1% Description of the `StandardElastoViscoPlasticity` brick
2% Thomas Helfer
3% 15/04/2018
4
5\newcommand{\tenseur}[1]{\underline{#1}}
6\newcommand{\tenseurq}[1]{\underline{\mathbf{#1}}}
7\newcommand{\tns}[1]{{\underset{\tilde{}}{\mathbf{#1}}}}
8\newcommand{\transpose}[1]{{#1^{\mathop{T}}}}
9\newcommand{\absvalue}[1]{{\left|#1\right|}}
10\newcommand{\tsigma}{\underline{\sigma}}
11\newcommand{\sigmaeq}{\sigma_{\mathrm{eq}}}
12
13\newcommand{\epsilonth}{\epsilon^{\mathrm{th}}}
14
15\newcommand{\tepsilonto}{\underline{\epsilon}^{\mathrm{to}}}
16\newcommand{\tepsilonel}{\underline{\epsilon}^{\mathrm{el}}}
17\newcommand{\tepsilonp}{\underline{\epsilon}^{\mathrm{p}}}
18\newcommand{\tepsilonvp}{\underline{\epsilon}^{\mathrm{vp}}}
19\newcommand{\tepsilonth}{\underline{\epsilon}^{\mathrm{th}}}
20
21\newcommand{\tepsilonvis}{\underline{\epsilon}^{\mathrm{vis}}}
22\newcommand{\tdepsilonvis}{\underline{\dot{\epsilon}}^{\mathrm{vis}}}
23\newcommand{\tdepsilonp}{\underline{\dot{\epsilon}}^{\mathrm{p}}}
24
25\newcommand{\talpha}{\underline{\alpha}}
26\newcommand{\tdalpha}{\underline{\dot{\alpha}}}
27\newcommand{\txi}{\underline{\xi}}
28\newcommand{\tdxi}{\underline{\dot{\xi}}}
29
30\newcommand{\tDq}{{\underline{\mathbf{D}}}}
31\newcommand{\trace}[1]{{\mathrm{tr}\paren{#1}}}
32\newcommand{\Frac}[2]{{{\displaystyle \frac{\displaystyle #1}{\displaystyle #2}}}}
33\newcommand{\deriv}[2]{{{\displaystyle \frac{\displaystyle \partial #1}{\displaystyle \partial #2}}}}
34\newcommand{\dtot}{{{\mathrm{d}}}}
35\newcommand{\paren}[1]{{\left(#1\right)}}
36\newcommand{\nom}[1]{\textsc{#1}}
37\newcommand{\bts}[1]{{\left.#1\right|_{t}}}
38\newcommand{\mts}[1]{{\left.#1\right|_{t+\theta\,\Delta\,t}}}
39\newcommand{\ets}[1]{{\left.#1\right|_{t+\Delta\,t}}}
40
41This page describes the `StandardElastoViscoPlasticity` brick. This
42brick is used to describe a specific class of strain based behaviours
43based on an additive split of the total strain \(\tepsilonto\) into an
44elastic part \(\tepsilonel\) and one or several inelastic strains
45describing plastic (time-independent) flows and/or viscoplastic
46(time-dependent) flows:
47\[
48\tepsilonto=\tepsilonel
49+\sum_{i_{\mathrm{p}}=0}^{n_{\mathrm{p}}}\tepsilonp_{i_{\mathrm{p}}}
50+\sum_{i_{\mathrm{vp}}=0}^{n_{\mathrm{vp}}}\tepsilonvp_{i_{\mathrm{vp}}}
51\]
52
53This equation defines the equation associated with the elastic strain
54\(\tepsilonel\).
55
56The brick decomposes the behaviour into two components:
57
58- the stress potential which defines the relation between the elastic
59  strain \(\tepsilonel\) and possibly some damage variables and the
60  stress measure \(\tsigma\). As the definition of the elastic
61  properties can be part of the definition of the stress potential, the
62  thermal expansion coefficients can also be defined in the block
63  corresponding to the stress potential.
64- a list of inelastic flows.
65
66## A detailled Example
67
68~~~~{.cpp}
69@Brick "StandardElastoViscoPlasticity" {
70  // Here the stress potential is given by the Hooke law. We define:
71  // - the elastic properties (Young modulus and Poisson ratio).
72  //   Here the Young modulus is a function of the temperature.
