1      SUBROUTINE SSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
2*
3*  -- LAPACK routine (version 3.0) --
4*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
5*     Courant Institute, Argonne National Lab, and Rice University
6*     June 30, 1999
7*
8*     .. Scalar Arguments ..
9      CHARACTER          UPLO
10      INTEGER            INFO, LDA, LWORK, N
11*     ..
12*     .. Array Arguments ..
13      REAL               A( LDA, * ), D( * ), E( * ), TAU( * ),
14     $                   WORK( * )
15*     ..
16*
17*  Purpose
18*  =======
19*
20*  SSYTRD reduces a real symmetric matrix A to real symmetric
21*  tridiagonal form T by an orthogonal similarity transformation:
22*  Q**T * A * Q = T.
23*
24*  Arguments
25*  =========
26*
27*  UPLO    (input) CHARACTER*1
28*          = 'U':  Upper triangle of A is stored;
29*          = 'L':  Lower triangle of A is stored.
30*
31*  N       (input) INTEGER
32*          The order of the matrix A.  N >= 0.
33*
34*  A       (input/output) REAL array, dimension (LDA,N)
35*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
36*          N-by-N upper triangular part of A contains the upper
37*          triangular part of the matrix A, and the strictly lower
38*          triangular part of A is not referenced.  If UPLO = 'L', the
39*          leading N-by-N lower triangular part of A contains the lower
40*          triangular part of the matrix A, and the strictly upper
41*          triangular part of A is not referenced.
42*          On exit, if UPLO = 'U', the diagonal and first superdiagonal
43*          of A are overwritten by the corresponding elements of the
44*          tridiagonal matrix T, and the elements above the first
45*          superdiagonal, with the array TAU, represent the orthogonal
46*          matrix Q as a product of elementary reflectors; if UPLO
47*          = 'L', the diagonal and first subdiagonal of A are over-
48*          written by the corresponding elements of the tridiagonal
49*          matrix T, and the elements below the first subdiagonal, with
50*          the array TAU, represent the orthogonal matrix Q as a product
51*          of elementary reflectors. See Further Details.
52*
53*  LDA     (input) INTEGER
54*          The leading dimension of the array A.  LDA >= max(1,N).
55*
56*  D       (output) REAL array, dimension (N)
57*          The diagonal elements of the tridiagonal matrix T:
58*          D(i) = A(i,i).
59*
60*  E       (output) REAL array, dimension (N-1)
61*          The off-diagonal elements of the tridiagonal matrix T:
62*          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
63*
64*  TAU     (output) REAL array, dimension (N-1)
65*          The scalar factors of the elementary reflectors (see Further
66*          Details).
67*
68*  WORK    (workspace/output) REAL array, dimension (LWORK)
69*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
70*
71*  LWORK   (input) INTEGER
72*          The dimension of the array WORK.  LWORK >= 1.
73*          For optimum performance LWORK >= N*NB, where NB is the
74*          optimal blocksize.
75*
76*          If LWORK = -1, then a workspace query is assumed; the routine
77*          only calculates the optimal size of the WORK array, returns
78*          this value as the first entry of the WORK array, and no error
79*          message related to LWORK is issued by XERBLA.
80*
81*  INFO    (output) INTEGER
82*          = 0:  successful exit
83*          < 0:  if INFO = -i, the i-th argument had an illegal value
84*
85*  Further Details
86*  ===============
87*
88*  If UPLO = 'U', the matrix Q is represented as a product of elementary
89*  reflectors
90*
91*     Q = H(n-1) . . . H(2) H(1).
92*
93*  Each H(i) has the form
94*
95*     H(i) = I - tau * v * v'
96*
97*  where tau is a real scalar, and v is a real vector with
98*  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
99*  A(1:i-1,i+1), and tau in TAU(i).
100*
101*  If UPLO = 'L', the matrix Q is represented as a product of elementary
102*  reflectors
103*
104*     Q = H(1) H(2) . . . H(n-1).
105*
106*  Each H(i) has the form
107*
108*     H(i) = I - tau * v * v'
109*
110*  where tau is a real scalar, and v is a real vector with
111*  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
112*  and tau in TAU(i).
113*
114*  The contents of A on exit are illustrated by the following examples
115*  with n = 5:
116*
117*  if UPLO = 'U':                       if UPLO = 'L':
118*
119*    (  d   e   v2  v3  v4 )              (  d                  )
120*    (      d   e   v3  v4 )              (  e   d              )
121*    (          d   e   v4 )              (  v1  e   d          )
122*    (              d   e  )              (  v1  v2  e   d      )
123*    (                  d  )              (  v1  v2  v3  e   d  )
124*
125*  where d and e denote diagonal and off-diagonal elements of T, and vi
126*  denotes an element of the vector defining H(i).
127*
128*  =====================================================================
129*
130*     .. Parameters ..
131      REAL               ONE
132      PARAMETER          ( ONE = 1.0E+0 )
133*     ..
134*     .. Local Scalars ..
135      LOGICAL            LQUERY, UPPER
136      INTEGER            I, IINFO, IWS, J, KK, LDWORK, LWKOPT, NB,
137     $                   NBMIN, NX
138*     ..
139*     .. External Subroutines ..
140      EXTERNAL           SLATRD, SSYR2K, SSYTD2, XERBLA
141*     ..
