1 2 3 ************************************************************************ 4 *************** Dalton - An Electronic Structure Program *************** 5 ************************************************************************ 6 7 This is output from DALTON (Release Dalton2013 patch 0) 8 ---------------------------------------------------------------------------- 9 NOTE: 10 11 Dalton is an experimental code for the evaluation of molecular 12 properties using (MC)SCF, DFT, CI, and CC wave functions. 13 The authors accept no responsibility for the performance of 14 the code or for the correctness of the results. 15 16 The code (in whole or part) is provided under a licence and 17 is not to be reproduced for further distribution without 18 the written permission of the authors or their representatives. 19 20 See the home page "http://daltonprogram.org" for further information. 21 22 If results obtained with this code are published, 23 the appropriate citations would be both of: 24 25 K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, 26 L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, 27 P. Dahle, E. K. Dalskov, U. Ekstroem, T. Enevoldsen, 28 J. J. Eriksen, P. Ettenhuber, B. Fernandez, L. Ferrighi, 29 H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Haettig, 30 H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, 31 E. Hjertenaes, S. Hoest, I.-M. Hoeyvik, M. F. Iozzi, 32 B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Joergensen, 33 J. Kauczor, S. Kirpekar, T. Kjaergaard, W. Klopper, 34 S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, 35 K. Kristensen, A. Ligabue, O. B. Lutnaes, J. I. Melo, 36 K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, 37 P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, 38 M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, 39 S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, 40 P. Salek, C. C. M. Samson, A. Sanchez de Meras, T. Saue, 41 S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, 42 A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, 43 A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, 44 L. Thoegersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, 45 M. Ziolkowski and H. Agren. 46 The Dalton quantum chemistry program system. 47 WIREs Comput. Mol. Sci. 2013. doi: 10.1002/wcms.1172 48 49 and 50 51 Dalton, a Molecular Electronic Structure Program, 52 Release DALTON2013.0 (2013), see http://daltonprogram.org 53 ---------------------------------------------------------------------------- 54 55 Authors in alphabetical order (major contribution(s) in parenthesis): 56 57 Kestutis Aidas, Vilnius University, Lithuania (QM/MM) 58 Celestino Angeli, University of Ferrara, Italy (NEVPT2) 59 Keld L. Bak, UNI-C, Denmark (AOSOPPA, non-adiabatic coupling, magnetic properties) 60 Vebjoern Bakken, University of Oslo, Norway (DALTON; geometry optimizer, symmetry detection) 61 Radovan Bast, KTH Stockholm Sweden (DALTON installation and execution frameworks) 62 Linus Boman, NTNU, Norway (Cholesky decomposition and subsystems) 63 Ove Christiansen, Aarhus University, Denmark (CC module) 64 Renzo Cimiraglia, University of Ferrara, Italy (NEVPT2) 65 Sonia Coriani, University of Trieste, Italy (CC module, MCD in RESPONS) 66 Paal Dahle, University of Oslo, Norway (Parallelization) 67 Erik K. Dalskov, UNI-C, Denmark (SOPPA) 68 Thomas Enevoldsen, Univ. of Southern Denmark, Denmark (SOPPA) 69 Janus J. Eriksen, Aarhus University, Denmark (PE-MP2/SOPPA, TDA) 70 Berta Fernandez, U. of Santiago de Compostela, Spain (doublet spin, ESR in RESPONS) 71 Lara Ferrighi, Aarhus University, Denmark (PCM Cubic response) 72 Heike Fliegl, University of Oslo, Norway (CCSD(R12)) 73 Luca Frediani, UiT The Arctic U. of Norway, Norway (PCM) 74 Bin Gao, UiT The Arctic U. of Norway, Norway (Gen1Int library) 75 Christof Haettig, Ruhr-University Bochum, Germany (CC module) 76 Kasper Hald, Aarhus University, Denmark (CC module) 77 Asger Halkier, Aarhus University, Denmark (CC module) 78 Hanne Heiberg, University of Oslo, Norway (geometry analysis, selected one-electron integrals) 79 Trygve Helgaker, University of Oslo, Norway (DALTON; ABACUS, ERI, DFT modules, London, and much more) 80 Alf Christian Hennum, University of Oslo, Norway (Parity violation) 81 Hinne Hettema, University of Auckland, New Zealand (quadratic response in RESPONS; SIRIUS supersymmetry) 82 Eirik Hjertenaes, NTNU, Norway (Cholesky decomposition) 83 Maria Francesca Iozzi, University of Oslo, Norway (RPA) 84 Brano Jansik Technical Univ. of Ostrava Czech Rep. (DFT cubic response) 85 Hans Joergen Aa. Jensen, Univ. of Southern Denmark, Denmark (DALTON; SIRIUS, RESPONS, ABACUS modules, London, and much more) 86 Dan Jonsson, UiT The Arctic U. of Norway, Norway (cubic response in RESPONS module) 87 Poul Joergensen, Aarhus University, Denmark (RESPONS, ABACUS, and CC modules) 88 Joanna Kauczor, Linkoeping University, Sweden (Complex polarization propagator (CPP) module) 89 Sheela Kirpekar, Univ. of Southern Denmark, Denmark (Mass-velocity & Darwin integrals) 90 Wim Klopper, KIT Karlsruhe, Germany (R12 code in CC, SIRIUS, and ABACUS modules) 91 Stefan Knecht, ETH Zurich, Switzerland (Parallel CI and MCSCF) 92 Rika Kobayashi, Australian National Univ., Australia (DIIS in CC, London in MCSCF) 93 Henrik Koch, NTNU, Norway (CC module, Cholesky decomposition) 94 Jacob Kongsted, Univ. of Southern Denmark, Denmark (Polarizable embedding, QM/MM) 95 Andrea Ligabue, University of Modena, Italy (CTOCD, AOSOPPA) 96 Ola B. Lutnaes, University of Oslo, Norway (DFT Hessian) 97 Juan I. Melo, University of Buenos Aires, Argentina (LRESC, Relativistic Effects on NMR Shieldings) 98 Kurt V. Mikkelsen, University of Copenhagen, Denmark (MC-SCRF and QM/MM) 99 Rolf H. Myhre, NTNU, Norway (Cholesky, subsystems and ECC2) 100 Christian Neiss, Univ. Erlangen-Nuernberg, Germany (CCSD(R12)) 101 Christian