1 // The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
2 /*
3 This example shows how to train a instance segmentation net using the PASCAL VOC2012
4 dataset. For an introduction to what segmentation is, see the accompanying header file
5 dnn_instance_segmentation_ex.h.
6
7 Instructions how to run the example:
8 1. Download the PASCAL VOC2012 data, and untar it somewhere.
9 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
10 2. Build the dnn_instance_segmentation_train_ex example program.
11 3. Run:
12 ./dnn_instance_segmentation_train_ex /path/to/VOC2012
13 4. Wait while the network is being trained.
14 5. Build the dnn_instance_segmentation_ex example program.
15 6. Run:
16 ./dnn_instance_segmentation_ex /path/to/VOC2012-or-other-images
17
18 It would be a good idea to become familiar with dlib's DNN tooling before reading this
19 example. So you should read dnn_introduction_ex.cpp, dnn_introduction2_ex.cpp,
20 and dnn_semantic_segmentation_train_ex.cpp before reading this example program.
21 */
22
23 #include "dnn_instance_segmentation_ex.h"
24 #include "pascal_voc_2012.h"
25
26 #include <iostream>
27 #include <dlib/data_io.h>
28 #include <dlib/image_transforms.h>
29 #include <dlib/dir_nav.h>
30 #include <iterator>
31 #include <thread>
32 #if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
33 #include <execution>
34 #endif // __cplusplus >= 201703L
35
36 using namespace std;
37 using namespace dlib;
38
39 // ----------------------------------------------------------------------------------------
40
41 // A single training sample for detection. A mini-batch comprises many of these.
42 struct det_training_sample
43 {
44 matrix<rgb_pixel> input_image;
45 std::vector<dlib::mmod_rect> mmod_rects;
46 };
47
48 // A single training sample for segmentation. A mini-batch comprises many of these.
49 struct seg_training_sample
50 {
51 matrix<rgb_pixel> input_image;
52 matrix<float> label_image; // The ground-truth label of each pixel. (+1 or -1)
53 };
54
55 // ----------------------------------------------------------------------------------------
56
is_instance_pixel(const dlib::rgb_pixel & rgb_label)57 bool is_instance_pixel(const dlib::rgb_pixel& rgb_label)
58 {
59 if (rgb_label == dlib::rgb_pixel(0, 0, 0))
60 return false; // Background
61 if (rgb_label == dlib::rgb_pixel(224, 224, 192))
62 return false; // The cream-colored `void' label is used in border regions and to mask difficult objects
63
64 return true;
65 }
66
67 // Provide hash function for dlib::rgb_pixel
68 namespace std {
69 template <>
70 struct hash<dlib::rgb_pixel>
71 {
operator ()std::hash72 std::size_t operator()(const dlib::rgb_pixel& p) const
73 {
74 return (static_cast<uint32_t>(p.red) << 16)
75 | (static_cast<uint32_t>(p.green) << 8)
76 | (static_cast<uint32_t>(p.blue));
77 }
78 };
79 }
80
81 struct truth_instance
82 {
83 dlib::rgb_pixel rgb_label;
84 dlib::mmod_rect mmod_rect;
85 };
86
rgb_label_images_to_truth_instances(const dlib::matrix<dlib::rgb_pixel> & instance_label_image,const dlib::matrix<dlib::rgb_pixel> & class_label_image)87 std::vector<truth_instance> rgb_label_images_to_truth_instances(
88 const dlib::matrix<dlib::rgb_pixel>& instance_label_image,
89 const dlib::matrix<dlib::rgb_pixel>& class_label_image
90 )
91 {
92 std::unordered_map<dlib::rgb_pixel, mmod_rect> result_map;
93
94 DLIB_CASSERT(instance_label_image.nr() == class_label_image.nr());
95 DLIB_CASSERT(instance_label_image.nc() == class_label_image.nc());
96
97 const auto nr = instance_label_image.nr();
98 const auto nc = instance_label_image.nc();
99
100 for (int r = 0; r < nr; ++r)
101 {
102 for (int c = 0; c < nc; ++c)
103 {
104 const auto rgb_instance_label = instance_label_image(r, c);
