1*> \brief \b SLAEBZ computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine sstebz.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SLAEBZ + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaebz.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaebz.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaebz.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
22*                          RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
23*                          NAB, WORK, IWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       INTEGER            IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
27*       REAL               ABSTOL, PIVMIN, RELTOL
28*       ..
29*       .. Array Arguments ..
30*       INTEGER            IWORK( * ), NAB( MMAX, * ), NVAL( * )
31*       REAL               AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
32*      $                   WORK( * )
33*       ..
34*
35*
36*> \par Purpose:
37*  =============
38*>
39*> \verbatim
40*>
41*> SLAEBZ contains the iteration loops which compute and use the
42*> function N(w), which is the count of eigenvalues of a symmetric
43*> tridiagonal matrix T less than or equal to its argument  w.  It
44*> performs a choice of two types of loops:
45*>
46*> IJOB=1, followed by
47*> IJOB=2: It takes as input a list of intervals and returns a list of
48*>         sufficiently small intervals whose union contains the same
49*>         eigenvalues as the union of the original intervals.
50*>         The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
51*>         The output interval (AB(j,1),AB(j,2)] will contain
52*>         eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
53*>
54*> IJOB=3: It performs a binary search in each input interval
55*>         (AB(j,1),AB(j,2)] for a point  w(j)  such that
56*>         N(w(j))=NVAL(j), and uses  C(j)  as the starting point of
57*>         the search.  If such a w(j) is found, then on output
58*>         AB(j,1)=AB(j,2)=w.  If no such w(j) is found, then on output
59*>         (AB(j,1),AB(j,2)] will be a small interval containing the
60*>         point where N(w) jumps through NVAL(j), unless that point
61*>         lies outside the initial interval.
62*>
63*> Note that the intervals are in all cases half-open intervals,
64*> i.e., of the form  (a,b] , which includes  b  but not  a .
65*>
66*> To avoid underflow, the matrix should be scaled so that its largest
67*> element is no greater than  overflow**(1/2) * underflow**(1/4)
68*> in absolute value.  To assure the most accurate computation
69*> of small eigenvalues, the matrix should be scaled to be
70*> not much smaller than that, either.
71*>
72*> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
73*> Matrix", Report CS41, Computer Science Dept., Stanford
74*> University, July 21, 1966
75*>
76*> Note: the arguments are, in general, *not* checked for unreasonable
77*> values.
78*> \endverbatim
79*
80*  Arguments:
81*  ==========
82*
83*> \param[in] IJOB
84*> \verbatim
85*>          IJOB is INTEGER
86*>          Specifies what is to be done:
87*>          = 1:  Compute NAB for the initial intervals.
88*>          = 2:  Perform bisection iteration to find eigenvalues of T.
89*>          = 3:  Perform bisection iteration to invert N(w), i.e.,
90*>                to find a point which has a specified number of
91*>                eigenvalues of T to its left.
92*>          Other values will cause SLAEBZ to return with INFO=-1.
93*> \endverbatim
94*>
95*> \param[in] NITMAX
96*> \verbatim
97*>          NITMAX is INTEGER
98*>          The maximum number of "levels" of bisection to be
99*>          performed, i.e., an interval of width W will not be made
100*>          smaller than 2^(-NITMAX) * W.  If not all intervals
101*>          have converged after NITMAX iterations, then INFO is set
102*>          to the number of non-converged intervals.
103*> \endverbatim
104*>
105*> \param[in] N
106*> \verbatim
107*>          N is INTEGER
108*>          The dimension n of the tridiagonal matrix T.  It must be at
109*>          least 1.
110*> \endverbatim
111*>
112*> \param[in] MMAX
113*> \verbatim
114*>          MMAX is INTEGER
115*>          The maximum number of intervals.  If more than MMAX intervals
116*>          are generated, then SLAEBZ will quit with INFO=MMAX+1.
117*> \endverbatim
118*>
119*> \param[in] MINP
120*> \verbatim
121*>          MINP is INTEGER
122*>          The initial number of intervals.  It may not be greater than
123*>          MMAX.