B. Nielsen, University of Copenhagen, Denmark (QM/MM) 102 Patrick Norman, Linkoeping University, Sweden (Cubic response and complex response in RESPONS) 103 Jeppe Olsen, Aarhus University, Denmark (SIRIUS CI/density modules) 104 Jogvan Magnus H. Olsen, Univ. of Southern Denmark, Denmark (Polarizable embedding, PE library, QM/MM) 105 Anders Osted, Copenhagen University, Denmark (QM/MM) 106 Martin J. Packer, University of Sheffield, UK (SOPPA) 107 Filip Pawlowski, Kazimierz Wielki University Poland (CC3) 108 Thomas B. Pedersen, University of Oslo, Norway (Cholesky decomposition) 109 Patricio F. Provasi, University of Northeastern, Argentina (Analysis of coupling constants in localized orbitals) 110 Zilvinas Rinkevicius, KTH Stockholm, Sweden (open-shell DFT, ESR) 111 Elias Rudberg, KTH Stockholm, Sweden (DFT grid and basis info) 112 Torgeir A. Ruden, University of Oslo, Norway (Numerical derivatives in ABACUS) 113 Kenneth Ruud, UiT The Arctic U. of Norway, Norway (DALTON; ABACUS magnetic properties and much more) 114 Pawel Salek, KTH Stockholm, Sweden (DALTON; DFT code) 115 Claire C. M. Samson University of Karlsruhe Germany (Boys localization, r12 integrals in ERI) 116 Alfredo Sanchez de Meras, University of Valencia, Spain (CC module, Cholesky decomposition) 117 Trond Saue, Paul Sabatier University, France (direct Fock matrix construction) 118 Stephan P. A. Sauer, University of Copenhagen, Denmark (SOPPA(CCSD), SOPPA prop., AOSOPPA, vibrational g-factors) 119 Bernd Schimmelpfennig, Forschungszentrum Karlsruhe, Germany (AMFI module) 120 Kristian Sneskov, Aarhus University, Denmark (QM/MM, PE-CC) 121 Arnfinn H. Steindal, UiT The Arctic U. of Norway, Norway (parallel QM/MM) 122 K. O. Sylvester-Hvid, University of Copenhagen, Denmark (MC-SCRF) 123 Peter R. Taylor, VLSCI/Univ. of Melbourne, Australia (Symmetry handling ABACUS, integral transformation) 124 Andrew M. Teale, University of Nottingham, England (DFT-AC, DFT-D) 125 David P. Tew, University of Bristol, England (CCSD(R12)) 126 Olav Vahtras, KTH Stockholm, Sweden (triplet response, spin-orbit, ESR, TDDFT, open-shell DFT) 127 David J. Wilson, La Trobe University, Australia (DFT Hessian and DFT magnetizabilities) 128 Hans Agren, KTH Stockholm, Sweden (SIRIUS module, RESPONS, MC-SCRF solvation model) 129 -------------------------------------------------------------------------------- 130 131 Date and time (Linux) : Sun Sep 8 20:42:48 2013 132 Host name : lpqlx131.ups-tlse.fr 133 134 * Work memory size : 64000000 = 488.28 megabytes. 135 136 * Directories for basis set searches: 137 1) /home/bast/DALTON-2013.0-Source/build/test_cc3_HF_631G_pol 138 2) /home/bast/DALTON-2013.0-Source/build/basis 139 140 141Compilation information 142----------------------- 143 144 Who compiled | bast 145 Host | lpqlx131.ups-tlse.fr 146 System | Linux-3.8.5-201.fc18.x86_64 147 CMake generator | Unix Makefiles 148 Processor | x86_64 149 64-bit integers | OFF 150 MPI | OFF 151 Fortran compiler | /usr/bin/gfortran 152 Fortran compiler version | GNU Fortran (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8) 153 C compiler | /usr/bin/gcc 154 C compiler version | gcc (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8) 155 C++ compiler | /usr/bin/g++ 156 C++ compiler version | g++ (GCC) 4.7.2 20121109 (Red Hat 4.7.2-8) 157 Static linking | OFF 158 Last Git revision | f34203295a86316e27f9e7b44f9b6769c4a046c0 159 Configuration time | 2013-09-08 20:31:27.952056 160 161 162 Content of the .dal input file 163 ---------------------------------- 164 165**DALTON 166.RUN WAVE FUNCTIONS 167**INTEGRAL 168.DIPLEN 169.THETA 170**WAVE FUNCTION 171.CC 172*SCF INPUT 173.THRESH 174 1.0D-12 175.NODIIS 176*ORBITAL INPUT 177.NOSUPSYM 178.MOSTART 179.H1DIAG 180*CC INP 181.CC3 182.PRINT 183 1 184.THRENR 1851.0D-12 186.THRLEQ 1871.0D-12 188.MAX IT 189 100 190*CCLR 191.OPERATOR 192YDIPLEN YDIPLEN 193.FREQUE 194 2 1950.00 0.50 196**END OF DALTON 197 198 199 Content of the .mol file 200 ---------------------------- 201 202BASIS 2036-31G 204CC3 polarizability 205HF molecule 206 2 2 X Y Z 1.00D-15 207 9.0 1 2 1 1 208F 0.0000000000000000 0.000000000 0.08729478 209 1.0 1 1 1 210H 0.0000000000000000 0.000000000 -1.64558444 211 212 213 ******************************************************************* 214 *********** Output from DALTON general input processing *********** 215 ******************************************************************* 216 217 -------------------------------------------------------------------------------- 218 Overall default print level: 0 219 Print level for DALTON.STAT: 1 220 221 HERMIT 1- and 2-electron integral sections will be executed 222 "Old" integral transformation used (limited to max 255 basis functions) 223 Wave function sections will be executed (SIRIUS module) 224 -------------------------------------------------------------------------------- 225 226 227 **************************************************************************** 228 *************** Output of molecule and basis set information *************** 229 **************************************************************************** 230 231 232 The two title cards from your ".mol" input: 233 ------------------------------------------------------------------------ 234 1: CC3 polarizability 235 2: HF molecule 236 ------------------------------------------------------------------------ 237 238 Atomic type no. 1 239 -------------------- 240 Nuclear charge: 9.00000 241 Number of symmetry independent centers: 1 242 Number of basis sets to read; 1 243 Basis set file used for this atomic type with Z = 9 : 244 "/home/bast/DALTON-2013.0-Source/build/basis/6-31G" 245 246 Info about the basis set file: your basis has no documentation. 247 Basis set: 6-31G 248 249 Atomic type no. 2 250 -------------------- 251 Nuclear charge: 1.00000 252 Number of symmetry independent centers: 1 253 Number of basis sets to read; 1 254 Basis set file used for this atomic type with Z = 1 : 255 "/home/bast/DALTON-2013.0-Source/build/basis/6-31G" 256 257 Info about the basis set file: your basis has no documentation. 