105
106 if (!is_instance_pixel(rgb_instance_label))
107 continue;
108
109 const auto rgb_class_label = class_label_image(r, c);
110 const Voc2012class& voc2012_class = find_voc2012_class(rgb_class_label);
111
112 const auto i = result_map.find(rgb_instance_label);
113 if (i == result_map.end())
114 {
115 // Encountered a new instance
116 result_map[rgb_instance_label] = rectangle(c, r, c, r);
117 result_map[rgb_instance_label].label = voc2012_class.classlabel;
118 }
119 else
120 {
121 // Not the first occurrence - update the rect
122 auto& rect = i->second.rect;
123
124 if (c < rect.left())
125 rect.set_left(c);
126 else if (c > rect.right())
127 rect.set_right(c);
128
129 if (r > rect.bottom())
130 rect.set_bottom(r);
131
132 DLIB_CASSERT(i->second.label == voc2012_class.classlabel);
133 }
134 }
135 }
136
137 std::vector<truth_instance> flat_result;
138 flat_result.reserve(result_map.size());
139
140 for (const auto& i : result_map) {
141 flat_result.push_back(truth_instance{
142 i.first, i.second
143 });
144 }
145
146 return flat_result;
147 }
148
149 // ----------------------------------------------------------------------------------------
150
151 struct truth_image
152 {
153 image_info info;
154 std::vector<truth_instance> truth_instances;
155 };
156
extract_mmod_rects(const std::vector<truth_instance> & truth_instances)157 std::vector<mmod_rect> extract_mmod_rects(
158 const std::vector<truth_instance>& truth_instances
159 )
160 {
161 std::vector<mmod_rect> mmod_rects(truth_instances.size());
162
163 std::transform(
164 truth_instances.begin(),
165 truth_instances.end(),
166 mmod_rects.begin(),
167 [](const truth_instance& truth) { return truth.mmod_rect; }
168 );
169
170 return mmod_rects;
171 }
172
extract_mmod_rect_vectors(const std::vector<truth_image> & truth_images)173 std::vector<std::vector<mmod_rect>> extract_mmod_rect_vectors(
174 const std::vector<truth_image>& truth_images
175 )
176 {
177 std::vector<std::vector<mmod_rect>> mmod_rects(truth_images.size());
178
179 const auto extract_mmod_rects_from_truth_image = [](const truth_image& truth_image)
180 {
181 return extract_mmod_rects(truth_image.truth_instances);
182 };
183
184 std::transform(
185 truth_images.begin(),
186 truth_images.end(),
187 mmod_rects.begin(),
188 extract_mmod_rects_from_truth_image
189 );
190
191 return mmod_rects;
192 }
193
train_detection_network(const std::vector<truth_image> & truth_images,unsigned int det_minibatch_size)194 det_bnet_type train_detection_network(
195 const std::vector<truth_image>& truth_images,
196 unsigned int det_minibatch_size
197 )
198 {
199 const double initial_learning_rate = 0.1;
200 const double weight_decay = 0.0001;
201 const double momentum = 0.9;
202 const double min_detector_window_overlap_iou = 0.65;
203
204 const int target_size = 70;
205 const int min_target_size = 30;
206
207 mmod_options options(
208 extract_mmod_rect_vectors(truth_images),
209 target_size, min_target_size,
210 min_detector_window_overlap_iou
211 );
212
213 options.overlaps_ignore = test_box_overlap(0.5, 0.9);
214
215 det_bnet_type det_net(options);
216
217 det_net.subnet().layer_details().set_num_filters(options.detector_windows.size());
218
219 dlib::pipe<det_training_sample> data(200);
220 auto f = [&data, &truth_images, target_size, min_target_size](time_t seed)
221 {
222 dlib::rand rnd(time(0) + seed);
223 matrix<rgb_pixel> input_image;
224
225 random_cropper cropper;
226 cropper.set_seed(time(0));
227 cropper.set_chip_dims(350, 350);
228
229 // Usually you want to give the cropper whatever min sizes you passed to the
230 // mmod_options constructor, or very slightly smaller sizes, which is what we do here.
