1 /*
2 * Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the OpenSSL license (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include "internal/cryptlib.h"
12 #include "internal/numbers.h"
13 #include <openssl/asn1t.h>
14 #include <openssl/bn.h>
15 #include "asn1_local.h"
16
17 /*
18 * Custom primitive types for handling int32_t, int64_t, uint32_t, uint64_t.
19 * This converts between an ASN1_INTEGER and those types directly.
20 * This is preferred to using the LONG / ZLONG primitives.
21 */
22
23 /*
24 * We abuse the ASN1_ITEM fields |size| as a flags field
25 */
26 #define INTxx_FLAG_ZERO_DEFAULT (1<<0)
27 #define INTxx_FLAG_SIGNED (1<<1)
28
uint64_new(ASN1_VALUE ** pval,const ASN1_ITEM * it)29 static int uint64_new(ASN1_VALUE **pval, const ASN1_ITEM *it)
30 {
31 if ((*pval = (ASN1_VALUE *)OPENSSL_zalloc(sizeof(uint64_t))) == NULL) {
32 ASN1err(ASN1_F_UINT64_NEW, ERR_R_MALLOC_FAILURE);
33 return 0;
34 }
35 return 1;
36 }
37
uint64_free(ASN1_VALUE ** pval,const ASN1_ITEM * it)38 static void uint64_free(ASN1_VALUE **pval, const ASN1_ITEM *it)
39 {
40 OPENSSL_free(*pval);
41 *pval = NULL;
42 }
43
uint64_clear(ASN1_VALUE ** pval,const ASN1_ITEM * it)44 static void uint64_clear(ASN1_VALUE **pval, const ASN1_ITEM *it)
45 {
46 **(uint64_t **)pval = 0;
47 }
48
uint64_i2c(ASN1_VALUE ** pval,unsigned char * cont,int * putype,const ASN1_ITEM * it)49 static int uint64_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype,
50 const ASN1_ITEM *it)
51 {
52 uint64_t utmp;
53 int neg = 0;
54 /* this exists to bypass broken gcc optimization */
55 char *cp = (char *)*pval;
56
57 /* use memcpy, because we may not be uint64_t aligned */
58 memcpy(&utmp, cp, sizeof(utmp));
59
60 if ((it->size & INTxx_FLAG_ZERO_DEFAULT) == INTxx_FLAG_ZERO_DEFAULT
61 && utmp == 0)
62 return -1;
63 if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED
64 && (int64_t)utmp < 0) {
65 /* i2c_uint64_int() assumes positive values */
66 utmp = 0 - utmp;
67 neg = 1;
68 }
69
70 return i2c_uint64_int(cont, utmp, neg);
71 }
72
uint64_c2i(ASN1_VALUE ** pval,const unsigned char * cont,int len,int utype,char * free_cont,const ASN1_ITEM * it)73 static int uint64_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len,
74 int utype, char *free_cont, const ASN1_ITEM *it)
75 {
76 uint64_t utmp = 0;
77 char *cp;
78 int neg = 0;
79
80 if (*pval == NULL && !uint64_new(pval, it))
81 return 0;
82
83 cp = (char *)*pval;
84
85 /*
86 * Strictly speaking, zero length is malformed. However, long_c2i
87 * (x_long.c) encodes 0 as a zero length INTEGER (wrongly, of course),
88 * so for the sake of backward compatibility, we still decode zero
89 * length INTEGERs as the number zero.