258 Basis set: 6-31G 259 260 261 SYMGRP: Point group information 262 ------------------------------- 263 264Point group: C2v 265 266 * The point group was generated by: 267 268 Reflection in the yz-plane 269 Reflection in the xz-plane 270 271 * Group multiplication table 272 273 | E C2z Oxz Oyz 274 -----+-------------------- 275 E | E C2z Oxz Oyz 276 C2z | C2z E Oyz Oxz 277 Oxz | Oxz Oyz E C2z 278 Oyz | Oyz Oxz C2z E 279 280 * Character table 281 282 | E C2z Oxz Oyz 283 -----+-------------------- 284 A1 | 1 1 1 1 285 B1 | 1 -1 1 -1 286 B2 | 1 -1 -1 1 287 A2 | 1 1 -1 -1 288 289 * Direct product table 290 291 | A1 B1 B2 A2 292 -----+-------------------- 293 A1 | A1 B1 B2 A2 294 B1 | B1 A1 A2 B2 295 B2 | B2 A2 A1 B1 296 A2 | A2 B2 B1 A1 297 298 299 Isotopic Masses 300 --------------- 301 302 F 18.998403 303 H 1.007825 304 305 Total mass: 20.006228 amu 306 Natural abundance: 99.985 % 307 308 Center-of-mass coordinates (a.u.): 0.000000 0.000000 0.000000 309 310 311 Atoms and basis sets 312 -------------------- 313 314 Number of atom types : 2 315 Total number of atoms: 2 316 317 Basis set used is "6-31G" from the basis set library. 318 319 label atoms charge prim cont basis 320 ---------------------------------------------------------------------- 321 F 1 9.0000 22 9 [10s4p|3s2p] 322 H 1 1.0000 4 2 [4s|2s] 323 ---------------------------------------------------------------------- 324 total: 2 10.0000 26 11 325 ---------------------------------------------------------------------- 326 327 Threshold for neglecting AO integrals: 1.00D-15 328 329 330 Cartesian Coordinates (a.u.) 331 ---------------------------- 332 333 Total number of coordinates: 6 334 F : 1 x 0.0000000000 2 y 0.0000000000 3 z 0.0872947800 335 H : 4 x 0.0000000000 5 y 0.0000000000 6 z -1.6455844400 336 337 338 Symmetry Coordinates 339 -------------------- 340 341 Number of coordinates in each symmetry: 2 2 2 0 342 343 Symmetry A1 ( 1) 344 345 1 F z 3 346 2 H z 6 347 348 Symmetry B1 ( 2) 349 350 3 F x 1 351 4 H x 4 352 353 Symmetry B2 ( 3) 354 355 5 F y 2 356 6 H y 5 357 358 359 Interatomic separations (in Angstrom): 360 -------------------------------------- 361 362 F H 363 ------ ------ 364 F : 0.000000 365 H : 0.917000 0.000000 366 367 368 Max interatomic separation is 0.9170 Angstrom ( 1.7329 Bohr) 369 between atoms 2 and 1, "H " and "F ". 370 371 Min HX interatomic separation is 0.9170 Angstrom ( 1.7329 Bohr) 372 373 374 Bond distances (Angstrom): 375 -------------------------- 376 377 atom 1 atom 2 distance 378 ------ ------ -------- 379 bond distance: H F 0.917000 380 381 382 383 384 Principal moments of inertia (u*A**2) and principal axes 385 -------------------------------------------------------- 386 387 IA 0.000000 0.000000 0.000000 1.000000 388 IB 0.804778 0.000000 1.000000 0.000000 389 IC 0.804778 1.000000 0.000000 0.000000 390 391 392 Rotational constants 393 -------------------- 394 395 The molecule is linear. 396 397 B = 627973.52 MHz ( 20.946942 cm-1) 398 399 400@ Nuclear repulsion energy : 5.193668373495 Hartree 401 402 403 Symmetry Orbitals 404 ----------------- 405 406 Number of orbitals in each symmetry: 7 2 2 0 407 408 409 Symmetry A1 ( 1) 410 411 1 F 1s 1 412 2 F 1s 2 413 3 F 1s 3 414 4 F 2pz 6 415 5 F 2pz 9 416 6 H 1s 10 417 7 H 1s 11 418 419 420 Symmetry B1 ( 2) 421 422 8 F 2px 4 423 9 F 2px 7 424 425 426 Symmetry B2 ( 3) 427 428 10 F 2py 5 429 11 F 2py 8 430 431 432 No orbitals in symmetry A2 ( 4) 433 434 Symmetries of electric field: B1 (2) B2 (3) A1 (1) 435 436 Symmetries of magnetic field: B2 (3) B1 (2) A2 (4) 437 438 439 .---------------------------------------. 440 | Starting in Integral Section (HERMIT) | 441 `---------------------------------------' 442 443 444 445 ************************************************************************* 446 ****************** Output from HERMIT input processing ****************** 447 ************************************************************************* 448 449 450 Default print level: 1 451 452 * Nuclear model: Point charge 453 454 Calculation of one- and two-electron Hamiltonian integrals. 455 456 The following one-electron property integrals are calculated as requested: 457 - overlap integrals 458 - dipole length integrals 459 - traceless quadrupole moment integrals 460 461 Center of mass (bohr): 0.000000000000 0.000000000000 0.000000013595 462 Operator center (bohr): 0.000000000000 0.000000000000 0.000000000000 463 Gauge origin (bohr): 0.000000000000 0.000000000000 0.000000000000 464 Dipole origin (bohr): 0.000000000000 0.000000000000 0.000000000000 465 466 467 ************************************************************************ 468 ************************** Output from HERINT ************************** 469 ************************************************************************ 470 471 472 Threshold for neglecting two-electron integrals: 1.00D-15 473 Number of two-electron integrals written: 677 ( 30.6% ) 474 Megabytes written: 0.014 475 476 >>>> Total CPU time used in HERMIT: 0.00 seconds 477 >>>> Total wall time used in HERMIT: 0.00 seconds 478 479 480 .----------------------------------. 481 | End of Integral Section (HERMIT) | 482 `----------------------------------' 483 484 485 486 .--------------------------------------------. 487 | Starting in Wave Function Section (SIRIUS) | 488 `--------------------------------------------' 489 490 491 ********************************************************************** 492 *SIRIUS* a direct, restricted step, second order MCSCF program * 493 ********************************************************************** 494 495 496 Date and time (Linux) : Sun Sep 8 20:42:48 2013 497 Host name : lpqlx131.ups-tlse.fr 498 499 Title lines from ".mol" input file: 500 CC3 polarizability 501 HF molecule 502 503 Print level on unit LUPRI = 2 is 0 504 Print level on unit LUW4 = 2 is 5 505 506@ (Integral direct) CC calculation. 