1import numpy as np 2 3from gpaw.atom.radialgd import fsbt, RadialGridDescriptor as RGD 4 5 6def test_maths_fsbt(): 7 N = 1024 8 L = 50.0 9 h = L / N 10 alpha = 5.0 11 r = np.linspace(0, L, N, endpoint=False) 12 G = np.linspace(0, np.pi / h, N // 2 + 1) 13 n = np.exp(-alpha * r**2) 14 15 for l in range(7): 16 f = fsbt(l, n * r**l, r, G) 17 f0 = (np.pi**0.5 / alpha**(l + 1.5) / 2**l * G**l / 4 * 18 np.exp(-G**2 / (4 * alpha))) 19 tol = 3e-6 * 10**(-7 + l) 20 print(l, abs(f - f0).max(), 'tol=', tol) 21 assert abs(f - f0).max() < tol 22 23 rgd = RGD(r, r * 0 + r[1]) 24 g, f = rgd.fft(n * r) 25 f0 = 4 * np.pi**1.5 / alpha**1.5 / 4 * np.exp(-g**2 / 4 / alpha) 26 assert abs(f - f0).max() < 1e-6 27 28 # This is how to do the inverse FFT: 29 ggd = RGD(g, g * 0 + g[1]) 30 r, f = ggd.fft(f * g) 31 assert abs(np.exp(-alpha * r**2) - f / 8 / np.pi**3).max() < 2e-3 32