73  //   The Poisson ratio is constant.
74  // - the thermal expansion coefficient
75  // - the reference temperature for the thermal expansion
76  stress_potential : "Hooke" {
77    young_modulus : "2.e5 - (1.e5*((T - 100.)/960.)**2)",
78    poisson_ratio : 0.3,
79    thermal_expansion : "1.e-5 + (1.e-5  * ((T - 100.)/960.) ** 4)",
80    thermal_expansion_reference_temperature : 0
81  },
82  // Here we define only one viscplastic flow defined by the Norton law,
83  // which is based:
84  // - the von Mises stress criterion
85  // - one isotorpic hardening rule based on Voce formalism
86  // - one kinematic hardening rule following the Armstrong-Frederick law
87  inelastic_flow : "Norton" {
88    criterion : "Mises",
89    isotropic_hardening : "Voce" {R0 : 200, Rinf : 100, b : 20},
90    kinematic_hardening : "Armstrong-Frederick" {
91      C : "1.e6 - 98500 * (T - 100) / 96",
92      D : "5000 - 5* (T - 100)"
93    },
94    K : "(4200. * (T + 20.) - 3. * (T + 20.0)**2)/4900.",
95    n : "7. - (T - 100.) / 160.",
96    Ksf : 3
97  }
98};
99~~~~
100
101# List of available stress potentials
102
103![Relations between stress potentials. The stress potentials usable by the end users are marked in red.](img/StressPotentials.svg
104 "Relations between stress potentials")
105
106## The Hooke stress potential
107
108This stress potential implements the Hooke law, i.e. a linear relation
109between the elastic strain and the stress, as follows:
110
111\[
112 \tsigma=\tenseurq{D}\,\colon\,\tepsilonel
113\]
114where \(\tenseurq{D}\) is the elastic stiffness tensor.
115
116This stress potential applies to isotropic and orthotropic materials.
117This stress potential provides:
118
119- Automatic computation of the stress tensor at various stages of the
120  behaviour integration.
121- Automatic computation of the consistent tangent operator.
122- Automatic support for plane stress and generalized plane stress
123  modelling hypotheses (The axial strain is defined as an additional
124  state variable and the associated equation in the implicit system is
125  added to enforce the plane stess condition).
126- Automatic addition of the standard terms associated with the elastic
127  strain state variable.
128
129The Hooke stress potential is fully described
130[here](HookeStressPotential.html).
131
132## The `IsotropicDamage` stress potential
133
134This stress potential adds to the Hooke stress potential the description
135of an isotropioc damage. The relation
136\[
137 \tsigma=\left(1-d\right)\,\tenseurq{D}\,\colon\,\tepsilonel
138\]
139where \(\tenseurq{D}\) is the elastic stiffness tensor and \(d\) is the
140isotropic damage variable.
141
142This stress potential inherits all the features and options provided by
143the Hooke stress potential. The Hooke stress potential is fully
144described [here](HookeStressPotential.html).
145
146## The `DDIF2` stress potential
147
148The `DDIF2` behaviour is used to describe the brittle nature of nuclear
149fuel ceramics and is usually coupled with a description of the
150viscoplasticity of those ceramics (See for example
151[@monerie_overall_2006,@salvo_experimental_2015;@salvo_experimental_2015-1]).
152
153This stress potential adds to the Hooke stress potential the description
154of cracking through an additional strain. As such, it inherits all the
155features provided by the Hooke stress potential.
156
157The Hooke stress potential is fully described
158[here](HookeStressPotential.html).
159
160The DDIF2 stress potential is fully described
161[here](DDIF2StressPotential.html).
162
163
164# Inelastic flows
165
166## List of available inelastic flows
167
168### The `Plastic` inelastic flow
169
170The plastic flow is defined by:
171
172- a yield surface \(f\)
173- a plastic potential \(g\)
174
175The plastic strain rate satisfies:
176\[
177\tdepsilonp=\dot{\lambda}\,\deriv{g}{\tsigma}
178\]
179
180The plastic multiplier satifies the Kuhn-Tucker relation:
181\[
182\left\{
183\begin{aligned}
184\dot{\lambda}\,f\paren{\tsigma,p}&=0\\
185\dot{\lambda}&\geq 0
186\end{aligned}
187\right.