231 cropper.set_min_object_size(target_size - 2, min_target_size - 2);
232 cropper.set_max_rotation_degrees(2);
233
234 det_training_sample temp;
235
236 while (data.is_enabled())
237 {
238 // Pick a random input image.
239 const auto random_index = rnd.get_random_32bit_number() % truth_images.size();
240 const auto& truth_image = truth_images[random_index];
241
242 // Load the input image.
243 load_image(input_image, truth_image.info.image_filename);
244
245 // Get a random crop of the input.
246 const auto mmod_rects = extract_mmod_rects(truth_image.truth_instances);
247 cropper(input_image, mmod_rects, temp.input_image, temp.mmod_rects);
248
249 disturb_colors(temp.input_image, rnd);
250
251 // Push the result to be used by the trainer.
252 data.enqueue(temp);
253 }
254 };
255 std::thread data_loader1([f]() { f(1); });
256 std::thread data_loader2([f]() { f(2); });
257 std::thread data_loader3([f]() { f(3); });
258 std::thread data_loader4([f]() { f(4); });
259
260 const auto stop_data_loaders = [&]()
261 {
262 data.disable();
263 data_loader1.join();
264 data_loader2.join();
265 data_loader3.join();
266 data_loader4.join();
267 };
268
269 dnn_trainer<det_bnet_type> det_trainer(det_net, sgd(weight_decay, momentum));
270
271 try
272 {
273 det_trainer.be_verbose();
274 det_trainer.set_learning_rate(initial_learning_rate);
275 det_trainer.set_synchronization_file("pascal_voc2012_det_trainer_state_file.dat", std::chrono::minutes(10));
276 det_trainer.set_iterations_without_progress_threshold(5000);
277
278 // Output training parameters.
279 cout << det_trainer << endl;
280
281 std::vector<matrix<rgb_pixel>> samples;
282 std::vector<std::vector<mmod_rect>> labels;
283
284 // The main training loop. Keep making mini-batches and giving them to the trainer.
285 // We will run until the learning rate becomes small enough.
286 while (det_trainer.get_learning_rate() >= 1e-4)
287 {
288 samples.clear();
289 labels.clear();
290
291 // make a mini-batch
292 det_training_sample temp;
293 while (samples.size() < det_minibatch_size)
294 {
295 data.dequeue(temp);
296
297 samples.push_back(std::move(temp.input_image));
298 labels.push_back(std::move(temp.mmod_rects));
299 }
300
301 det_trainer.train_one_step(samples, labels);
302 }
303 }
304 catch (std::exception&)
305 {
306 stop_data_loaders();
307 throw;
308 }
309
310 // Training done, tell threads to stop and make sure to wait for them to finish before
311 // moving on.
312 stop_data_loaders();
313
314 // also wait for threaded processing to stop in the trainer.
315 det_trainer.get_net();
316
317 det_net.clean();
318
319 return det_net;
320 }
321
322 // ----------------------------------------------------------------------------------------
323
keep_only_current_instance(const matrix<rgb_pixel> & rgb_label_image,const rgb_pixel rgb_label)324 matrix<float> keep_only_current_instance(const matrix<rgb_pixel>& rgb_label_image, const rgb_pixel rgb_label)
325 {
326 const auto nr = rgb_label_image.nr();
327 const auto nc = rgb_label_image.nc();
328
329 matrix<float> result(nr, nc);
330
331 for (long r = 0; r < nr; ++r)
332 {
333 for (long c = 0; c < nc; ++c)
334 {
335 const auto& index = rgb_label_image(r, c);
336 if (index == rgb_label)
337 result(r, c) = +1;
338 else if (index == dlib::rgb_pixel(224, 224, 192))
339 result(r, c) = 0;
340 else
341 result(r, c) = -1;
342 }
343 }
344
345 return result;
346 }
347
train_segmentation_network(const std::vector<truth_image> & truth_images,unsigned int seg_minibatch_size,const std::string & classlabel)348 seg_bnet_type train_segmentation_network(
349 const std::vector<truth_image>& truth_images,
350 unsigned int seg_minibatch_size,
351 const std::string& classlabel
352 )
353 {
354 seg_bnet_type seg_net;
355
356 const double initial_learning_rate = 0.1;
357 const double weight_decay = 0.0001;
358 const double momentum = 0.9;
359
360 const std::string synchronization_file_name
361 = "pascal_voc2012_seg_trainer_state_file"
362 + (classlabel.empty() ? "" : ("_" + classlabel))
363 + ".dat";
364
365 dnn_trainer<seg_bnet_type> seg_trainer(seg_net, sgd(weight_decay, momentum));
366 seg_trainer.be_verbose();
367 seg_trainer.set_learning_rate(initial_learning_rate);
368 seg_trainer.set_synchronization_file(synchronization_file_name, std::chrono::minutes(10));
369 seg_trainer.set_iterations_without_progress_threshold(2000);
370 set_all_bn_running_stats_window_sizes(seg_net, 1000);
371
372 // Output training parameters.