507 508@ This is a combination run starting with 509@ a restricted, closed shell Hartree-Fock calculation 510 511 512 Initial molecular orbitals are obtained according to 513 ".MOSTART H1DIAG" input option 514 515 Wave function specification 516 ============================ 517 518 For the specification of the Coupled Cluster: see later. 519 520@ For the wave function of type : >>> CC <<< 521@ Number of closed shell electrons 10 522@ Number of electrons in active shells 0 523@ Total charge of the molecule 0 524 525@ Spin multiplicity and 2 M_S 1 0 526 Total number of symmetries 4 527@ Reference state symmetry 1 528 529 Orbital specifications 530 ====================== 531 Abelian symmetry species All | 1 2 3 4 532 --- | --- --- --- --- 533 Total number of orbitals 11 | 7 2 2 0 534 Number of basis functions 11 | 7 2 2 0 535 536 ** Automatic occupation of RHF orbitals ** 537 538 -- Initial occupation of symmetries is determined from diagonal of H1 matrix. 539 -- Initial occupation of symmetries is : 540@ Occupied SCF orbitals 5 | 3 1 1 0 541 542 Maximum number of Fock iterations 0 543 Maximum number of DIIS iterations 0 544 Maximum number of QC-SCF iterations 60 545 Threshold for SCF convergence 1.00D-12 546 547 548 Changes of defaults for CC: 549 --------------------------- 550 551 552 -Iterative triple excitations included 553 -Linear response properties calculated 554 555 556 557 SIRIUS QC-HF optimization (SIROPT) 558 ================================================ 559 560 561 <<< OUTPUT FROM SIRCNO >>> Keyword = ONLYFD 562 563 (Precalculated two-electron integrals are transformed to P-supermatrix elements. 564 Threshold for discarding integrals : 1.00D-15 ) 565 566 567 <<< MACRO ITERATION 1 >>> 568 -------------------------- 569 570 Total MCSCF energy : -93.678666097950668 (MACRO 1) 571 572 - Nuclear repulsion : 5.193668373494606 573 - Inactive energy : -98.872334471445271 574 - Active energy : 0.000000000000000 575 576 Norm of total gradient : 8.327545371430 577 - of CI gradient : 0.000000000000 578 - of orbital gradient : 8.327545371430 579 Virial theorem: -V/T = 1.743130 580@ MULPOP F -0.95; H 0.95; 581 582 (SIRNEO) iteration ( 1, 3) 583 Micro iteration termination criterion met, EVAL(ISTATE+1) = -6.83D+00 584 585 <<< OUTPUT FROM SIRCNO >>> Keyword = FD+NO 586 587 588 589 <<< MACRO ITERATION 2 >>> 590 -------------------------- 591 592 Total MCSCF energy : -98.655321581277249 (MACRO 2) 593 594 - Nuclear repulsion : 5.193668373494606 595 - Inactive energy : -103.848989954771852 596 - Active energy : 0.000000000000000 597 598 Norm of total gradient : 5.403417048074 599 - of CI gradient : 0.000000000000 600 - of orbital gradient : 5.403417048074 601 Virial theorem: -V/T = 1.889788 602@ MULPOP F -0.88; H 0.88; 603 604 (SIRNEO) iteration ( 2, 3) 605 Micro iteration termination criterion met, EVAL(ISTATE+1) = -8.90D-01 606 607 <<< OUTPUT FROM SIRCNO >>> Keyword = FD+NO 608 609 610 611 <<< MACRO ITERATION 3 >>> 612 -------------------------- 613 614 Total MCSCF energy : -99.877932110727230 (MACRO 3) 615 616 - Nuclear repulsion : 5.193668373494606 617 - Inactive energy : -105.071600484221833 618 - Active energy : 0.000000000000000 619 620 Norm of total gradient : 1.094012577486 621 - of CI gradient : 0.000000000000 622 - of orbital gradient : 1.094012577486 623 Virial theorem: -V/T = 2.010657 624@ MULPOP F -0.05; H 0.05; 625 626 Residual norm when dim(red L) = 4 627 NEO root CSF orbital total 628 1 0.00000000 0.04681267 0.04681267 converged 629 630 (NEONEX) NEO vector is converged. 631 632 <<< OUTPUT FROM SIRCNO >>> Keyword = FD+NO 633 634 635 636 <<< MACRO ITERATION 4 >>> 637 -------------------------- 638 639 Total MCSCF energy : -99.982833972759494 (MACRO 4) 640 641 - Nuclear repulsion : 5.193668373494606 642 - Inactive energy : -105.176502346254097 643 - Active energy : 0.000000000000000 644 645 Norm of total gradient : 0.105320694298 646 - of CI gradient : 0.000000000000 647 - of orbital gradient : 0.105320694298 648 Virial theorem: -V/T = 2.000740 649@ MULPOP F -0.48; H 0.48; 650 651 Residual norm when dim(red L) = 3 652 NEO root CSF orbital total 653 1 0.00000000 0.00421722 0.00421722 converged 654 655 (NEONEX) NEO vector is converged. 656 657 <<< OUTPUT FROM SIRCNO >>> Keyword = FD+NO 658 659 660 661 <<< MACRO ITERATION 5 >>> 662 -------------------------- 663 664 Total MCSCF energy : -99.983407832178813 (MACRO 5) 665 666 - Nuclear repulsion : 5.193668373494606 667 - Inactive energy : -105.177076205673416 668 - Active energy : 0.000000000000000 669 670 Norm of total gradient : 0.004129387644 671 - of CI gradient : 0.000000000000 672 - of orbital gradient : 0.004129387644 673 Virial theorem: -V/T = 1.999208 674@ MULPOP F -0.48; H 0.48; 675 676 Residual norm when dim(red L) = 5 677 NEO root CSF orbital total 678 1 0.00000000 0.00000496 0.00000496 converged 679 680 (NEONEX) NEO vector is converged. 681 682 <<< OUTPUT FROM SIRCNO >>> Keyword = FD+NO 683 684 685 686 <<< MACRO ITERATION 6 >>> 687 -------------------------- 688 689 Total MCSCF energy : -99.983408935326651 (MACRO 6) 690 691 - Nuclear repulsion : 5.193668373494606 692 - Inactive energy : -105.177077308821254 693 - Active energy : 0.000000000000000 694 695 Norm of total gradient : 0.000005059686 696 - of CI gradient : 0.000000000000 697 - of orbital gradient : 0.000005059686 698 Virial theorem: -V/T = 1.999208 699@ MULPOP F -0.48; H 0.48; 700 701 Residual norm when dim(red L) = 7 702 NEO root CSF orbital total 703 1 0.00000000 0.00000000 0.00000000 converged 704 705 (NEONEX) NEO vector is converged. 