | # VEC. |  EQUATION:                                           |
1210 +----------------------------------------------------------------------+
1211 |  R1  |    3   |  first-order amplitude response                      |
1212 +======================================================================+
1213
1214
1215
1216 +======================================================================+
1217 !                F MATRIX TRANSFORMATIONS TO COMPUTE:                  !
1218 +======================================================================+
1219 | TYPE | # VEC. |  TRANSFORMED:                                        |
1220 +----------------------------------------------------------------------+
1221 |  F1  |    3   |  first-order amplitude response (R1) vector          |
1222 +======================================================================+
1223
1224
1225
1226
1227 -------------------------------------------------------------------
1228 |          OUTPUT FROM AMPLITUDE RHS VECTOR SECTION               |
1229 -------------------------------------------------------------------
1230
1231@ WARNING: ETA1 VECTOR FOR YDIPLEN ( F,-5.00000D-01) IS NOT AVAILABLE.
1232@ WARNING: ETA1 VECTOR FOR YDIPLEN ( F, 0.00000D+00) IS NOT AVAILABLE.
1233@ WARNING: ETA1 VECTOR FOR YDIPLEN ( F, 5.00000D-01) IS NOT AVAILABLE.
1234
1235
1236   For the requested  3 1th.-order amplitude rhs vectors "O1 ".
1237         -   0 D matrix transformations
1238         -   0 C matrix transformations
1239         -   0 B matrix transformations
1240         -   0 C{O} matrix transformations
1241         -   0 B{O} matrix transformations
1242         -   0 A{O} matrix transformations
1243         -   3Xi{O} vector calculations
1244   will be performed.
1245
1246
1247 RPA: call cceq_str
1248     R1  start vector nr.  1 of symmetry  3 generated from gradient
1249 RPA: exit cceq_str
1250
1251
1252
1253 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<<
1254
1255    Iter  #Vectors  time (min)   residual
1256    --------------------------------------
1257      1       1         0.00     0.33E+00
1258      2       1         0.00     0.46E-01
1259      3       1         0.00     0.80E-02
1260      4       1         0.00     0.13E-02
1261      5       1         0.00     0.24E-03
1262      6       1         0.00     0.26E-04
1263      7       1         0.00     0.26E-05
1264      8       1         0.00     0.34E-06
1265      9       1         0.00     0.40E-07
1266     10       1         0.00     0.32E-08
1267     11       1         0.00     0.38E-09
1268     12       1         0.00     0.42E-10
1269     13       1         0.00     0.36E-11
1270     14       1         0.00     0.23E-12
1271    --------------------------------------
1272    converged in 14 iterations
1273    threshold:    0.10E-11
1274
1275
1276         Routine          Time (min)
1277         ---------------------------
1278         CC_TRDRV            0.00
1279         CCRED               0.00
1280         CCNEX               0.00
1281         ---------------------------
1282         Total time          0.00
1283
1284
1285 >>>> Total CPU  time used in CCEQ_SOLV:   0.09 seconds
1286 >>>> Total wall time used in CCEQ_SOLV:   0.22 seconds
1287
1288
1289 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<
1290
1291 RPA: call cceq_str
1292     R1  start vector nr.  2 of symmetry  3 generated from gradient
1293 RPA: exit cceq_str
1294
1295
1296
1297 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<<
1298
1299    Iter  #Vectors  time (min)   residual
1300    --------------------------------------
1301      1       1         0.00     0.35E+00
1302      2       1         0.00     0.11E+00
1303      3       1         0.00     0.29E-01
1304      4       1         0.00     0.66E-02
1305      5       1         0.00     0.96E-03
1306      6       1         0.00     0.11E-03
1307      7       1         0.00     0.19E-04
1308      8       1         0.00     0.37E-05
1309      9       1         0.00     0.49E-06
1310     10       1         0.00     0.83E-07
1311     11       1         0.00     0.75E-08
1312     12       1         0.00     0.95E-09
1313     13       1         0.00     0.18E-09
1314     14       1         0.00     0.28E-10
1315     15       1         0.00     0.35E-11
1316     16       1         0.00     0.36E-12
1317    --------------------------------------
1318    converged in 16 iterations
1319    threshold:    0.10E-11
1320
1321
1322         Routine          Time (min)
1323         ---------------------------
1324         CC_TRDRV            0.00
1325         CCRED               0.00
1326         CCNEX               0.00
1327         ---------------------------
1328         Total time          0.00
1329
1330
1331 >>>> Total CPU  time used in CCEQ_SOLV:   0.10 seconds
1332 >>>> Total wall time used in CCEQ_SOLV:   0.24 seconds
1333
1334
1335 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<
1336
1337 RPA: call cceq_str
1338     R1  start vector nr.  3 of symmetry  3 generated from gradient
1339 RPA: exit cceq_str
1340
1341
1342
1343 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<<
1344
1345    Iter  #Vectors  time (min)   residual
1346    --------------------------------------
1347      1       1         0.00     0.44E+00
1348      2       1         0.00     0.47E+00
1349      3       1         0.00     0.14E+00
1350      4       1         0.00     0.76E-01
1351      5       1         0.00     0.21E-01
1352      6       1         0.00     0.31E-02
1353      7       1         0.00     0.77E-03