373 cout << seg_trainer << endl;
374
375 std::vector<matrix<rgb_pixel>> samples;
376 std::vector<matrix<float>> labels;
377
378 // Start a bunch of threads that read images from disk and pull out random crops. It's
379 // important to be sure to feed the GPU fast enough to keep it busy. Using multiple
380 // thread for this kind of data preparation helps us do that. Each thread puts the
381 // crops into the data queue.
382 dlib::pipe<seg_training_sample> data(200);
383 auto f = [&data, &truth_images](time_t seed)
384 {
385 dlib::rand rnd(time(0) + seed);
386 matrix<rgb_pixel> input_image;
387 matrix<rgb_pixel> rgb_label_image;
388 matrix<rgb_pixel> rgb_label_chip;
389 seg_training_sample temp;
390 while (data.is_enabled())
391 {
392 // Pick a random input image.
393 const auto random_index = rnd.get_random_32bit_number() % truth_images.size();
394 const auto& truth_image = truth_images[random_index];
395 const auto image_truths = truth_image.truth_instances;
396
397 if (!image_truths.empty())
398 {
399 const image_info& info = truth_image.info;
400
401 // Load the input image.
402 load_image(input_image, info.image_filename);
403
404 // Load the ground-truth (RGB) instance labels.
405 load_image(rgb_label_image, info.instance_label_filename);
406
407 // Pick a random training instance.
408 const auto& truth_instance = image_truths[rnd.get_random_32bit_number() % image_truths.size()];
409 const auto& truth_rect = truth_instance.mmod_rect.rect;
410 const auto cropping_rect = get_cropping_rect(truth_rect);
411
412 // Pick a random crop around the instance.
413 const auto max_x_translate_amount = static_cast<long>(truth_rect.width() / 10.0);
414 const auto max_y_translate_amount = static_cast<long>(truth_rect.height() / 10.0);
415
416 const auto random_translate = point(
417 rnd.get_integer_in_range(-max_x_translate_amount, max_x_translate_amount + 1),
418 rnd.get_integer_in_range(-max_y_translate_amount, max_y_translate_amount + 1)
419 );
420
421 const rectangle random_rect(
422 cropping_rect.left() + random_translate.x(),
423 cropping_rect.top() + random_translate.y(),
424 cropping_rect.right() + random_translate.x(),
425 cropping_rect.bottom() + random_translate.y()
426 );
427
428 const chip_details chip_details(random_rect, chip_dims(seg_dim, seg_dim));
429
430 // Crop the input image.
431 extract_image_chip(input_image, chip_details, temp.input_image, interpolate_bilinear());
432
433 disturb_colors(temp.input_image, rnd);
434
435 // Crop the labels correspondingly. However, note that here bilinear
436 // interpolation would make absolutely no sense - you wouldn't say that
437 // a bicycle is half-way between an aeroplane and a bird, would you?
438 extract_image_chip(rgb_label_image, chip_details, rgb_label_chip, interpolate_nearest_neighbor());
439
440 // Clear pixels not related to the current instance.