124*> \endverbatim
125*>
126*> \param[in] NBMIN
127*> \verbatim
128*>          NBMIN is INTEGER
129*>          The smallest number of intervals that should be processed
130*>          using a vector loop.  If zero, then only the scalar loop
131*>          will be used.
132*> \endverbatim
133*>
134*> \param[in] ABSTOL
135*> \verbatim
136*>          ABSTOL is REAL
137*>          The minimum (absolute) width of an interval.  When an
138*>          interval is narrower than ABSTOL, or than RELTOL times the
139*>          larger (in magnitude) endpoint, then it is considered to be
140*>          sufficiently small, i.e., converged.  This must be at least
141*>          zero.
142*> \endverbatim
143*>
144*> \param[in] RELTOL
145*> \verbatim
146*>          RELTOL is REAL
147*>          The minimum relative width of an interval.  When an interval
148*>          is narrower than ABSTOL, or than RELTOL times the larger (in
149*>          magnitude) endpoint, then it is considered to be
150*>          sufficiently small, i.e., converged.  Note: this should
151*>          always be at least radix*machine epsilon.
152*> \endverbatim
153*>
154*> \param[in] PIVMIN
155*> \verbatim
156*>          PIVMIN is REAL
157*>          The minimum absolute value of a "pivot" in the Sturm
158*>          sequence loop.
159*>          This must be at least  max |e(j)**2|*safe_min  and at
160*>          least safe_min, where safe_min is at least
161*>          the smallest number that can divide one without overflow.
162*> \endverbatim
163*>
164*> \param[in] D
165*> \verbatim
166*>          D is REAL array, dimension (N)
167*>          The diagonal elements of the tridiagonal matrix T.
168*> \endverbatim
169*>
170*> \param[in] E
171*> \verbatim
172*>          E is REAL array, dimension (N)
173*>          The offdiagonal elements of the tridiagonal matrix T in
174*>          positions 1 through N-1.  E(N) is arbitrary.
175*> \endverbatim
176*>
177*> \param[in] E2
178*> \verbatim
179*>          E2 is REAL array, dimension (N)
180*>          The squares of the offdiagonal elements of the tridiagonal
181*>          matrix T.  E2(N) is ignored.
182*> \endverbatim
183*>
184*> \param[in,out] NVAL
185*> \verbatim
186*>          NVAL is INTEGER array, dimension (MINP)
187*>          If IJOB=1 or 2, not referenced.
188*>          If IJOB=3, the desired values of N(w).  The elements of NVAL
189*>          will be reordered to correspond with the intervals in AB.
190*>          Thus, NVAL(j) on output will not, in general be the same as
191*>          NVAL(j) on input, but it will correspond with the interval
192*>          (AB(j,1),AB(j,2)] on output.
193*> \endverbatim
194*>
195*> \param[in,out] AB
196*> \verbatim
197*>          AB is REAL array, dimension (MMAX,2)
198*>          The endpoints of the intervals.  AB(j,1) is  a(j), the left
199*>          endpoint of the j-th interval, and AB(j,2) is b(j), the
200*>          right endpoint of the j-th interval.  The input intervals
201*>          will, in general, be modified, split, and reordered by the
202*>          calculation.
203*> \endverbatim
204*>
205*> \param[in,out] C
206*> \verbatim
207*>          C is REAL array, dimension (MMAX)
208*>          If IJOB=1, ignored.
209*>          If IJOB=2, workspace.
210*>          If IJOB=3, then on input C(j) should be initialized to the
211*>          first search point in the binary search.
212*> \endverbatim
213*>
214*> \param[out] MOUT
215*> \verbatim
216*>          MOUT is INTEGER
217*>          If IJOB=1, the number of eigenvalues in the intervals.
218*>          If IJOB=2 or 3, the number of intervals output.
219*>          If IJOB=3, MOUT will equal MINP.