706 707 <<< OUTPUT FROM SIRCNO >>> Keyword = FD+NO 708 709 710 711 <<< MACRO ITERATION 7 >>> 712 -------------------------- 713 714 Total MCSCF energy : -99.983408935327233 (MACRO 7) 715 716 - Nuclear repulsion : 5.193668373494606 717 - Inactive energy : -105.177077308821836 718 - Active energy : 0.000000000000000 719 720 Norm of total gradient : 0.000000000009 721 - of CI gradient : 0.000000000000 722 - of orbital gradient : 0.000000000009 723 Virial theorem: -V/T = 1.999208 724@ MULPOP F -0.48; H 0.48; 725 726 (SIRSTP) Close to convergence, ratio set to one. 727 Energy difference; actual and predicted: -5.82645D-13 -5.93200D-13 728 729 (SIRSTP) Close to convergence, ratio set to one. 730 Energy difference; actual and predicted: 9.82207D-01 731 Close to convergence, ratio set to one. 732 733 Residual norm when dim(red L) = 3 734 NEO root CSF orbital total 735 1 0.00000000 0.00000000 0.00000000 converged 736 737 (NEONEX) NEO vector is converged. 738 739 <<< OUTPUT FROM SIRCNO >>> Keyword = FD+NO 740 741 742 743 <<< MACRO ITERATION 8 >>> 744 -------------------------- 745 746 Total MCSCF energy : -99.983408935327219 (MACRO 8) 747 748 - Nuclear repulsion : 5.193668373494606 749 - Inactive energy : -105.177077308821822 750 - Active energy : 0.000000000000000 751 752 Norm of total gradient : 0.000000000000 753 - of CI gradient : 0.000000000000 754 - of orbital gradient : 0.000000000000 755 Virial theorem: -V/T = 1.999208 756@ MULPOP F -0.48; H 0.48; 757 758 (SIRSTP) Close to convergence, ratio set to one. 759 Energy difference; actual and predicted: 1.42109D-14 -3.14358D-24 760 761 (SIRSTP) Close to convergence, ratio set to one. 762 Energy difference; actual and predicted: -4.52060D+09 763 Close to convergence, ratio set to one. 764 765 *** Optimization control: QC-HF converged *** 766 Number of macro iterations used 8 767 Number of micro iterations used 23 768 Total number of CPU seconds used 0.01 769 770 771 *** SCF orbital energy analysis *** 772 773 Only the five lowest virtual orbital energies printed in each symmetry. 774 775 Number of electrons : 10 776 Orbital occupations : 3 1 1 0 777 778 Sym Hartree-Fock orbital energies 779 780 1 -26.27571500 -1.58960660 -0.73897545 0.20969364 1.11681422 781 1.59320394 2.00611368 782 783 2 -0.63103111 1.48947018 784 785 3 -0.63103111 1.48947018 786 787 E(LUMO) : 0.20969364 au (symmetry 1) 788 - E(HOMO) : -0.63103111 au (symmetry 2) 789 ------------------------------------------ 790 gap : 0.84072475 au 791 792 >>>> CPU and wall time for SCF : 0.007 0.007 793 794 795 .----------------------------------------. 796 | >>> SIRIUS OPTIMIZATION STATISTICS <<< | 797 `----------------------------------------' 798 799 800 801 Date and time (Linux) : Sun Sep 8 20:42:48 2013 802 Host name : lpqlx131.ups-tlse.fr 803 804 805 ITER ITMIC EMCSCF GRDNRM RATIO STPLNG 806 --------------------------------------------------------------------- 807 1 3 -93.678666097951 8.3275453714 0.000000 0.7022268700 808 2 3 -98.655321581277 5.4034170481 0.814512 0.6941495403 809 3 3 -99.877932110727 1.0940125775 0.649461 0.2390892023 810 4 2 -99.982833972759 0.1053206943 1.014946 0.0140232661 811 5 4 -99.983407832179 0.0041293876 1.005328 0.0007971767 812 6 6 -99.983408935327 0.0000050597 1.000050 0.0000000000 813 7 2 -99.983408935327 0.0000000000 1.000000 0.0000000000 814 8 0 -99.983408935327 0.0000000000 1.000000 0.0000000000 815 816 817 ITER INDGCM GCIMAX GCINRM INDGOM GOBMAX GOBNRM GRDNRM 818 ------------------------------------------------------------------------------ 819 1 0 0.000000 0.000000 8 4.466548 8.327545 8.327545 820 2 0 0.000000 0.000000 13 -2.685118 5.403417 5.403417 821 3 0 0.000000 0.000000 9 0.798803 1.094013 1.094013 822 4 0 0.000000 0.000000 14 0.048202 0.105321 0.105321 823 5 0 0.000000 0.000000 3 -0.002098 0.004129 0.004129 824 6 0 0.000000 0.000000 3 0.000003 0.000005 0.000005 825 7 0 0.000000 0.000000 1 0.000000 0.000000 0.000000 826 8 0 0.000000 0.000000 4 0.000000 0.000000 0.000000 827 828 829 ITER ITMIC NCLIN NOLIN TIMMAC TIMITR TIMMIC TIMLIN TIMMIC/ITMIC 830 ------------------------------------------------------------------------------ 831 832 1 3 0 3 0.00 0.00 0.00 0.00 0.00 833 2 3 0 3 0.00 0.00 0.00 0.00 0.00 834 3 3 0 3 0.00 0.00 0.00 0.00 0.00 835 4 2 0 2 0.00 0.00 0.00 0.00 0.00 836 5 4 0 4 0.00 0.00 0.00 0.00 0.00 837 6 6 0 6 0.00 0.00 0.00 0.00 0.00 838 7 2 0 2 0.00 0.00 0.00 0.00 0.00 839 8 0 0 0 0.00 0.00 0.00 0.00 840 841 842 ITER EMY EACTIV EMCSCF 843 844 1 -98.872334471445 0.000000000000 -93.678666097951 845 2 -103.848989954772 0.000000000000 -98.655321581277 846 3 -105.071600484222 0.000000000000 -99.877932110727 847 4 -105.176502346254 0.000000000000 -99.982833972759 848 5 -105.177076205673 0.000000000000 -99.983407832179 849 6 -105.177077308821 0.000000000000 -99.983408935327 850 7 -105.177077308822 0.000000000000 -99.983408935327 851 8 -105.177077308822 0.000000000000 -99.983408935327 852 853 854 ITER DEPRED DEACT RATIO 855 856 1 0.000000000000 0.000000000000 0.000000000000 857 2 -6.109987193722 -4.976655483327 0.814511606250 858 3 -1.882500306959 -1.222610529450 0.649460998721 859 4 -0.103357097194 -0.104901862032 1.014945899989 860 5 -0.000570817827 -0.000573859419 1.005328481556 861 6 -0.000001103092 -0.000001103148 1.000050402497 862 7 -0.000000000001 -0.000000000001 1.000000000000 863 8 -0.000000000000 0.000000000000 1.000000000000 864 865 866 ITER BETA GAMMA STPLNG RTRUST 867 868 1 1.54178847 1.00000000 0.702226869984 0.700000000000 869 2 0.83560172 1.00000000 0.694149540252 0.700000000000 870 3 0.20000000 1.00000000 0.239089202291 0.700000000000 871 4 0.20000000 1.00000000 0.014023266079 0.700000000000 872 5 0.20000000 1.00000000 0.000797176748 0.700000000000 873 6 0.20000000 1.00000000 0.000000000000 0.700000000000 874 7 0.20000000 1.00000000 0.000000000000 0.700000000000 875 8 0.00000000 0.00000000 0.000000000000 0.700000000000 876 877 878 Reduced L root no. 1 879 ITER EVAL EVEC(1) EVEC(2) EVEC(3) 880 ---------------------------------------------------------------------------- 881 1 -13.372684137624 0.678499217314 -0.706685427149 -0.184090133809 882 2 -1.967048030244 0.865018969202 -0.376853698473 -0.289279462324 883 3 -0.008249704448 0.998858683948 -0.037660850969 -0.029270119505 884 4 -0.000045665067 0.999996066983 -0.002681078570 -0.000823307651 885 5 -0.000000088247 0.999999987290 -0.000157855416 -0.000021345263 886 6 -0.000000000000 1.000000000000 -0.000000080672 -0.000000013372 887 7 -0.000000000000 1.000000000000 -0.000000000000 -0.000000000000 888 8 0.000000000000 0.000000000000 0.000000000000 0.000000000000 889 890 891 .