441 temp.label_image = keep_only_current_instance(rgb_label_chip, truth_instance.rgb_label);
442
443 // Push the result to be used by the trainer.
444 data.enqueue(temp);
445 }
446 else
447 {
448 // TODO: use background samples as well
449 }
450 }
451 };
452 std::thread data_loader1([f]() { f(1); });
453 std::thread data_loader2([f]() { f(2); });
454 std::thread data_loader3([f]() { f(3); });
455 std::thread data_loader4([f]() { f(4); });
456
457 const auto stop_data_loaders = [&]()
458 {
459 data.disable();
460 data_loader1.join();
461 data_loader2.join();
462 data_loader3.join();
463 data_loader4.join();
464 };
465
466 try
467 {
468 // The main training loop. Keep making mini-batches and giving them to the trainer.
469 // We will run until the learning rate has dropped by a factor of 1e-4.
470 while (seg_trainer.get_learning_rate() >= 1e-4)
471 {
472 samples.clear();
473 labels.clear();
474
475 // make a mini-batch
476 seg_training_sample temp;
477 while (samples.size() < seg_minibatch_size)
478 {
479 data.dequeue(temp);
480
481 samples.push_back(std::move(temp.input_image));
482 labels.push_back(std::move(temp.label_image));
483 }
484
485 seg_trainer.train_one_step(samples, labels);
486 }
487 }
488 catch (std::exception&)
489 {
490 stop_data_loaders();
491 throw;
492 }
493
494 // Training done, tell threads to stop and make sure to wait for them to finish before
495 // moving on.
496 stop_data_loaders();
497
498 // also wait for threaded processing to stop in the trainer.
499 seg_trainer.get_net();
500
501 seg_net.clean();
502
503 return seg_net;
504 }
505
506 // ----------------------------------------------------------------------------------------
507
ignore_overlapped_boxes(std::vector<truth_instance> & truth_instances,const test_box_overlap & overlaps)508 int ignore_overlapped_boxes(
509 std::vector<truth_instance>& truth_instances,
510 const test_box_overlap& overlaps
511 )
512 /*!
513 ensures
514 - Whenever two rectangles in boxes overlap, according to overlaps(), we set the
515 smallest box to ignore.
516 - returns the number of newly ignored boxes.
517 !*/
518 {
519 int num_ignored = 0;
520 for (size_t i = 0, end = truth_instances.size(); i < end; ++i)
521 {
522 auto& box_i = truth_instances[i].mmod_rect;
523 if (box_i.ignore)
524 continue;
525 for (size_t j = i+1; j < end; ++j)
526 {
527 auto& box_j = truth_instances[j].mmod_rect;
528 if (box_j.ignore)
529 continue;
530 if (overlaps(box_i, box_j))
531 {
532 ++num_ignored;
533 if(box_i.rect.area() < box_j.rect.area())
534 box_i.ignore = true;
535 else
536 box_j.ignore = true;
537 }
538 }
539 }
540 return num_ignored;
541 }
542
load_truth_instances(const image_info & info)543 std::vector<truth_instance> load_truth_instances(const image_info& info)
544 {
545 matrix<rgb_pixel> instance_label_image;
546 matrix<rgb_pixel> class_label_image;
547
548 load_image(instance_label_image, info.instance_label_filename);
549 load_image(class_label_image, info.class_label_filename);
550
551 return rgb_label_images_to_truth_instances(instance_label_image, class_label_image);
552 }
553
load_all_truth_instances(const std::vector<image_info> & listing)554 std::vector<std::vector<truth_instance>> load_all_truth_instances(const std::vector<image_info>& listing)
555 {
556 std::vector<std::vector<truth_instance>> truth_instances(listing.size());
557
558 std::transform(
559 #if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
560 std::execution::par,
561 #endif // __cplusplus >= 201703L
562 listing.begin(),
563 listing.end(),
564 truth_instances.begin(),
565 load_truth_instances
566 );
567
568 return truth_instances;
569 }
570
571 // ----------------------------------------------------------------------------------------
572
filter_based_on_classlabel(const std::vector<truth_image> & truth_images,const std::vector<std::string> & desired_classlabels)573 std::vector<truth_image> filter_based_on_classlabel(
574 const std::vector<truth_image>& truth_images,
575 const std::vector<std::string>& desired_classlabels
576 )
577 {
578 std::vector<truth_image> result;
579
580 const auto represents_desired_class = [&desired_classlabels](const truth_instance& truth_instance) {
581 return std::find(
582 desired_classlabels.begin(),
583 desired_classlabels.end(),
584 truth_instance.mmod_rect.label
585 ) != desired_classlabels.end();
586 };
587
588 for (const auto& input : truth_images)
589 {
590 const auto has_desired_class = std::any_of(
591 input.truth_instances.begin(),
592 input.truth_instances.end(),
593 represents_desired_class
594 );
595
596 if (has_desired_class) {
597
598 // NB: This keeps only MMOD rects belonging to any of the desired classes.