188\]
189
190The flow is associated is \(f\) is equal to \(g\). In practice \(f\) is
191defined by a stress criterion \(\phi\) and an isotropic hardening rule
192\(R\paren{p}\), as follows:
193
194\[
195f\paren{\tsigma,p}= \phi\paren{\tsigma-\sum_{i}\tenseur{X}_{i}}-R\paren{p}
196\]
197
198where \(p\) is the equivalent plastic strain.
199
200### The `Norton` inelastic flow
201
202The plastic flow is defined by:
203
204- a function \(f\paren{\tsigma}\) giving the flow intensity
205- a viscoplastic potential \(g\)
206
207\[
208f\paren{\tsigma}=A\left<\Frac{\phi\paren{\tsigma-\sum_{i}\tenseur{X}_{i}}}{K}\right>^{n}
209\]
210
211## List of available stress criterion
212
213### von Mises stress criterion
214
215#### Definition
216
217The von Mises stress is defined by:
218\[
219\sigmaeq=\sqrt{\Frac{3}{2}\,\tenseur{s}\,\colon\,\tenseur{s}}=\sqrt{3\,J_{2}}
220\]
221where:
222- \(\tenseur{s}\) is the deviatoric stress defined as follows:
223\[
224\tenseur{s}=\tsigma-\Frac{1}{3}\,\trace{\tsigma}\,\tenseur{I}
225\]
226- \(J_{2}\) is the second invariant of \(\tenseur{s}\).
227
228In terms of the eigenvalues of the stress, denoted by \(\sigma_{1}\),
229\(\sigma_{2}\) and \(\sigma_{3}\), the von Mises stress can also be
230defined by:
231\[
232\sigmaeq=\sqrt{\Frac{1}{2}\paren{\absvalue{\sigma_{1}-\sigma_{2}}^{2}+\absvalue{\sigma_{1}-\sigma_{3}}^{2}+\absvalue{\sigma_{2}-\sigma_{3}}^{2}}}
233\]
234
235#### Options
236
237This stress criterion does not have any option.
238
239~~~~{.cpp}
240    criterion : "Mises"
241~~~~
242
243### Drucker 1949 stress criterion
244
245The Drucker 1949 stress is defined by:
246\[
247\sigmaeq=\sqrt{3}\sqrt[6]{J_{2}^3-c\,J_{3}^{2}}
248\]
249where:
250
251- \(J_{2}=\Frac{1}{2}\,\tenseur{s}\,\colon\,\tenseur{s}\) is the second
252  invariant of \(\tenseur{s}\).
253- \(J_{3}=\mathrm{det}\paren{\tenseur{s}}\) is the third invariant of
254  \(\tenseur{s}\).
255- \(\tenseur{s}\) is the deviatoric stress defined as follows:
256\[
257\tenseur{s}=\tsigma-\Frac{1}{3}\,\trace{\tsigma}\,\tenseur{I}
258\]
259
260### Example
261
262~~~~{.cpp}
263    criterion : "Drucker 1949" {c : 1.285}
264~~~~
265
266#### Options
267
268The user must provide the \(c\) coefficient.
269
270### Hosford 1972 stress criterion
271
272The Hosford equivalent stress is defined by (see @hosford_generalized_1972):
273\[
274\sigmaeq^{H}=\sqrt[a]{\Frac{1}{2}\paren{\absvalue{\sigma_{1}-\sigma_{2}}^{a}+\absvalue{\sigma_{1}-\sigma_{3}}^{a}+\absvalue{\sigma_{2}-\sigma_{3}}^{a}}}
275\]
276where \(\sigma_{1}\), \(\sigma_{2}\) and \(\sigma_{3}\) are the eigenvalues of the
277stress.
278
279Therefore, when \(a\) goes to infinity, the Hosford stress reduces to
280the Tresca stress. When \(n = 2\) the Hosford stress reduces to the
281von Mises stress.
282
283![Comparison of the Hosford stress \(a=100,a=8\) and the von Mises stress in plane stress](img/HosfordStress.svg
284 "Comparison of the Hosford stress \(a=100,a=8\) and the von Mises
285 stress in plane stress"){width=70%}
286
287### Example
288
289~~~~{.cpp}
290    criterion : "Hosford" {a : 6}
291~~~~
292
293#### Options
294
295The user must provide the Hosford exponent \(a\).
