1\section{Silicon --- valence and low lying conduction states} 2\label{sec11:silicon} 3 4\begin{figure}[h!] 5\centering 6\includegraphics[width=0.25\columnwidth,trim={45pt 45pt 55pt 55pt},clip]{figure/example11/silicon.png} 7\caption{Unit cell of Silicon crystal plotted with the \xcrysden{} program.} 8\label{fig11.0} 9\end{figure} 10 11\subsection*{Valence States} 12\begin{itemize} 13\item Outline: {\it Obtain MLWFs for the valence bands of silicon.} 14\end{itemize} 15 16 17\begin{itemize} 18 \item[1-5] {\it Inspect the output file {\tt silicon.wout}. The total spread converges to its minimum value after just a 19few iterations. Note that the geometric centre of each MLWF lies at the centre of the Si--Si bond. Note 20also that the memory requirement for the minimisation of the spread is very low as the MLWFs are 21defined by just the $4\times4$ unitary matrices $U(\mathbf{k})$.} 22 23Below a snippet from the {\tt silicon.wout} output file 24 \begin{tcolorbox}[sharp corners,boxrule=0.5pt] 25 {\small 26\begin{verbatim} 27 Final State 28 WF centre and spread 1 ( -0.674701, 0.674701, -0.674701 ) 1.59185520 29 WF centre and spread 2 ( -0.674701, -0.674701, 0.674701 ) 1.59185520 30 WF centre and spread 3 ( 0.674701, 0.674701, 0.674701 ) 1.59185520 31 WF centre and spread 4 ( 0.674701, -0.674701, -0.674701 ) 1.59185520 32 Sum of centres and spreads ( -0.000000, 0.000000, 0.000000 ) 6.36742081 33 34 Spreads (Ang^2) Omega I = 5.801375426 35 ================ Omega D = 0.000000000 36 Omega OD = 0.566045385 37 Final Spread (Ang^2) Omega Total = 6.367420811 38 ------------------------------------------------------------------------------ 39\end{verbatim} 40} 41\end{tcolorbox} 42Memory estimates may be found in the {\tt MEMORY ESTIMATE} section of the {\tt silicon.wout} file. 43 \begin{tcolorbox}[sharp corners,boxrule=0.5pt] 44 {\small 45\begin{verbatim} 46 *============================================================================* 47 | MEMORY ESTIMATE | 48 | Maximum RAM allocated during each phase of the calculation | 49 *============================================================================* 50 | Disentanglement 1.57 Mb | 51 | Wannierise: 0.47 Mb | 52 53\end{verbatim} 54} 55\end{tcolorbox} 56Converged values for the total spread functional and its components are shown in Tab.~\ref{tab11.1}. 57 58\begin{table}[t!] 59\centering 60\caption{Converged values of the components of spread functional and their sum, given in \angsqd{}.} 61\begin{tabular}{@{} lllll @{}}\toprule[1.5pt] 62MP mesh & $\Omega$ & $\Omega\tinysub{I}$ & $\Omega\tinysub{OD}$ & $\Omega\tinysub{D}$ \\\midrule 63$4\times4\times4$ & 6.3674 & 5.8014 & 0.5660 & 0.0000 \\\bottomrule 64\end{tabular}\label{tab11.1} 65\end{table} 66 67\item {\it Plot the MLWFs} 68The four MLWFs with $\sigma$ character describing the valence manifold of Si are shown in \Fig{fig11.1}(a),(b) and (c) respectively. 69 \begin{figure}[h!] 70 \centering 71 \subfloat[1]{\includegraphics[width=0.25\columnwidth,trim={500pt 0pt 500pt 0pt},clip]{figure/example11/silicon_valence_1.png}} 72 \centering 73 \subfloat[2]{\includegraphics[width=0.25\columnwidth,trim={500pt 0pt 500pt 0pt},clip]{figure/example11/silicon_valence_2.png}} 74 \centering 75 \subfloat[3]{\includegraphics[width=0.25\columnwidth,trim={500pt 0pt 500pt 0pt},clip]{figure/example11/silicon_valence_3.png}} 76 \centering 77 \subfloat[4]{\includegraphics[width=0.25\columnwidth,trim={500pt 0pt 500pt 0pt},clip]{figure/example11/silicon_valence_4.png}} 78 \caption{Four MLWFs for the valence manifold of Si.