599 // A reasonable alternative could be to keep all rects, but mark those
600 // belonging in other classes to be ignored during training.
601 std::vector<truth_instance> temp;
602 std::copy_if(
603 input.truth_instances.begin(),
604 input.truth_instances.end(),
605 std::back_inserter(temp),
606 represents_desired_class
607 );
608
609 result.push_back(truth_image{ input.info, temp });
610 }
611 }
612
613 return result;
614 }
615
616 // Ignore truth boxes that overlap too much, are too small, or have a large aspect ratio.
ignore_some_truth_boxes(std::vector<truth_image> & truth_images)617 void ignore_some_truth_boxes(std::vector<truth_image>& truth_images)
618 {
619 for (auto& i : truth_images)
620 {
621 auto& truth_instances = i.truth_instances;
622
623 ignore_overlapped_boxes(truth_instances, test_box_overlap(0.90, 0.95));
624
625 for (auto& truth : truth_instances)
626 {
627 if (truth.mmod_rect.ignore)
628 continue;
629
630 const auto& rect = truth.mmod_rect.rect;
631
632 constexpr unsigned long min_width = 35;
633 constexpr unsigned long min_height = 35;
634 if (rect.width() < min_width && rect.height() < min_height)
635 {
636 truth.mmod_rect.ignore = true;
637 continue;
638 }
639
640 constexpr double max_aspect_ratio_width_to_height = 3.0;
641 constexpr double max_aspect_ratio_height_to_width = 1.5;
642 const double aspect_ratio_width_to_height = rect.width() / static_cast<double>(rect.height());
643 const double aspect_ratio_height_to_width = 1.0 / aspect_ratio_width_to_height;
644 const bool is_aspect_ratio_too_large
645 = aspect_ratio_width_to_height > max_aspect_ratio_width_to_height
646 || aspect_ratio_height_to_width > max_aspect_ratio_height_to_width;
647
648 if (is_aspect_ratio_too_large)
649 truth.mmod_rect.ignore = true;
650 }
651 }
652 }
653
654 // Filter images that have no (non-ignored) truth
filter_images_with_no_truth(const std::vector<truth_image> & truth_images)655 std::vector<truth_image> filter_images_with_no_truth(const std::vector<truth_image>& truth_images)
656 {
657 std::vector<truth_image> result;
658
659 for (const auto& truth_image : truth_images)
660 {
661 const auto ignored = [](const truth_instance& truth) { return truth.mmod_rect.ignore; };
662 const auto& truth_instances = truth_image.truth_instances;
663 if (!std::all_of(truth_instances.begin(), truth_instances.end(), ignored))
664 result.push_back(truth_image);
665 }
666
667 return result;
668 }
669
main(int argc,char ** argv)670 int main(int argc, char** argv) try
671 {
672 if (argc < 2)
673 {
674 cout << "To run this program you need a copy of the PASCAL VOC2012 dataset." << endl;
675 cout << endl;
676 cout << "You call this program like this: " << endl;
677 cout << "./dnn_instance_segmentation_train_ex /path/to/VOC2012 [det-minibatch-size] [seg-minibatch-size] [class-1] [class-2] [class-3] ..." << endl;
678 return 1;
679 }
680
681 cout << "\nSCANNING PASCAL VOC2012 DATASET\n" << endl;
682
683 const auto listing = get_pascal_voc2012_train_listing(argv[1]);
684 cout << "images in entire dataset: " << listing.size() << endl;
685 if (listing.size() == 0)
686 {
687 cout << "Didn't find the VOC2012 dataset. " << endl;
688 return 1;
689 }
690
691 // mini-batches smaller than the default can be used with GPUs having less memory