296
297### Isotropic Cazacu 2004 stress criterion
298
299In order to describe yield differential effects, the isotropic Cazacu
3002004 equivalent stress criterion is defined by (see
301@cazacu_criterion_2004):
302
303\[
304\sigmaeq=\sqrt[3]{J_{2}^{3/2} - c \, J_{3}}
305\]
306
307where:
308
309- \(J_{2}=\Frac{1}{2}\,\tenseur{s}\,\colon\,\tenseur{s}\) is the second
310  invariant of \(\tenseur{s}\).
311- \(J_{3}=\mathrm{det}\paren{\tenseur{s}}\) is the third invariant of
312  \(\tenseur{s}\).
313- \(\tenseur{s}\) is the deviatoric stress defined as follows:
314\[
315\tenseur{s}=\tsigma-\Frac{1}{3}\,\trace{\tsigma}\,\tenseur{I}
316\]
317
318### Example
319
320~~~~{.cpp}
321    criterion : "Isotropic Cazacu 2004" {c : -1.056}
322~~~~
323
324### Hill stress criterion
325
326This `Hill` criterion, also called `Hill1948` criterion, is based on the
327equivalent stress \(\sigmaeq^{H}\) defined as follows:
328\[
329\begin{aligned}
330\sigmaeq^{H}&=\sqrt{\tsigma\,\colon\,\tenseurq{H}\,\colon\,\tsigma}\\
331	        &=\sqrt{F\,\paren{\sigma_{11}-\sigma_{22}}^2+
332                    G\,\paren{\sigma_{22}-\sigma_{33}}^2+
333			        H\,\paren{\sigma_{33}-\sigma_{11}}^2+
334					2\,L\sigma_{12}^{2}+
335					2\,M\sigma_{13}^{2}+
336					2\,N\sigma_{23}^{2}}
337\end{aligned}
338\]
339
340> **Warning** This convention is given in the book of Lemaître et
341> Chaboche and seems to differ from the one described in most other
342> books.
343
344#### Options
345
346This stress criterion has \(6\) mandatory options: `F`, `G`, `H`, `L`,
347`M`, `N`. Each of these options must be interpreted as material
348property.
349
350> **Orthotropic axis convention** If an orthotropic axis convention
351> is defined (See the `@OrthotropicBehaviour` keyword' documentation),
352> the coefficients of the Hill tensor can be exchanged for some
353> modelling hypotheses. The coefficients `F`, `G`, `H`, `L`, `M`, `N`
354> must always correspond to the three dimensional case.
355
356### Example
357
358~~~~{.cpp}
359    criterion : "Hill" {F : 0.371, G : 0.629, H : 4.052, L : 1.5, M : 1.5, N : 1.5},
360~~~~
361
362### Cazacu 2001 stress criterion
363
364![Plane stress yield surface (\(\sigma_{xy}=0\) and \(\sigma_{xy}=0.45\,\sigma_{0}\)) of 2090-T3 alloy sheet as predicted by the generalization of the Drucker yield criterion using generalized invariants (See @cazacu_generalization_2001, Figure 6).](img/Cazacu2001_2090-T3.svg
365 "Plane stress yield surface (\(\sigma_{xy}=0\) and
366 \(\sigma_{xy}=0.45\,\sigma_{0}\)) of 2090-T3 alloy sheet as predicted
367 by the generalization of the Drucker yield criterion using
368 generalized invariants (See @cazacu_generalization_2001, Figure
369 3)"){width=80%}
370
371Within the framework of the theory of representation, generalizations
372to orthotropic conditions of the invariants of the deviatoric stress
373have been proposed by Cazacu and Barlat (see
374@cazacu_generalization_2001):
375
376- The generalization of \(J_{2}\) is denoted \(J_{2}^{O}\). It is
377  defined by:
378  \[
379  J_{2}^{O}= a_6\,s_{yz}^2+a_5\,s_{xz}^2+a_4\,s_{xy}^2+\frac{a_2}{6}\,(s_{yy}-s_{zz})^2+\frac{a_3}{6}\,(s_{xx}-s_{zz})^2+\frac{a_1}{6}\,(s_{xx}-s_{yy})^2
380  \]
381  where the \(\left.a_{i}\right|_{i\in[1:6]}\) are six coefficients
382  describing the orthotropy of the material.