142*     .. Intrinsic Functions ..
143      INTRINSIC          MAX
144*     ..
145*     .. External Functions ..
146      LOGICAL            LSAME
147      INTEGER            ILAENV
148      EXTERNAL           LSAME, ILAENV
149*     ..
150*     .. Executable Statements ..
151*
152*     Test the input parameters
153*
154      INFO = 0
155      UPPER = LSAME( UPLO, 'U' )
156      LQUERY = ( LWORK.EQ.-1 )
157      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
158         INFO = -1
159      ELSE IF( N.LT.0 ) THEN
160         INFO = -2
161      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
162         INFO = -4
163      ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
164         INFO = -9
165      END IF
166*
167      IF( INFO.EQ.0 ) THEN
168*
169*        Determine the block size.
170*
171         NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
172         LWKOPT = N*NB
173         WORK( 1 ) = LWKOPT
174      END IF
175*
176      IF( INFO.NE.0 ) THEN
177         CALL XERBLA( 'SSYTRD', -INFO )
178         RETURN
179      ELSE IF( LQUERY ) THEN
180         RETURN
181      END IF
182*
183*     Quick return if possible
184*
185      IF( N.EQ.0 ) THEN
186         WORK( 1 ) = 1
187         RETURN
188      END IF
189*
190      NX = N
191      IWS = 1
192      IF( NB.GT.1 .AND. NB.LT.N ) THEN
193*
194*        Determine when to cross over from blocked to unblocked code
195*        (last block is always handled by unblocked code).
196*
197         NX = MAX( NB, ILAENV( 3, 'SSYTRD', UPLO, N, -1, -1, -1 ) )
198         IF( NX.LT.N ) THEN
199*
200*           Determine if workspace is large enough for blocked code.
201*
202            LDWORK = N
203            IWS = LDWORK*NB
204            IF( LWORK.LT.IWS ) THEN
205*
206*              Not enough workspace to use optimal NB:  determine the
207*              minimum value of NB, and reduce NB or force use of
208*              unblocked code by setting NX = N.
209*
210               NB = MAX( LWORK / LDWORK, 1 )
211               NBMIN = ILAENV( 2, 'SSYTRD', UPLO, N, -1, -1, -1 )
212               IF( NB.LT.NBMIN )
213     $            NX = N
214            END IF
215         ELSE
216            NX = N
217         END IF
218      ELSE
219         NB = 1
220      END IF
221*
222      IF( UPPER ) THEN
223*
224*        Reduce the upper triangle of A.
225*        Columns 1:kk are handled by the unblocked method.
226*
227         KK = N - ( ( N-NX+NB-1 ) / NB )*NB
228         DO 20 I = N - NB + 1, KK + 1, -NB
229*
230*           Reduce columns i:i+nb-1 to tridiagonal form and form the
231*           matrix W which is needed to update the unreduced part of
232*           the matrix
233*
234            CALL SLATRD( UPLO, I+NB-1, NB, A, LDA, E, TAU, WORK,
235     $                   LDWORK )
236*
237*           Update the unreduced submatrix A(1:i-1,1:i-1), using an
238*           update of the form:  A := A - V*W' - W*V'
239*
240            CALL SSYR2K( UPLO, 'No transpose', I-1, NB, -ONE, A( 1, I ),
241     $                   LDA, WORK, LDWORK, ONE, A, LDA )
242*
243*           Copy superdiagonal elements back into A, and diagonal
244*           elements into D
245*
246            DO 10 J = I, I + NB - 1
247               A( J-1, J ) = E( J-1 )
248               D( J ) = A( J, J )
249   10       CONTINUE
250   20    CONTINUE
251*
252*        Use unblocked code to reduce the last or only block
253*
254         CALL SSYTD2( UPLO, KK, A, LDA, D, E, TAU, IINFO )
255      ELSE
256*
257*        Reduce the lower triangle of A
258*
259         DO 40 I = 1, N - NX, NB
260*
261*           Reduce columns i:i+nb-1 to tridiagonal form and form the
262*           matrix W which is needed to update the unreduced part of
263*           the matrix
264*
265            CALL SLATRD( UPLO, N-I+1, NB, A( I, I ), LDA, E( I ),
266     $                   TAU( I ), WORK, LDWORK )
267*
268*           Update the unreduced submatrix A(i+ib:n,i+ib:n), using
269*           an update of the form:  A := A - V*W' - W*V'
270*
271            CALL SSYR2K( UPLO, 'No transpose', N-I-NB+1, NB, -ONE,
272     $                   A( I+NB, I ), LDA, WORK( NB+1 ), LDWORK, ONE,
273     $                   A( I+NB, I+NB ), LDA )
274*
275*           Copy subdiagonal elements back into A, and diagonal
276*           elements into D
277*
278            DO 30 J = I, I + NB - 1
279               A( J+1, J ) = E( J )
280               D( J ) = A( J, J )
281   30       CONTINUE
282   40    CONTINUE
283*
284*        Use unblocked code to reduce the last or only block
285*
286         CALL SSYTD2( UPLO, N-I+1, A( I, I ), LDA, D( I ), E( I ),
287     $                TAU( I ), IINFO )
288      END IF
289*
290      WORK( 1 ) = LWKOPT
291      RETURN
292*
293*     End of SSYTRD
294*
295      END
296