692 const unsigned int det_minibatch_size = argc >= 3 ? std::stoi(argv[2]) : 35;
693 const unsigned int seg_minibatch_size = argc >= 4 ? std::stoi(argv[3]) : 100;
694 cout << "det mini-batch size: " << det_minibatch_size << endl;
695 cout << "seg mini-batch size: " << seg_minibatch_size << endl;
696
697 std::vector<std::string> desired_classlabels;
698
699 for (int arg = 4; arg < argc; ++arg)
700 desired_classlabels.push_back(argv[arg]);
701
702 if (desired_classlabels.empty())
703 {
704 desired_classlabels.push_back("bicycle");
705 desired_classlabels.push_back("car");
706 desired_classlabels.push_back("cat");
707 }
708
709 cout << "desired classlabels:";
710 for (const auto& desired_classlabel : desired_classlabels)
711 cout << " " << desired_classlabel;
712 cout << endl;
713
714 // extract the MMOD rects
715 cout << endl << "Extracting all truth instances...";
716 const auto truth_instances = load_all_truth_instances(listing);
717 cout << " Done!" << endl << endl;
718
719 DLIB_CASSERT(listing.size() == truth_instances.size());
720
721 std::vector<truth_image> original_truth_images;
722 for (size_t i = 0, end = listing.size(); i < end; ++i)
723 {
724 original_truth_images.push_back(truth_image{
725 listing[i], truth_instances[i]
726 });
727 }
728
729 auto truth_images_filtered_by_class = filter_based_on_classlabel(original_truth_images, desired_classlabels);
730
731 cout << "images in dataset filtered by class: " << truth_images_filtered_by_class.size() << endl;
732
733 ignore_some_truth_boxes(truth_images_filtered_by_class);
734 const auto truth_images = filter_images_with_no_truth(truth_images_filtered_by_class);
735
736 cout << "images in dataset after ignoring some truth boxes: " << truth_images.size() << endl;
737
738 // First train an object detector network (loss_mmod).
739 cout << endl << "Training detector network:" << endl;
740 const auto det_net = train_detection_network(truth_images, det_minibatch_size);
741
742 // Then train mask predictors (segmentation).
743 std::map<std::string, seg_bnet_type> seg_nets_by_class;
744
745 // This flag controls if a separate mask predictor is trained for each class.
746 // Note that it would also be possible to train a separate mask predictor for
747 // class groups, each containing somehow similar classes -- for example, one
748 // mask predictor for cars and buses, another for cats and dogs, and so on.
749 constexpr bool separate_seg_net_for_each_class = true;
750
751 if (separate_seg_net_for_each_class)
752 {
753 for (const auto& classlabel : desired_classlabels)
754 {
755 // Consider only the truth images belonging to this class.
756 const auto class_images = filter_based_on_classlabel(truth_images, { classlabel });
757
758 cout << endl << "Training segmentation network for class " << classlabel << ":" << endl;
759 seg_nets_by_class[classlabel] = train_segmentation_network(class_images, seg_minibatch_size, classlabel);
760 }
761 }
762 else
763 {
764 cout << "Training a single segmentation network:" << endl;
765 seg_nets_by_class[""] = train_segmentation_network(truth_images, seg_minibatch_size, "");
766 }
767
768 cout << "Saving networks" << endl;
769 serialize(instance_segmentation_net_filename) << det_net << seg_nets_by_class;
770 }
771
772 catch(std::exception& e)
773 {
774 cout << e.what() << endl;
775 }
776
777