220*> \endverbatim
221*>
222*> \param[in,out] NAB
223*> \verbatim
224*>          NAB is INTEGER array, dimension (MMAX,2)
225*>          If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
226*>          If IJOB=2, then on input, NAB(i,j) should be set.  It must
227*>             satisfy the condition:
228*>             N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
229*>             which means that in interval i only eigenvalues
230*>             NAB(i,1)+1,...,NAB(i,2) will be considered.  Usually,
231*>             NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with
232*>             IJOB=1.
233*>             On output, NAB(i,j) will contain
234*>             max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
235*>             the input interval that the output interval
236*>             (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
237*>             the input values of NAB(k,1) and NAB(k,2).
238*>          If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
239*>             unless N(w) > NVAL(i) for all search points  w , in which
240*>             case NAB(i,1) will not be modified, i.e., the output
241*>             value will be the same as the input value (modulo
242*>             reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
243*>             for all search points  w , in which case NAB(i,2) will
244*>             not be modified.  Normally, NAB should be set to some
245*>             distinctive value(s) before SLAEBZ is called.
246*> \endverbatim
247*>
248*> \param[out] WORK
249*> \verbatim
250*>          WORK is REAL array, dimension (MMAX)
251*>          Workspace.
252*> \endverbatim
253*>
254*> \param[out] IWORK
255*> \verbatim
256*>          IWORK is INTEGER array, dimension (MMAX)
257*>          Workspace.
258*> \endverbatim
259*>
260*> \param[out] INFO
261*> \verbatim
262*>          INFO is INTEGER
263*>          = 0:       All intervals converged.
264*>          = 1--MMAX: The last INFO intervals did not converge.
265*>          = MMAX+1:  More than MMAX intervals were generated.
266*> \endverbatim
267*
268*  Authors:
269*  ========
270*
271*> \author Univ. of Tennessee
272*> \author Univ. of California Berkeley
273*> \author Univ. of Colorado Denver
274*> \author NAG Ltd.
275*
276*> \date September 2012
277*
278*> \ingroup auxOTHERauxiliary
279*
280*> \par Further Details:
281*  =====================
282*>
283*> \verbatim
284*>
285*>      This routine is intended to be called only by other LAPACK
286*>  routines, thus the interface is less user-friendly.  It is intended
287*>  for two purposes:
288*>
289*>  (a) finding eigenvalues.  In this case, SLAEBZ should have one or
290*>      more initial intervals set up in AB, and SLAEBZ should be called
291*>      with IJOB=1.  This sets up NAB, and also counts the eigenvalues.
292*>      Intervals with no eigenvalues would usually be thrown out at
293*>      this point.  Also, if not all the eigenvalues in an interval i
294*>      are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
295*>      For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
296*>      eigenvalue.  SLAEBZ is then called with IJOB=2 and MMAX
297*>      no smaller than the value of MOUT returned by the call with
298*>      IJOB=1.  After this (IJOB=2) call, eigenvalues NAB(i,1)+1
299*>      through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
300*>      tolerance specified by ABSTOL and RELTOL.
301*>
302*>  (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
303*>      In this case, start with a Gershgorin interval  (a,b).  Set up
304*>      AB to contain 2 search intervals, both initially (a,b).  One
305*>      NVAL element should contain  f-1  and the other should contain  l
306*>      , while C should contain a and b, resp.  NAB(i,1) should be -1
307*>      and NAB(i,2) should be N+1, to flag an error if the desired
308*>      interval does not lie in (a,b).  SLAEBZ is then called with
309*>      IJOB=3.  On exit, if w(f-1) < w(f), then one of the intervals --
310*>      j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
311*>      if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
312*>      >= 0, then the interval will have  N(AB(j,1))=NAB(j,1)=f-k and
313*>      N(AB(j,2))=NAB(j,2)=f+r.  The cases w(l) < w(l+1) and
314*>      w(l-r)=...=w(l+k) are handled similarly.
315*> \endverbatim
316*>
317*  =====================================================================
318      SUBROUTINE SLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
319     $                   RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
320     $                   NAB, WORK, IWORK, INFO )
321*
322*  -- LAPACK auxiliary routine (version 3.4.2) --
323*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
324*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
325*     September 2012
326*
327*     .. Scalar Arguments ..