-----------------------------------. 892 | >>> Final results from SIRIUS <<< | 893 `-----------------------------------' 894 895 896@ Spin multiplicity: 1 897@ Spatial symmetry: 1 898@ Total charge of molecule: 0 899 900@ Final HF energy: -99.983408935327 901@ Nuclear repulsion: 5.193668373495 902@ Electronic energy: -105.177077308822 903 904@ Final gradient norm: 0.000000000000 905 906 907 Date and time (Linux) : Sun Sep 8 20:42:48 2013 908 Host name : lpqlx131.ups-tlse.fr 909 910 (Only coefficients >0.0100 are printed.) 911 912 Molecular orbitals for symmetry species 1 913 ------------------------------------------ 914 915 Orbital 1 2 3 4 5 916 1 F :1s 0.9955 -0.2305 -0.0617 -0.0630 0.0355 917 2 F :1s 0.0214 0.4972 0.1370 0.0799 -0.1266 918 3 F :1s -0.0058 0.5295 0.2441 0.7310 -0.0010 919 4 F :2pz -0.0015 -0.0843 0.5483 -0.2669 0.4120 920 5 F :2pz 0.0014 -0.0471 0.3497 -0.4490 0.2792 921 6 H :1s 0.0003 0.1324 -0.2930 -0.0957 1.3943 922 7 H :1s 0.0018 -0.0140 -0.1078 -1.3594 -0.8297 923 924 Molecular orbitals for symmetry species 2 925 ------------------------------------------ 926 927 Orbital 1 2 928 1 F :2px 0.6605 -0.9467 929 2 F :2px 0.4902 1.0451 930 931 Molecular orbitals for symmetry species 3 932 ------------------------------------------ 933 934 Orbital 1 2 935 1 F :2py 0.6605 -0.9467 936 2 F :2py 0.4902 1.0451 937 938 939 940 >>>> Total CPU time used in SIRIUS : 0.01 seconds 941 >>>> Total wall time used in SIRIUS : 0.01 seconds 942 943 944 Date and time (Linux) : Sun Sep 8 20:42:48 2013 945 Host name : lpqlx131.ups-tlse.fr 946 947 948 .---------------------------------------. 949 | End of Wave Function Section (SIRIUS) | 950 `---------------------------------------' 951 952 953 954 .------------------------------------------. 955 | Starting in Coupled Cluster Section (CC) | 956 `------------------------------------------' 957 958 959 960 ******************************************************************************* 961 ******************************************************************************* 962 * * 963 * * 964 * START OF COUPLED CLUSTER CALCULATION * 965 * * 966 * * 967 ******************************************************************************* 968 ******************************************************************************* 969 970 971 972 CCR12 ANSATZ = 0 973 974 CCR12 APPROX = 0 975 976 977 978 ******************************************************************* 979 * * 980 *<<<<<<<<<< >>>>>>>>>>* 981 *<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER ENERGY PROGRAM >>>>>>>>>>* 982 *<<<<<<<<<< >>>>>>>>>>* 983 * * 984 ******************************************************************* 985 986 987 The Direct Coupled Cluster Energy Program 988 ----------------------------------------- 989 990 991 Number of t1 amplitudes : 14 992 Number of t2 amplitudes : 164 993 Total number of amplitudes in ccsd : 178 994 995 Iter. 1: Coupled cluster MP2 energy : -100.1121031641595778 996 Iter. 1: Coupled cluster CC3 energy : -100.1123514982621145 997 Iter. 2: Coupled cluster CC3 energy : -100.1150579136371732 998 Iter. 3: Coupled cluster CC3 energy : -100.1153354972539091 999 Iter. 4: Coupled cluster CC3 energy : -100.1153462455241936 1000 Iter. 5: Coupled cluster CC3 energy : -100.1153453606227117 1001 Iter. 6: Coupled cluster CC3 energy : -100.1153430011048329 1002 Iter. 7: Coupled cluster CC3 energy : -100.1153427485189553 1003 Iter. 8: Coupled cluster CC3 energy : -100.1153427698462508 1004 Iter. 9: Coupled cluster CC3 energy : -100.1153427631502808 1005 Iter. 10: Coupled cluster CC3 energy : -100.1153427597562029 1006 Iter. 11: Coupled cluster CC3 energy : -100.1153427592869036 1007 Iter. 12: Coupled cluster CC3 energy : -100.1153427592456637 1008 Iter. 13: Coupled cluster CC3 energy : -100.1153427592364551 1009 Iter. 14: Coupled cluster CC3 energy : -100.1153427592339398 1010 Iter. 15: Coupled cluster CC3 energy : -100.1153427592340250 1011 1012 CC3 energy converged to within 0.10D-11 is -100.115342759234 1013 Final 2-norm of the CC vector function: 8.03316122D-12 1014 1015 1016 1017 1018 1019 +-------------------------------------------------------+ 1020 ! Final results from the Coupled Cluster energy program ! 1021 +-------------------------------------------------------+ 1022 1023 1024 1025 Total SCF energy: -99.9834089353 1026 1027 Total MP2 energy: -100.1121031642 1028 1029 Total CC3 energy: -100.1153427592 1030 1031 1032 1033 1034 +--------------------------------------------+ 1035 ! Calculating singlet intermediates for CCLR ! 1036 +--------------------------------------------+ 1037 1038 1039 1040 E-intermediates calculated 1041 Fock-intermediate calculated 1042 Gamma-intermediate calculated 1043 BF-intermediate calculated 1044 C-intermediate calculated 1045 D-intermediate calculated 1046 1047 1048 1049 1050 ******************************************************************* 1051 * * 1052 *<<<<<<<<<<<<< OUTPUT FROM COUPLED CLUSTER RESPONSE >>>>>>>>>>>>>* 1053 * * 1054 ******************************************************************* 1055 1056 1057 1058 +-------------------------------+ 1059 ! Coupled Cluster model is: CC3 ! 