1354      8       1         0.00     0.18E-03
1355      9       1         0.00     0.40E-04
1356     10       1         0.00     0.11E-04
1357     11       1         0.00     0.32E-05
1358     12       1         0.00     0.79E-06
1359     13       1         0.00     0.69E-07
1360     14       1         0.00     0.15E-07
1361     15       1         0.00     0.38E-08
1362     16       1         0.00     0.62E-09
1363     17       1         0.00     0.18E-09
1364     18       1         0.00     0.40E-10
1365     19       1         0.00     0.57E-11
1366     20       1         0.00     0.11E-11
1367     21       1         0.00     0.21E-12
1368    --------------------------------------
1369    converged in 21 iterations
1370    threshold:    0.10E-11
1371
1372
1373         Routine          Time (min)
1374         ---------------------------
1375         CC_TRDRV            0.00
1376         CCRED               0.00
1377         CCNEX               0.00
1378         ---------------------------
1379         Total time          0.00
1380
1381
1382 >>>> Total CPU  time used in CCEQ_SOLV:   0.14 seconds
1383 >>>> Total wall time used in CCEQ_SOLV:   0.31 seconds
1384
1385
1386 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<
1387
1388
1389 Solution of CC response equations completed.
1390
1391
1392 *******************************************************************
1393 *                                                                 *
1394 *<<<<<<<<  OUTPUT FROM COUPLED CLUSTER LINEAR RESPONSE   >>>>>>>>>*
1395 *                                                                 *
1396 *<<<<<<<<     CALCULATION OF SECOND ORDER PROPERTIES     >>>>>>>>>*
1397 *                                                                 *
1398 *******************************************************************
1399
1400
1401
1402
1403   For the requested  2 second-order properties
1404         -   2 F matrix transformations with R1 vectors
1405         -   0 J matrix transformations with L1 vectors
1406         -   1 ETA and XKSI vector calculations
1407         -   0 X intermediate calculations
1408         -   0 2. order reortho./relax. contributions
1409   will be performed.
1410
1411
1412
1413>>> Time used for    2 F matrix transformations:        0.03 seconds.
1414
1415>>> Time used for    1 O1/X1 vector calculation:        0.02 seconds.
1416
1417>>> Total time for   2 linear response function:        0.05 seconds.
1418
1419
1420             +--------------------------------------------------------+
1421             !      FINAL CC3 RESULTS FOR THE SECOND-ORDER PROPERTIES !
1422             +--------------------------------------------------------+
1423
1424
1425  A operator                  B operator                     property
1426------------------------------------------------------------------------
1427
1428 YDIPLEN  (unrel.) -0.0000   YDIPLEN  (unrel.)  0.0000     0.68743753
1429                   -0.5000                      0.5000     0.19660267
1430------------------------------------------------------------------------
1431
1432
1433
1434 requested model not yet implemented
1435
1436
1437 *******************************************************************************
1438 *******************************************************************************
1439 *                                                                             *
1440 *                                                                             *
1441 *                   SUMMARY OF COUPLED CLUSTER CALCULATION                    *
1442 *                                                                             *
1443 *                                                                             *
1444 *******************************************************************************
1445 *******************************************************************************
1446
1447
1448
1449            Total SCF   energy:                   -99.9834089353
1450            Total MP2   energy:                  -100.1121031642
1451            Total CC3   energy:                  -100.1153427592
1452
1453
1454 *******************************************************************************
1455 *******************************************************************************
1456 *                                                                             *
1457 *                                                                             *
1458 *                      END OF COUPLED CLUSTER CALCULATION                     *
1459 *                                                                             *
1460 *                                                                             *
1461 *******************************************************************************
1462 *******************************************************************************
1463
1464
1465 >>>> CPU and wall time for CC :       0.604       1.623
1466
1467
1468     Date and time (Linux)  : Sun Sep  8 20:42:49 2013
1469     Host name              : lpqlx131.ups-tlse.fr
1470
1471
1472                      .-------------------------------------.
1473                      | End of Coupled Cluster Section (CC) |
1474                      `-------------------------------------'
1475
1476 >>>> Total CPU  time used in DALTON:   0.62 seconds
1477 >>>> Total wall time used in DALTON:   1.64 seconds
1478
1479
1480     Date and time (Linux)  : Sun Sep  8 20:42:49 2013
1481     Host name              : lpqlx131.ups-tlse.fr
1482