328      INTEGER            IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
329      REAL               ABSTOL, PIVMIN, RELTOL
330*     ..
331*     .. Array Arguments ..
332      INTEGER            IWORK( * ), NAB( MMAX, * ), NVAL( * )
333      REAL               AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
334     $                   WORK( * )
335*     ..
336*
337*  =====================================================================
338*
339*     .. Parameters ..
340      REAL               ZERO, TWO, HALF
341      PARAMETER          ( ZERO = 0.0E0, TWO = 2.0E0,
342     $                   HALF = 1.0E0 / TWO )
343*     ..
344*     .. Local Scalars ..
345      INTEGER            ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL,
346     $                   KLNEW
347      REAL               TMP1, TMP2
348*     ..
349*     .. Intrinsic Functions ..
350      INTRINSIC          ABS, MAX, MIN
351*     ..
352*     .. Executable Statements ..
353*
354*     Check for Errors
355*
356      INFO = 0
357      IF( IJOB.LT.1 .OR. IJOB.GT.3 ) THEN
358         INFO = -1
359         RETURN
360      END IF
361*
362*     Initialize NAB
363*
364      IF( IJOB.EQ.1 ) THEN
365*
366*        Compute the number of eigenvalues in the initial intervals.
367*
368         MOUT = 0
369         DO 30 JI = 1, MINP
370            DO 20 JP = 1, 2
371               TMP1 = D( 1 ) - AB( JI, JP )
372               IF( ABS( TMP1 ).LT.PIVMIN )
373     $            TMP1 = -PIVMIN
374               NAB( JI, JP ) = 0
375               IF( TMP1.LE.ZERO )
376     $            NAB( JI, JP ) = 1
377*
378               DO 10 J = 2, N
379                  TMP1 = D( J ) - E2( J-1 ) / TMP1 - AB( JI, JP )
380                  IF( ABS( TMP1 ).LT.PIVMIN )
381     $               TMP1 = -PIVMIN
382                  IF( TMP1.LE.ZERO )
383     $               NAB( JI, JP ) = NAB( JI, JP ) + 1
384   10          CONTINUE
385   20       CONTINUE
386            MOUT = MOUT + NAB( JI, 2 ) - NAB( JI, 1 )
387   30    CONTINUE
388         RETURN
389      END IF
390*
391*     Initialize for loop
392*
393*     KF and KL have the following meaning:
394*        Intervals 1,...,KF-1 have converged.
395*        Intervals KF,...,KL  still need to be refined.
396*
397      KF = 1
398      KL = MINP
399*
400*     If IJOB=2, initialize C.
401*     If IJOB=3, use the user-supplied starting point.
402*
403      IF( IJOB.EQ.2 ) THEN
404         DO 40 JI = 1, MINP
405            C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
406   40    CONTINUE
407      END IF
408*
409*     Iteration loop
410*
411      DO 130 JIT = 1, NITMAX
412*
413*        Loop over intervals
414*
415         IF( KL-KF+1.GE.NBMIN .AND. NBMIN.GT.0 ) THEN
416*
417*           Begin of Parallel Version of the loop
418*
419            DO 60 JI = KF, KL
420*
421*              Compute N(c), the number of eigenvalues less than c
422*
423               WORK( JI ) = D( 1 ) - C( JI )
424               IWORK( JI ) = 0
425               IF( WORK( JI ).LE.PIVMIN ) THEN
426                  IWORK( JI ) = 1
427                  WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
428               END IF
429*
430               DO 50 J = 2, N
431                  WORK( JI ) = D( J ) - E2( J-1 ) / WORK( JI ) - C( JI )
432                  IF( WORK( JI ).LE.PIVMIN ) THEN
433                     IWORK( JI ) = IWORK( JI ) + 1
434                     WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
435                  END IF
436   50          CONTINUE
437   60       CONTINUE
438*
439            IF( IJOB.LE.2 ) THEN
440*
441*              IJOB=2: Choose all intervals containing eigenvalues.