1060 +-------------------------------+ 1061 1062 RPA: call cceq_str 1063 Start vector generated from gradient 1064 RPA: exit cceq_str 1065 1066 1067 1068 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<< 1069 1070 Iter #Vectors time (min) residual 1071 -------------------------------------- 1072 1 1 0.00 0.48E+00 1073 2 1 0.00 0.89E-01 1074 3 1 0.00 0.17E-01 1075 4 1 0.00 0.33E-02 1076 5 1 0.00 0.72E-03 1077 6 1 0.00 0.15E-03 1078 7 1 0.00 0.33E-04 1079 8 1 0.00 0.61E-05 1080 9 1 0.00 0.66E-06 1081 10 1 0.00 0.94E-07 1082 11 1 0.00 0.14E-07 1083 12 1 0.00 0.27E-08 1084 13 1 0.00 0.39E-09 1085 14 1 0.00 0.54E-10 1086 15 1 0.00 0.92E-11 1087 16 1 0.00 0.14E-11 1088 17 1 0.00 0.16E-12 1089 -------------------------------------- 1090 converged in 17 iterations 1091 threshold: 0.10E-11 1092 1093 1094 Routine Time (min) 1095 --------------------------- 1096 CC_TRDRV 0.00 1097 CCRED 0.00 1098 CCNEX 0.00 1099 --------------------------- 1100 Total time 0.00 1101 1102 1103 >>>> Total CPU time used in CCEQ_SOLV: 0.12 seconds 1104 >>>> Total wall time used in CCEQ_SOLV: 0.39 seconds 1105 1106 1107 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<< 1108 1109 1110 1111 1112 ******************************************************************* 1113 * * 1114 *<<<<<<<< OUTPUT FROM PROPERTY AND SYMMETRY ANALYSIS >>>>>>>>>* 1115 * * 1116 ******************************************************************* 1117 1118 1119 Prepare CC3 quadratic response calculation. 1120 1121 1122 Prepare CC3 cubic response calculation. 1123 1124 1125 1126 +-------------------------------+ 1127 ! REQUESTED PROPERTY OPERATORS: ! 1128 +-------------------------------+ 1129 1130 Index Oper. Label Symmetry Transp. PDBS Atom 1131 -------------------------------------------------- 1132 1 HAM0 1 1 T 0 1133 2 YDIPLEN 3 1 F 0 1134 -------------------------------------------------- 1135 1136 1137 1138 1139 +-------------------------------+ 1140 ! REQUESTED EXPECTATION VALUES: ! 1141 +-------------------------------+ 1142 1143 Index Oper. Label Symmetry 1144 ----------------------------- 1145 ----------------------------- 1146 1147 1148 1149 1150 +------------------------------------+ 1151 ! REQUESTED EFFECTIVE FOCK MATRICES: ! 1152 +------------------------------------+ 1153 1154 Index Oper. Label Symmetry 1155 ----------------------------- 1156 ----------------------------- 1157 1158 1159 1160 1161 +-----------------------------------+ 1162 ! REQUESTED FIRST ORDER XI VECTORS: ! 1163 +-----------------------------------+ 1164 1165 Index Oper. Label relaxed Sym. Frequency 1166 -------------------------------------------------- 1167 1 YDIPLEN F 3 -5.000000D-01 1168 2 YDIPLEN F 3 0.000000D+00 1169 3 YDIPLEN F 3 5.000000D-01 1170 -------------------------------------------------- 1171 1172 1173 1174 1175 +----------------------------------+ 1176 ! REQUESTED FIRST ORDER T VECTORS: ! 1177 +----------------------------------+ 1178 1179 Index Oper. Label relaxed Sym. Frequency 1180 -------------------------------------------------- 1181 1 YDIPLEN F 3 -5.000000D-01 1182 2 YDIPLEN F 3 0.000000D+00 1183 3 YDIPLEN F 3 5.000000D-01 1184 -------------------------------------------------- 1185 1186 1187 1188 1189 ******************************************************************* 1190 * SOLVING COUPLED CLUSTER RESPONSE EQUATIONS * 1191 ******************************************************************* 1192 1193 1194 1195 1196 +======================================================================+ 1197 ! RHS & ETA VECTORS TO COMPUTE: ! 1198 +======================================================================+ 1199 | TYPE | # VEC. | NEEDED FOR: | 1200 +----------------------------------------------------------------------+ 1201 | O1 | 3 | first-order amplitude equations | 1202 +======================================================================+ 1203 1204 1205 1206 +======================================================================+ 1207 ! LINEAR EQUATIONS TO SOLVE: ! 1208 +======================================================================+ 1209 | TYPE | # VEC. | EQUATION: | 1210 +----------------------------------------------------------------------+ 1211 | R1 | 3 | first-order amplitude response | 1212 +======================================================================+ 1213 1214 1215 1216 +======================================================================+ 1217 ! F MATRIX TRANSFORMATIONS TO COMPUTE: ! 1218 +======================================================================+ 1219 | TYPE | # VEC. | TRANSFORMED: | 1220 +----------------------------------------------------------------------+ 1221 | F1 | 3 | first-order amplitude response (R1) vector | 1222 +======================================================================+ 1223 1224 1225 1226 1227 ------------------------------------------------------------------- 1228 | OUTPUT FROM AMPLITUDE RHS VECTOR SECTION | 1229 ------------------------------------------------------------------- 1230 1231@ WARNING: ETA1 VECTOR FOR YDIPLEN ( F,-5.00000D-01) IS NOT AVAILABLE. 1232@ WARNING: ETA1 VECTOR FOR YDIPLEN ( F, 0.00000D+00) IS NOT AVAILABLE. 1233@ WARNING: ETA1 VECTOR FOR YDIPLEN ( F, 5.00000D-01) IS NOT AVAILABLE. 1234 1235 1236 For the requested 3 1th.-order amplitude rhs vectors "O1 ". 1237 - 0 D matrix transformations 1238 - 0 C matrix transformations 1239 - 0 B matrix transformations 1240 - 0 C{O} matrix transformations 1241 - 0 B{O} matrix transformations 1242 - 0 A{O} matrix transformations 1243 - 3Xi{O} vector calculations 1244 will be performed. 