}\label{fig11.1} 79 \end{figure} 80 81\end{itemize} 82\newpage 83\subsection*{Valence + Conduction States} 84\begin{itemize} 85\item Outline: {\it Obtain MLWFs for the valence and low--lying conduction-band states of Si. Plot the 86interpolated bandstructure. Apply a scissors correction to the conduction bands.} 87\end{itemize} 88 89\begin{itemize} 90 \item {\it Inspect the output file {\tt silicon.wout}. The minimisation of the spread occurs in a two-step procedure. First, we minimise $\Omega\tinysub{I}$ -- this is the extraction of the optimal subspace in the disentanglement procedure. Then, we minimise $\Omega\tinysub{D} + \Omega\tinysub{OD}$.} 91 92 Converged values for the total spread functional and its components are shown in Tab.~\ref{tab11.2}. 93 The two groups of four MLWFs with $sp3$ character are shown in \Fig{fig11.2} 94 95 \begin{tcolorbox}[sharp corners,boxrule=0.5pt] 96 {\small 97 \begin{verbatim} 98 Extraction of optimally-connected subspace 99 ------------------------------------------ 100 +---------------------------------------------------------------------+<-- DIS 101 | Iter Omega_I(i-1) Omega_I(i) Delta (frac.) Time |<-- DIS 102 +---------------------------------------------------------------------+<-- DIS 103 1 12.97640155 12.44630235 4.259E-02 0.00 <-- DIS 104 . . . . . 105 106 79 12.33580893 12.33580893 -6.531E-11 0.23 <-- DIS 107 80 12.33580893 12.33580893 -5.241E-11 0.23 <-- DIS 108 109 <<< Delta < 1.000E-10 over 3 iterations >>> 110 <<< Disentanglement convergence criteria satisfied >>> 111 112 Final Omega_I 12.33580893 (Ang^2) 113 114 +----------------------------------------------------------------------------+ 115 \end{verbatim} 116 } 117 \end{tcolorbox} 118 119 \begin{tcolorbox}[sharp corners,boxrule=0.5pt] 120 {\small 121 \begin{verbatim} 122 Final State 123 WF centre and spread 1 ( 1.807167, 1.807167, 1.807167 ) 2.01695824 124 WF centre and spread 2 ( 1.807167, 0.891636, 0.891636 ) 2.01695823 125 WF centre and spread 3 ( 0.891636, 1.807167, 0.891636 ) 2.01695823 126 WF centre and spread 4 ( 0.891636, 0.891636, 1.807167 ) 2.01695824 127 WF centre and spread 5 ( 0.226733, 0.226733, 0.226733 ) 2.37014516 128 WF centre and spread 6 ( 0.226733, -0.226733, -0.226733 ) 2.37014508 129 WF centre and spread 7 ( -0.226733, 0.226733, -0.226733 ) 2.37014515 130 WF centre and spread 8 ( -0.226733, -0.226733, 0.226733 ) 2.37014514 131 Sum of centres and spreads ( 5.397608, 5.397608, 5.397608 ) 17.54841346 132 133 Spreads (Ang^2) Omega I = 12.335808933 134 ================ Omega D = 0.177593840 135 Omega OD = 5.035010692 136 Final Spread (Ang^2) Omega Total = 17.548413465 137 ------------------------------------------------------------------------------ 138 \end{verbatim} 139 } 140 141 \end{tcolorbox} 142 143 144 \begin{table}[t!] 145 \centering 146 \caption{Converged values of the components of spread functional and their sum, given in \angsqd{}.