442*
443               KLNEW = KL
444               DO 70 JI = KF, KL
445*
446*                 Insure that N(w) is monotone
447*
448                  IWORK( JI ) = MIN( NAB( JI, 2 ),
449     $                          MAX( NAB( JI, 1 ), IWORK( JI ) ) )
450*
451*                 Update the Queue -- add intervals if both halves
452*                 contain eigenvalues.
453*
454                  IF( IWORK( JI ).EQ.NAB( JI, 2 ) ) THEN
455*
456*                    No eigenvalue in the upper interval:
457*                    just use the lower interval.
458*
459                     AB( JI, 2 ) = C( JI )
460*
461                  ELSE IF( IWORK( JI ).EQ.NAB( JI, 1 ) ) THEN
462*
463*                    No eigenvalue in the lower interval:
464*                    just use the upper interval.
465*
466                     AB( JI, 1 ) = C( JI )
467                  ELSE
468                     KLNEW = KLNEW + 1
469                     IF( KLNEW.LE.MMAX ) THEN
470*
471*                       Eigenvalue in both intervals -- add upper to
472*                       queue.
473*
474                        AB( KLNEW, 2 ) = AB( JI, 2 )
475                        NAB( KLNEW, 2 ) = NAB( JI, 2 )
476                        AB( KLNEW, 1 ) = C( JI )
477                        NAB( KLNEW, 1 ) = IWORK( JI )
478                        AB( JI, 2 ) = C( JI )
479                        NAB( JI, 2 ) = IWORK( JI )
480                     ELSE
481                        INFO = MMAX + 1
482                     END IF
483                  END IF
484   70          CONTINUE
485               IF( INFO.NE.0 )
486     $            RETURN
487               KL = KLNEW
488            ELSE
489*
490*              IJOB=3: Binary search.  Keep only the interval containing
491*                      w   s.t. N(w) = NVAL
492*
493               DO 80 JI = KF, KL
494                  IF( IWORK( JI ).LE.NVAL( JI ) ) THEN
495                     AB( JI, 1 ) = C( JI )
496                     NAB( JI, 1 ) = IWORK( JI )
497                  END IF
498                  IF( IWORK( JI ).GE.NVAL( JI ) ) THEN
499                     AB( JI, 2 ) = C( JI )
500                     NAB( JI, 2 ) = IWORK( JI )
501                  END IF
502   80          CONTINUE
503            END IF
504*
505         ELSE
506*
507*           End of Parallel Version of the loop
508*
509*           Begin of Serial Version of the loop
510*
511            KLNEW = KL
512            DO 100 JI = KF, KL
513*
514*              Compute N(w), the number of eigenvalues less than w
515*
516               TMP1 = C( JI )
517               TMP2 = D( 1 ) - TMP1
518               ITMP1 = 0
519               IF( TMP2.LE.PIVMIN ) THEN
520                  ITMP1 = 1
521                  TMP2 = MIN( TMP2, -PIVMIN )
522               END IF
523*
524               DO 90 J = 2, N
525                  TMP2 = D( J ) - E2( J-1 ) / TMP2 - TMP1
526                  IF( TMP2.LE.PIVMIN ) THEN
527                     ITMP1 = ITMP1 + 1
528                     TMP2 = MIN( TMP2, -PIVMIN )
529                  END IF
530   90          CONTINUE
531*
532               IF( IJOB.LE.2 ) THEN
533*
534*                 IJOB=2: Choose all intervals containing eigenvalues.
535*
536*                 Insure that N(w) is monotone
537*
538                  ITMP1 = MIN( NAB( JI, 2 ),
539     $                    MAX( NAB( JI, 1 ), ITMP1 ) )
540*
541*                 Update the Queue -- add intervals if both halves
542*                 contain eigenvalues.
543*
544                  IF( ITMP1.EQ.NAB( JI, 2 ) ) THEN
545*
546*                    No eigenvalue in the upper interval:
547*                    just use the lower interval.