1245 1246 1247 RPA: call cceq_str 1248 R1 start vector nr. 1 of symmetry 3 generated from gradient 1249 RPA: exit cceq_str 1250 1251 1252 1253 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<< 1254 1255 Iter #Vectors time (min) residual 1256 -------------------------------------- 1257 1 1 0.00 0.33E+00 1258 2 1 0.00 0.46E-01 1259 3 1 0.00 0.80E-02 1260 4 1 0.00 0.13E-02 1261 5 1 0.00 0.24E-03 1262 6 1 0.00 0.26E-04 1263 7 1 0.00 0.26E-05 1264 8 1 0.00 0.34E-06 1265 9 1 0.00 0.40E-07 1266 10 1 0.00 0.32E-08 1267 11 1 0.00 0.38E-09 1268 12 1 0.00 0.42E-10 1269 13 1 0.00 0.36E-11 1270 14 1 0.00 0.23E-12 1271 -------------------------------------- 1272 converged in 14 iterations 1273 threshold: 0.10E-11 1274 1275 1276 Routine Time (min) 1277 --------------------------- 1278 CC_TRDRV 0.00 1279 CCRED 0.00 1280 CCNEX 0.00 1281 --------------------------- 1282 Total time 0.00 1283 1284 1285 >>>> Total CPU time used in CCEQ_SOLV: 0.09 seconds 1286 >>>> Total wall time used in CCEQ_SOLV: 0.22 seconds 1287 1288 1289 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<< 1290 1291 RPA: call cceq_str 1292 R1 start vector nr. 2 of symmetry 3 generated from gradient 1293 RPA: exit cceq_str 1294 1295 1296 1297 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<< 1298 1299 Iter #Vectors time (min) residual 1300 -------------------------------------- 1301 1 1 0.00 0.35E+00 1302 2 1 0.00 0.11E+00 1303 3 1 0.00 0.29E-01 1304 4 1 0.00 0.66E-02 1305 5 1 0.00 0.96E-03 1306 6 1 0.00 0.11E-03 1307 7 1 0.00 0.19E-04 1308 8 1 0.00 0.37E-05 1309 9 1 0.00 0.49E-06 1310 10 1 0.00 0.83E-07 1311 11 1 0.00 0.75E-08 1312 12 1 0.00 0.95E-09 1313 13 1 0.00 0.18E-09 1314 14 1 0.00 0.28E-10 1315 15 1 0.00 0.35E-11 1316 16 1 0.00 0.36E-12 1317 -------------------------------------- 1318 converged in 16 iterations 1319 threshold: 0.10E-11 1320 1321 1322 Routine Time (min) 1323 --------------------------- 1324 CC_TRDRV 0.00 1325 CCRED 0.00 1326 CCNEX 0.00 1327 --------------------------- 1328 Total time 0.00 1329 1330 1331 >>>> Total CPU time used in CCEQ_SOLV: 0.10 seconds 1332 >>>> Total wall time used in CCEQ_SOLV: 0.24 seconds 1333 1334 1335 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<< 1336 1337 RPA: call cceq_str 1338 R1 start vector nr. 3 of symmetry 3 generated from gradient 1339 RPA: exit cceq_str 1340 1341 1342 1343 >>>>> COUPLED CLUSTER RESPONSE SOLVER <<<<< 1344 1345 Iter #Vectors time (min) residual 1346 -------------------------------------- 1347 1 1 0.00 0.44E+00 1348 2 1 0.00 0.47E+00 1349 3 1 0.00 0.14E+00 1350 4 1 0.00 0.76E-01 1351 5 1 0.00 0.21E-01 1352 6 1 0.00 0.31E-02 1353 7 1 0.00 0.77E-03 1354 8 1 0.00 0.18E-03 1355 9 1 0.00 0.40E-04 1356 10 1 0.00 0.11E-04 1357 11 1 0.00 0.32E-05 1358 12 1 0.00 0.79E-06 1359 13 1 0.00 0.69E-07 1360 14 1 0.00 0.15E-07 1361 15 1 0.00 0.38E-08 1362 16 1 0.00 0.62E-09 1363 17 1 0.00 0.18E-09 1364 18 1 0.00 0.40E-10 1365 19 1 0.00 0.57E-11 1366 20 1 0.00 0.11E-11 1367 21 1 0.00 0.21E-12 1368 -------------------------------------- 1369 converged in 21 iterations 1370 threshold: 0.10E-11 1371 1372 1373 Routine Time (min) 1374 --------------------------- 1375 CC_TRDRV 0.00 1376 CCRED 0.00 1377 CCNEX 0.00 1378 --------------------------- 1379 Total time 0.00 1380 1381 1382 >>>> Total CPU time used in CCEQ_SOLV: 0.14 seconds 1383 >>>> Total wall time used in CCEQ_SOLV: 0.31 seconds 1384 1385 1386 >>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<< 1387 1388 1389 Solution of CC response equations completed. 1390 1391 1392 ******************************************************************* 1393 * * 1394 *<<<<<<<< OUTPUT FROM COUPLED CLUSTER LINEAR RESPONSE >>>>>>>>>* 1395 * * 1396 *<<<<<<<< CALCULATION OF SECOND ORDER PROPERTIES >>>>>>>>>* 1397 * * 1398 ******************************************************************* 1399 1400 1401 1402 1403 For the requested 2 second-order properties 1404 - 2 F matrix transformations with R1 vectors 1405 - 0 J matrix transformations with L1 vectors 1406 - 1 ETA and XKSI vector calculations 1407 - 0 X intermediate calculations 1408 - 0 2. order reortho./relax. contributions 1409 will be performed. 1410 1411 1412 1413>>> Time used for 2 F matrix transformations: 0.03 seconds. 1414 1415>>> Time used for 1 O1/X1 vector calculation: 0.02 seconds. 1416 1417>>> Total time for 2 linear response function: 0.05 seconds. 1418 1419 1420 +--------------------------------------------------------+ 1421 ! FINAL CC3 RESULTS FOR THE SECOND-ORDER PROPERTIES ! 1422 +--------------------------------------------------------+ 1423 1424 1425 A operator B operator property 1426------------------------------------------------------------------------ 1427 1428 YDIPLEN (unrel.) -0.0000 YDIPLEN (unrel.) 0.0000 0.68743753 1429 -0.5000 0.5000 0.19660267 1430------------------------------------------------------------------------ 1431 1432 1433 1434 requested model not yet implemented 1435 1436 1437 ******************************************************************************* 1438 ******************************************************************************* 1439 * * 1440 * * 1441 * SUMMARY OF COUPLED CLUSTER CALCULATION * 1442 * * 1443 * * 1444 ******************************************************************************* 1445 ******************************************************************************* 1446 1447 1448 1449 Total SCF energy: -99.9834089353 1450 Total MP2 energy: -100.1121031642 1451 Total CC3 energy: -100.1153427592 1452 1453 1454 ******************************************************************************* 1455 ******************************************************************************* 1456 * * 1457 * * 1458 * END OF COUPLED CLUSTER CALCULATION * 1459 * * 1460 * * 1461 ******************************************************************************* 1462 ******************************************************************************* 1463 1464 1465 >>>> CPU and wall time for CC : 0.604 1.623 1466 1467 1468 Date and time (Linux) : Sun Sep 8 20:42:49 2013 1469 Host name : lpqlx131.ups-tlse.fr 1470 1471 1472 .-------------------------------------. 1473 | End of Coupled Cluster Section (CC) | 1474 `-------------------------------------' 1475 1476 >>>> Total CPU time used in DALTON: 0.62 seconds 1477 >>>> Total wall time used in DALTON: 1.64 seconds 1478 1479 1480 Date and time (Linux) : Sun Sep 8 20:42:49 2013 1481 Host name : lpqlx131.ups-tlse.fr 1482