383- The generalization of \(J_{3}\) is denoted \(J_{3}^{O}\). It is
384  defined by:
385  \[
386  \begin{aligned}
387  J_{3}^{O}=
388  &\frac{1}{27}\,(b_1+b_2)\,s_{xx}^3+\frac{1}{27}\,(b_3+b_4)\,s_{yy}^3+\frac{1}{27}\,(2\,(b_1+b_4)-b_2-b_3)\,s_{zz}^3\\
389  &-\frac{1}{9}\,(b_1\,s_{yy}+b_2s_{zz})\,s_{xx}^2\\
390  &-\frac{1}{9}\,(b_3\,s_{zz}+b_4\,s_{xx})\,s_{yy}^2\\
391  &-\frac{1}{9}\,((b_1-b_2+b_4)\,s_{xx}+(b_1-b3+b_4)\,s_{yy})\,s_{zz}^3\\
392  &+\frac{2}{9}\,(b_1+b_4)\,s_{xx}\,s_{yy}\,s_{zz}\\
393  &-\frac{s_{xz}^2}{3}\,(2\,b_9\,s_{yy}-b_8\,s_{zz}-(2\,b_9-b_8)\,s_{xx})\\
394  &-\frac{s_{xy}^2}{3}\,(2\,b_{10}\,s_{zz}-b_5\,s_{yy}-(2\,b_{10}-b_5)\,s_{xx})\\
395  &-\frac{s_{yz}^2}{3}\,((b_6+b_7)\,s_{xx}-b_6\,s_{yy}-b_7\,s_{zz})\\
396  &+2\,b_{11}\,s_{xy}\,s_{xz}\,s_{yz}
397  \end{aligned}
398  \]
399  where the \(\left.b_{i}\right|_{i\in[1:11]}\) are eleven coefficients
400  describing the orthotropy of the material.
401
402Those invariants may be used to generalize isotropic yield criteria
403based on \(J_{2}\) and \(J_{3}\) invariants to orthotropy. The Cazacu
4042001 equivalent stress criterion is defined as the orthotropic
405counterpart of the Drucker 1949 yield criterion, as follows (see
406@cazacu_generalization_2001):
407
408\[
409\sigmaeq=\sqrt{3}\sqrt[6]{\left(J_{2}^{O}\right)^3-c\,\left(J_{3}^{O}\right)^{2}}
410\]
411
412#### Options
413
414This criterion requires the following options:
415
416- `a`, as an array of \(6\) material properties.
417- `b`, as an array of \(11\) material properties.
418- `c`, as a material property.
419
420#### Example
421
422~~~~{.cpp}
423    criterion : "Cazacu 2001" {
424      a : {0.586, 1.05, 0.823, 0.96, 1, 1},
425      b : {1.44, 0.061, -1.302, -0.281, -0.375, 1, 1, 1, 1, 0.445, 1},
426      c : 1.285
427    },
428~~~~
429
430#### Restrictions
431
432Proper support of orthotropic axes conventions has not been implemented
433yet for the computation of the \(J_{2}^{O}\) and \(J_{3}^{O}\). Thus,
434the following restrictions apply:
435
436- if no orthotropic axis convention is defined, only the
437  `Tridimensional` modelling hypothesis is supported.q
438- if the `Plate` orthotropic axis convention is used, only the
439  `Tridimensional` and `PlaneStress` modelling hypotheses are supported.
440- if the `Pipe` orthotropic axis convention is used, only theI
441  `Tridimensional`, `Axisymmetrical`,
442  `AxisymmetricalGeneralisedPlainStrain`, and
443  `AxisymmetricalGeneralisedPlainStres` modelling hypotheses are
444  supported.
445
446
447### Orthotropic Cazacu 2004 stress criterion
448
449![Plane stress yield loci for a magnesium sheet (See @cazacu_criterion_2004, Figure 6).](img/Cazacu2004.svg "Plane stress yield loci for a magnesium sheet"){width=80%}
450
451Using the invariants \(J_{2}^{O}\) and \(J_{3}^{O}\) previously defined,
452Cazacu and Barlat proposed the following criterion (See @cazacu_criterion_2004):
453
454\[
455\sigmaeq=\sqrt[3]{\left(J_{2}^{O}\right)^{3/2} - c\,J_{3}^{O}}
456\]
457
458#### Options
459
460This criterion requires the following options:
461
462- `a`, as an array of \(6\) material properties.