} 147 \begin{tabular}{@{} lllll @{}}\toprule[1.5pt] 148 MP mesh & $\Omega$ & $\Omega\tinysub{I}$ & $\Omega\tinysub{OD}$ & $\Omega\tinysub{D}$ \\\midrule 149 $4\times4\times4$ & 17.54841 & 12.3358 & 5.03501 & 0.17759 \\\bottomrule 150 \end{tabular}\label{tab11.2} 151 \end{table} 152 153 \begin{figure}[h!] 154 \centering 155 \subfloat[1]{\includegraphics[width=0.25\columnwidth,trim={300pt 0pt 500pt 0pt},clip]{figure/example11/silicon_v+c_1.png}} 156 \centering 157 \subfloat[2]{\includegraphics[width=0.25\columnwidth,trim={300pt 0pt 500pt 0pt},clip]{figure/example11/silicon_v+c_2.png}} 158 \centering 159 \subfloat[3]{\includegraphics[width=0.25\columnwidth,trim={300pt 0pt 500pt 0pt},clip]{figure/example11/silicon_v+c_3.png}} 160 \centering 161 \subfloat[4]{\includegraphics[width=0.25\columnwidth,trim={300pt 0pt 500pt 0pt},clip]{figure/example11/silicon_v+c_4.png}}\\ 162 \centering 163 \subfloat[5]{\includegraphics[width=0.25\columnwidth,trim={300pt 0pt 500pt 0pt},clip]{figure/example11/silicon_v+c_5.png}} 164 \centering 165 \subfloat[6]{\includegraphics[width=0.25\columnwidth,trim={300pt 0pt 500pt 0pt},clip]{figure/example11/silicon_v+c_6.png}} 166 \centering 167 \subfloat[7]{\includegraphics[width=0.25\columnwidth,trim={300pt 0pt 500pt 0pt},clip]{figure/example11/silicon_v+c_7.png}} 168 \centering 169 \subfloat[8]{\includegraphics[width=0.25\columnwidth,trim={300pt 0pt 500pt 0pt},clip]{figure/example11/silicon_v+c_8.png}} 170 \caption{Eight MLWFs with $sp3$ character, four on each Si atom in the unit cell.}\label{fig11.2} 171 \end{figure} 172\item {\it Plot the bandstructure.} 173 174The interpolated bandstructure is given in \Fig{fig11.3}. 175\begin{figure}[h!] 176\centering 177\includegraphics[width=0.7\columnwidth]{figure/example11/silicon_bandstructure.pdf} 178\caption{Bandstructure of silicon from DFT calculation (solid black) and from Wannier interpolation (solid red).}\label{fig11.3} 179\end{figure} 180\end{itemize} 181 182\subsection*{Further ideas} 183\begin{itemize} 184 \item {\it Compare the Wannier-interpolated bandstructure with the full pwscf bandstructure with a finer $k$-point grid.} 185 186 Result for a $8\times8\times8$ mesh is shown in \Fig{fig11.4}. 187 188 \begin{figure}[h!] 189 \centering 190 \includegraphics[width=0.7\columnwidth]{figure/example11/silicon_bs_DFT_vs_W90_finer_grid.pdf} 191 \caption{Bandstructure of silicon from DFT calculation (solid black) and from Wannier interpolation with a $4\times4\times4$ mesh (solid red) and $8\times8\times8$ mesh (solid blue).}\label{fig11.4} 192 \end{figure} 193 194 \item {\it Compute four MLWFs spanning the low-lying conduction states.} 195 196 The \MLWFs{} spanning the 4 low-lying conduction states are shown in \Fig{fig11.5}. The initial projections were 4 $sp3$ on the Si atom at (0,0,0). 197 \begin{figure}[h!] 198 \centering 199 \subfloat[1]{\includegraphics[width=0.25\columnwidth,trim={0pt 0pt 0pt 0pt},clip]{figure/example11/silicon_conduction_1.png}} 200 \centering 201 \subfloat[2]{\includegraphics[width=0.25\columnwidth,trim={0pt 0pt 0pt 0pt},clip]{figure/example11/silicon_conduction_2.png}} 202 \centering 203 \subfloat[3]{\includegraphics[width=0.25\columnwidth,trim={0pt 0pt 0pt 0pt},clip]{figure/example11/silicon_conduction_3.png}} 204 \centering 205 \subfloat[4]{\includegraphics[width=0.25\columnwidth,trim={0pt 0pt 0pt 0pt},clip]{figure/example11/silicon_conduction_4.png}} 206 \caption{}\label{fig11.5} 207 \end{figure} 208\end{itemize} 209