1      SUBROUTINE SLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
2*
3*  -- LAPACK routine (version 3.0) --
4*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
5*     Courant Institute, Argonne National Lab, and Rice University
6*     June 30, 1999
7*
8*     .. Scalar Arguments ..
9      INTEGER            INFO, N
10      REAL               LAMBDA, TOL
11*     ..
12*     .. Array Arguments ..
13      INTEGER            IN( * )
14      REAL               A( * ), B( * ), C( * ), D( * )
15*     ..
16*
17*  Purpose
18*  =======
19*
20*  SLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
21*  tridiagonal matrix and lambda is a scalar, as
22*
23*     T - lambda*I = PLU,
24*
25*  where P is a permutation matrix, L is a unit lower tridiagonal matrix
26*  with at most one non-zero sub-diagonal elements per column and U is
27*  an upper triangular matrix with at most two non-zero super-diagonal
28*  elements per column.
29*
30*  The factorization is obtained by Gaussian elimination with partial
31*  pivoting and implicit row scaling.
32*
33*  The parameter LAMBDA is included in the routine so that SLAGTF may
34*  be used, in conjunction with SLAGTS, to obtain eigenvectors of T by
35*  inverse iteration.
36*
37*  Arguments
38*  =========
39*
40*  N       (input) INTEGER
41*          The order of the matrix T.
42*
43*  A       (input/output) REAL array, dimension (N)
44*          On entry, A must contain the diagonal elements of T.
45*
46*          On exit, A is overwritten by the n diagonal elements of the
47*          upper triangular matrix U of the factorization of T.
48*
49*  LAMBDA  (input) REAL
50*          On entry, the scalar lambda.
51*
52*  B       (input/output) REAL array, dimension (N-1)
53*          On entry, B must contain the (n-1) super-diagonal elements of
54*          T.
55*
56*          On exit, B is overwritten by the (n-1) super-diagonal
57*          elements of the matrix U of the factorization of T.
58*
59*  C       (input/output) REAL array, dimension (N-1)
60*          On entry, C must contain the (n-1) sub-diagonal elements of
61*          T.
62*
63*          On exit, C is overwritten by the (n-1) sub-diagonal elements
64*          of the matrix L of the factorization of T.
65*
66*  TOL     (input) REAL
67*          On entry, a relative tolerance used to indicate whether or
68*          not the matrix (T - lambda*I) is nearly singular. TOL should
69*          normally be chose as approximately the largest relative error
70*          in the elements of T. For example, if the elements of T are
71*          correct to about 4 significant figures, then TOL should be
72*          set to about 5*10**(-4). If TOL is supplied as less than eps,
73*          where eps is the relative machine precision, then the value
74*          eps is used in place of TOL.
75*
76*  D       (output) REAL array, dimension (N-2)
77*          On exit, D is overwritten by the (n-2) second super-diagonal
78*          elements of the matrix U of the factorization of T.
79*
80*  IN      (output) INTEGER array, dimension (N)
81*          On exit, IN contains details of the permutation matrix P. If
82*          an interchange occurred at the kth step of the elimination,
83*          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
84*          returns the smallest positive integer j such that
85*
86*             abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
87*
88*          where norm( A(j) ) denotes the sum of the absolute values of
89*          the jth row of the matrix A. If no such j exists then IN(n)
90*          is returned as zero. If IN(n) is returned as positive, then a
91*          diagonal element of U is small, indicating that
92*          (T - lambda*I) is singular or nearly singular,
93*
94*  INFO    (output) INTEGER
95*          = 0   : successful exit
96*          .lt. 0: if INFO = -k, the kth argument had an illegal value
97*
98* =====================================================================
99*
100*     .. Parameters ..
101      REAL               ZERO
102      PARAMETER          ( ZERO = 0.0E+0 )
103*     ..
104*     .. Local Scalars ..
105      INTEGER            K
106      REAL               EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL
107*     ..
108*     .. Intrinsic Functions ..
109      INTRINSIC          ABS, MAX
110*     ..
111*     .. External Functions ..
112      REAL               SLAMCH
113      EXTERNAL           SLAMCH
114*     ..
115*     .. External Subroutines ..
116      EXTERNAL           XERBLA
117*     ..
118*     .. Executable Statements ..
119*
120      INFO = 0
121      IF( N.LT.0 ) THEN
122         INFO = -1
123         CALL XERBLA( 'SLAGTF', -INFO )
124         RETURN
125      END IF
126*
127      IF( N.EQ.0 )
128     $   RETURN
129*
130      A( 1 ) = A( 1 ) - LAMBDA
131      IN( N ) = 0
132      IF( N.EQ.1 ) THEN
133         IF( A( 1 ).EQ.ZERO )
134     $      IN( 1 ) = 1
135         RETURN
136      END IF
137*
138      EPS = SLAMCH( 'Epsilon' )
139*
140      TL = MAX( TOL, EPS )
141      SCALE1 = ABS( A( 1 ) ) + ABS( B( 1 ) )
142      DO 10 K = 1, N - 1
143         A( K+1 ) = A( K+1 ) - LAMBDA
144         SCALE2 = ABS( C( K ) ) + ABS( A( K+1 ) )
145         IF( K.LT.( N-1 ) )
146     $      SCALE2 = SCALE2 + ABS( B( K+1 ) )
147         IF( A( K ).EQ.ZERO ) THEN
148            PIV1 = ZERO
149         ELSE
150            PIV1 = ABS( A( K ) ) / SCALE1
151         END IF
152         IF( C( K ).EQ.ZERO ) THEN
153            IN( K ) = 0
154            PIV2 = ZERO
155            SCALE1 = SCALE2
156            IF( K.LT.( N-1 ) )
157     $         D( K ) = ZERO
158         ELSE
159            PIV2 = ABS( C( K ) ) / SCALE2
160            IF( PIV2.LE.PIV1 ) THEN
161               IN( K ) = 0
162               SCALE1 = SCALE2
163               C( K ) = C( K ) / A( K )
164               A( K+1 ) = A( K+1 ) - C( K )*B( K )
165               IF( K.LT.( N-1 ) )
166     $            D( K ) = ZERO
167            ELSE
168               IN( K ) = 1
169               MULT = A( K ) / C( K )
170               A( K ) = C( K )
171               TEMP = A( K+1 )
172               A( K+1 ) = B( K ) - MULT*TEMP
173               IF( K.LT.( N-1 ) ) THEN
174                  D( K ) = B( K+1 )
175                  B( K+1 ) = -MULT*D( K )
176               END IF
177               B( K ) = TEMP
178               C( K ) = MULT
179            END IF
180         END IF
181         IF( ( MAX( PIV1, PIV2 ).LE.TL ) .AND. ( IN( N ).EQ.0 ) )
182     $      IN( N ) = K
183   10 CONTINUE
184      IF( ( ABS( A( N ) ).LE.SCALE1*TL ) .AND. ( IN( N ).EQ.0 ) )
185     $   IN( N ) = N
186*
187      RETURN
188*
189*     End of SLAGTF
190*
191      END
192