463- `b`, as an array of \(11\) material properties.
464- `c`, as a material property.
465
466#### Example
467
468~~~~{.cpp}
469    criterion : "Orthotropic Cazacu 2004" {
470      a : {0.586, 1.05, 0.823, 0.96, 1, 1},
471      b : {1.44, 0.061, -1.302, -0.281, -0.375, 1, 1, 1, 1, 0.445, 1},
472      c : 1.285
473    },
474~~~~
475
476#### Restrictions
477
478Proper support of orthotropic axes conventions has not been implemented
479yet for the computation of the \(J_{2}^{O}\) and \(J_{3}^{O}\). Thus,
480the following restrictions apply:
481
482- if no orthotropic axis convention is defined, only the
483  `Tridimensional` modelling hypothesis is supported.q
484- if the `Plate` orthotropic axis convention is used, only the
485  `Tridimensional` and `PlaneStress` modelling hypotheses are supported.
486- if the `Pipe` orthotropic axis convention is used, only the
487  `Tridimensional`, `Axisymmetrical`,
488  `AxisymmetricalGeneralisedPlainStrain`, and
489  `AxisymmetricalGeneralisedPlainStres` modelling hypotheses are
490  supported.
491
492### Barlat 2004 stress criterion
493
494The Barlat equivalent stress is defined as follows (See @barlat_linear_2005):
495\[
496\sigmaeq^{B}=
497\sqrt[a]{
498  \frac{1}{4}\left(
499  \sum_{i=0}^{3}
500  \sum_{j=0}^{3}
501  \absvalue{s'_{i}-s''_{j}}^{a}
502  \right)
503}
504\]
505
506where \(s'_{i}\) and \(s''_{i}\) are the eigenvalues of two
507transformed stresses \(\tenseur{s}'\) and \(\tenseur{s}''\) by two
508linear transformation \(\tenseurq{L}'\) and \(\tenseurq{L}''\):
509\[
510\left\{
511\begin{aligned}
512\tenseur{s}'  &= \tenseurq{L'} \,\colon\,\tsigma \\
513\tenseur{s}'' &= \tenseurq{L''}\,\colon\,\tsigma \\
514\end{aligned}
515\right.
516\]
517
518The linear transformations \(\tenseurq{L}'\) and \(\tenseurq{L}''\)
519are defined by \(9\) coefficients (each) which describe the material
520orthotropy. There are defined through auxiliary linear transformations
521\(\tenseurq{C}'\) and \(\tenseurq{C}''\) as follows:
522\[
523\begin{aligned}
524\tenseurq{L}' &=\tenseurq{C}'\,\colon\,\tenseurq{M} \\
525\tenseurq{L}''&=\tenseurq{C}''\,\colon\,\tenseurq{M}
526\end{aligned}
527\]
528where \(\tenseurq{M}\) is the transformation of the stress to its deviator:
529\[
530\tenseurq{M}=\tenseurq{I}-\Frac{1}{3}\tenseur{I}\,\otimes\,\tenseur{I}
531\]
532
533The linear transformations \(\tenseurq{C}'\) and \(\tenseurq{C}''\) of
534the deviator stress are defined as follows:
535\[
536\tenseurq{C}'=
537\begin{pmatrix}
5380 & -c'_{12} & -c'_{13} & 0 & 0 & 0 \\
539-c'_{21} & 0 & -c'_{23} & 0 & 0 & 0 \\
540-c'_{31} & -c'_{32} & 0 & 0 & 0 & 0 \\
5410 & 0 & 0 & c'_{44} & 0 & 0 \\
5420 & 0 & 0 & 0 & c'_{55} & 0 \\
5430 & 0 & 0 & 0 & 0 & c'_{66} \\
544\end{pmatrix}
545\quad
546\text{and}
547\quad
548\tenseurq{C}''=
549\begin{pmatrix}
5500 & -c''_{12} & -c''_{13} & 0 & 0 & 0 \\
551-c''_{21} & 0 & -c''_{23} & 0 & 0 & 0 \\
552-c''_{31} & -c''_{32} & 0 & 0 & 0 & 0 \\
5530 & 0 & 0 & c''_{44} & 0 & 0 \\
5540 & 0 & 0 & 0 & c''_{55} & 0 \\
5550 & 0 & 0 & 0 & 0 & c''_{66} \\
556\end{pmatrix}
557\]
558
559When all the coefficients \(c'_{ji}\) and \(c''_{ji}\) are equal to
560\(1\), the Barlat equivalent stress reduces to the Hosford equivalent
561stress.