548*
549                     AB( JI, 2 ) = TMP1
550*
551                  ELSE IF( ITMP1.EQ.NAB( JI, 1 ) ) THEN
552*
553*                    No eigenvalue in the lower interval:
554*                    just use the upper interval.
555*
556                     AB( JI, 1 ) = TMP1
557                  ELSE IF( KLNEW.LT.MMAX ) THEN
558*
559*                    Eigenvalue in both intervals -- add upper to queue.
560*
561                     KLNEW = KLNEW + 1
562                     AB( KLNEW, 2 ) = AB( JI, 2 )
563                     NAB( KLNEW, 2 ) = NAB( JI, 2 )
564                     AB( KLNEW, 1 ) = TMP1
565                     NAB( KLNEW, 1 ) = ITMP1
566                     AB( JI, 2 ) = TMP1
567                     NAB( JI, 2 ) = ITMP1
568                  ELSE
569                     INFO = MMAX + 1
570                     RETURN
571                  END IF
572               ELSE
573*
574*                 IJOB=3: Binary search.  Keep only the interval
575*                         containing  w  s.t. N(w) = NVAL
576*
577                  IF( ITMP1.LE.NVAL( JI ) ) THEN
578                     AB( JI, 1 ) = TMP1
579                     NAB( JI, 1 ) = ITMP1
580                  END IF
581                  IF( ITMP1.GE.NVAL( JI ) ) THEN
582                     AB( JI, 2 ) = TMP1
583                     NAB( JI, 2 ) = ITMP1
584                  END IF
585               END IF
586  100       CONTINUE
587            KL = KLNEW
588*
589         END IF
590*
591*        Check for convergence
592*
593         KFNEW = KF
594         DO 110 JI = KF, KL
595            TMP1 = ABS( AB( JI, 2 )-AB( JI, 1 ) )
596            TMP2 = MAX( ABS( AB( JI, 2 ) ), ABS( AB( JI, 1 ) ) )
597            IF( TMP1.LT.MAX( ABSTOL, PIVMIN, RELTOL*TMP2 ) .OR.
598     $          NAB( JI, 1 ).GE.NAB( JI, 2 ) ) THEN
599*
600*              Converged -- Swap with position KFNEW,
601*                           then increment KFNEW
602*
603               IF( JI.GT.KFNEW ) THEN
604                  TMP1 = AB( JI, 1 )
605                  TMP2 = AB( JI, 2 )
606                  ITMP1 = NAB( JI, 1 )
607                  ITMP2 = NAB( JI, 2 )
608                  AB( JI, 1 ) = AB( KFNEW, 1 )
609                  AB( JI, 2 ) = AB( KFNEW, 2 )
610                  NAB( JI, 1 ) = NAB( KFNEW, 1 )
611                  NAB( JI, 2 ) = NAB( KFNEW, 2 )
612                  AB( KFNEW, 1 ) = TMP1
613                  AB( KFNEW, 2 ) = TMP2
614                  NAB( KFNEW, 1 ) = ITMP1
615                  NAB( KFNEW, 2 ) = ITMP2
616                  IF( IJOB.EQ.3 ) THEN
617                     ITMP1 = NVAL( JI )
618                     NVAL( JI ) = NVAL( KFNEW )
619                     NVAL( KFNEW ) = ITMP1
620                  END IF
621               END IF
622               KFNEW = KFNEW + 1
623            END IF
624  110    CONTINUE
625         KF = KFNEW
626*
627*        Choose Midpoints
628*
629         DO 120 JI = KF, KL
630            C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
631  120    CONTINUE
632*
633*        If no more intervals to refine, quit.
634*
635         IF( KF.GT.KL )
636     $      GO TO 140
637  130 CONTINUE
638*
639*     Converged
640*
641  140 CONTINUE
642      INFO = MAX( KL+1-KF, 0 )
643      MOUT = KL
644*
645      RETURN
646*
647*     End of SLAEBZ
648*
649      END
650c $Id$
651