562
563#### Options
564
565This stress criterion has \(3\) mandatory options:
566
567- the coefficients of the first linear transformation \(\tenseurq{L}'\),
568  as `l1`;
569- the coefficients of the second linear transformation
570  \(\tenseurq{L}''\), as `l2`;
571- the Barlat exponent \(a\)
572
573> **Orthotropic axis convention** If an orthotropic axis convention
574> is defined (See the `@OrthotropicBehaviour` keyword' documentation),
575> the coefficients of the linear transformationscan be exchanged for some
576> modelling hypotheses. The coefficients given by the user must always
577> correspond to the three dimensional case.
578
579### Example
580
581~~~~{.cpp}
582    criterion : "Barlat" {
583      a : 8,
584      l1 : {-0.069888, 0.079143, 0.936408, 0.524741, 1.00306, 1.36318, 0.954322,
585            1.06906, 1.02377},
586      l2 : {0.981171, 0.575316, 0.476741, 1.14501, 0.866827, -0.079294, 1.40462,
587            1.1471, 1.05166}
588    }
589~~~~
590
591## List of available isotropic hardening rules
592
593> **Note**
594>
595> The follwing hardening rules can be combined to define
596> more complex hardening rules. For example, the following
597> code adds to Voce hardening:
598>
599> ~~~~{.cpp}
600>    isotropic_hardening : "Voce" {R0 : 600e6, Rinf : 900e6, b : 1},
601>    isotropic_hardening : "Voce" {R0 : 0, Rinf : 300e6, b : 10},
602> ~~~~
603>
604> The previous code is equalivent to the following hardening rule:
605>
606> \[
607> R\paren{p}=R_{0}^{0}+\paren{R_{\infty}^{0}-R_{0}^{0}}\,\paren{1-\exp\paren{-b^{0}\,p}}+R_{\infty}^{1}\,\paren{1-\exp\paren{-b^{1}\,p}}
608> \]
609>
610> with:
611>
612> - \(R_{0}^{0}=600\,.\,10^{6}\,Pa\)
613> - \(R_{\infty}^{0}=900\,.\,10^{6}\,Pa\)
614> - \(R_{\infty}^{1}=300\,.\,10^{6}\,Pa\)
615> - \(b^{0}=1\)
616> - \(b^{1}=10\)
617
618### The `Linear` isotropic hardening rule
619
620The `Linear` isotropic hardening rule is defined by:
621\[
622R\paren{p}=R_{0}+H\,p
623\]
624
625#### Options
626
627The `Swift` isotropic hardening rule expects one of the two following
628material properties:
629
630- `R0`: the yield strength
631- `H`: the hardening slope
632
633> **Note**
634>
635> If one of the previous material property is not defined, the generated
636> code is optimised and there will be no parameter asscoiated with it.
637> To avoid this, you must define the material property and assign
638> it to a zero value.
639
640#### Example
641
642The following code can be added in a block defining an inelastic flow:
643
644~~~~{.cpp}
645    isotropic_hardening : "Linear" {R0 : 120e6, H : 438e6},
646~~~~
647
648### The `Swift` isotropic hardening rule
649
650The `Swift` isotropic hardening rule is defined by:
651\[
652R\paren{p}=R_{0}\,\paren{\Frac{p+p_{0}}{p_{0}}}^{n}
653\]
654
655#### Options
656
657The `Swift` isotropic hardening rule expects three material properties:
658
659- `R0`: the yield strength
660- `p0`
661- `n`
662
663#### Example
664
665The following code can be added in a block defining an inelastic flow:
666
667~~~~{.cpp}
668    isotropic_hardening : "Swift" {R0 : 120e6, p0 : 1e-8, n : 5.e-2}
669~~~~
670
671### The `Voce` isotropic hardening rule
672
673The `Voce` isotropic hardening rule is defined by:
674\[
675R\paren{p}=R_{\infty}+\paren{R_{0}-R_{\infty}}\,exp\paren{-b\,p}
676\]
677
678#### Options
679
680The `Voce` isotropic hardening rule expects three material properties:
681
682- `R0`: the yield strength
683- `Rinf`: the utimate strength
684- `b`
685
686#### Example
687
688The following code can be added in a block defining an inelastic flow:
689
690~~~~{.cpp}
691    isotropic_hardening : "Voce" {R0 : 200, Rinf : 100, b : 20}
692~~~~
693
694## List of available kinematic hardening rules
695
696### The `Prager` kinematic hardening rule
697
698#### Example
699
700The following code can be added in a block defining an inelastic flow:
701
702~~~{.cpp}
703    kinematic_hardening : "Prager" {C : 33e6},
704~~~
705
706### The `Armstrong-Frederick` kinematic hardening rule
707
708
709The `Armstrong-Frederick` kinematic hardening rule can be described as
710follows (see @armstrong_mathematical_1966):
711\[
712\left\{
713\begin{aligned}
714\tenseur{X}&=\Frac{2}{3}\,C\,\tenseur{a} \\
715\tenseur{\dot{a}}&=\dot{p}\,\tenseur{n}-D\,\dot{p}\,\tenseur{a} \\
716\end{aligned}
717\right.
718\]
719
720#### Example
721
722The following code can be added in a block defining an inelastic flow:
723
724~~~{.cpp}
725    kinematic_hardening : "Armstrong-Frederick" {C : 1.5e9, D : 5}
726~~~
727
728### The `Burlet-Cailletaud` kinematic hardening rule
729
730The `Burlet-Cailletaud` kinematic hardening rule is defined as follows
731(see @burlet_modelling_1987):
732
733\[
734\left\{
735\begin{aligned}
736\tenseur{X}&=\Frac{2}{3}\,C\,\tenseur{a} \\
737\tenseur{\dot{a}}&=\dot{p}\,\tenseur{n}
738-\eta\,D\,\dot{p}\,\tenseur{a}
739-\paren{1-\eta}\,D\,\Frac{2}{3}\,\dot{p}\,\paren{\tenseur{a}\,\colon\,\tenseur{n}}\,\tenseur{n} \\
740\end{aligned}
741\right.
742\]
743
744#### Example
745
746The following code can be added in a block defining an inelastic flow:
747
748~~~{.cpp}
749    kinematic_hardening : "Burlet-Cailletaud" {C : 250e7, D : 100, eta : 0}
750~~~
751
752### The `Chaboche 2012` kinematic hardening rule
753
754The `Chaboche 2012` kinematic hardening rule is defined as follows
755(see @chaboche_cyclic_2012):
756
757\[
758\tenseur{\dot{a}}
759=\tenseur{\dot{\varepsilon}}^{p}-\frac{3\,D}{2\,C}\,\Phi\left(p\right)\,
760\Psi^{\left(\tenseur{X}\right)}\left(\tenseur{X}\right)\,\dot{p}\,\tenseur{X}
761=\tenseur{\dot{\varepsilon}}^{p}-
762D\,\Phi\left(p\right)\,\Psi\left(\tenseur{a}\right)\dot{p}\,\tenseur{a}
763\]
764
765with:
766
767- \(\tenseur{X}=\frac{2}{3}\,C\,\tenseur{a}\)
768- \(
769\Phi\left(p\right)=\phi_{\infty}+
770\left(1-\phi_{\infty}\right)\,\exp\left(-b\,p\right)
771\)
772- \(
773\Psi^{\left(\tenseur{X}\right)}\left(\tenseur{X}\right)=
774\frac{\left<D\,J\left(\tenseur{X}\right)-\omega\,C\right>^{m}}{1-\omega}\,
775\frac{1}{\left(D\,J\left(\tenseur{X}\right)\right)^{m}}
776\)
777- \(
778\Psi\left(\tenseur{a}\right)=
779\frac{\left<D\,J\left(\tenseur{a}\right)-\frac{3}{2}\omega\right>^{m}}{1-\omega}\,
780\frac{1}{\left(D\,J\left(\tenseur{a}\right)\right)^{m}}
781\)
782
783#### Example
784
785The following code can be added in a block defining an inelastic flow:
786
787~~~~{.cpp}
788    kinematic_hardening : "Chaboche 2012" {
789      C : 250e7,
790      D : 100,
791      m : 2,
792      w : 0.6,
793    }
794~~~~
795
796# References
797