90 */
91 if (len == 0)
92 goto long_compat;
93
94 if (!c2i_uint64_int(&utmp, &neg, &cont, len))
95 return 0;
96 if ((it->size & INTxx_FLAG_SIGNED) == 0 && neg) {
97 ASN1err(ASN1_F_UINT64_C2I, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
98 return 0;
99 }
100 if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED
101 && !neg && utmp > INT64_MAX) {
102 ASN1err(ASN1_F_UINT64_C2I, ASN1_R_TOO_LARGE);
103 return 0;
104 }
105 if (neg)
106 /* c2i_uint64_int() returns positive values */
107 utmp = 0 - utmp;
108
109 long_compat:
110 memcpy(cp, &utmp, sizeof(utmp));
111 return 1;
112 }
113
uint64_print(BIO * out,ASN1_VALUE ** pval,const ASN1_ITEM * it,int indent,const ASN1_PCTX * pctx)114 static int uint64_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *it,
115 int indent, const ASN1_PCTX *pctx)
116 {
117 if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED)
118 return BIO_printf(out, "%jd\n", **(int64_t **)pval);
119 return BIO_printf(out, "%ju\n", **(uint64_t **)pval);
120 }
121
122 /* 32-bit variants */
123
uint32_new(ASN1_VALUE ** pval,const ASN1_ITEM * it)124 static int uint32_new(ASN1_VALUE **pval, const ASN1_ITEM *it)
125 {
126 if ((*pval = (ASN1_VALUE *)OPENSSL_zalloc(sizeof(uint32_t))) == NULL) {
127 ASN1err(ASN1_F_UINT32_NEW, ERR_R_MALLOC_FAILURE);
128 return 0;
129 }
130 return 1;
131 }
132
uint32_free(ASN1_VALUE ** pval,const ASN1_ITEM * it)133 static void uint32_free(ASN1_VALUE **pval, const ASN1_ITEM *it)
134 {
135 OPENSSL_free(*pval);
136 *pval = NULL;
137 }
138
uint32_clear(ASN1_VALUE ** pval,const ASN1_ITEM * it)139 static void uint32_clear(ASN1_VALUE **pval, const ASN1_ITEM *it)
140 {
141 **(uint32_t **)pval = 0;
142 }
143
uint32_i2c(ASN1_VALUE ** pval,unsigned char * cont,int * putype,const ASN1_ITEM * it)144 static int uint32_i2c(ASN1_VALUE **pval, unsigned char *cont, int *putype,
145 const ASN1_ITEM *it)
146 {
147 uint32_t utmp;
148 int neg = 0;
149 /* this exists to bypass broken gcc optimization */
150 char *cp = (char *)*pval;
151
152 /* use memcpy, because we may not be uint32_t aligned */
153 memcpy(&utmp, cp, sizeof(utmp));
154
155 if ((it->size & INTxx_FLAG_ZERO_DEFAULT) == INTxx_FLAG_ZERO_DEFAULT
156 && utmp == 0)
157 return -1;
158 if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED
159 && (int32_t)utmp < 0) {
160 /* i2c_uint64_int() assumes positive values */
161 utmp = 0 - utmp;
162 neg = 1;
163 }
164
165 return i2c_uint64_int(cont, (uint64_t)utmp, neg);
166 }
167
168 /*
169 * Absolute value of INT32_MIN: we can't just use -INT32_MIN as it produces
170 * overflow warnings.
171 */
172
173 #define ABS_INT32_MIN ((uint32_t)INT32_MAX + 1)
174
uint32_c2i(ASN1_VALUE ** pval,const unsigned char * cont,int len,int utype,char * free_cont,const ASN1_ITEM * it)175 static int uint32_c2i(ASN1_VALUE **pval, const unsigned char *cont, int len,
176 int utype, char *free_cont, const ASN1_ITEM *it)
177 {
178 uint64_t utmp = 0;
179 uint32_t utmp2 = 0;
180 char *cp;
181 int neg = 0;
182
183 if (*pval == NULL && !uint64_new(pval, it))
184 return 0;
185
186 cp = (char *)*pval;
187
188 /*
189 * Strictly speaking, zero length is malformed. However, long_c2i
190 * (x_long.c) encodes 0 as a zero length INTEGER (wrongly, of course),
191 * so for the sake of backward compatibility, we still decode zero
192 * length INTEGERs as the number zero.
193 */
194 if (len == 0)
195 goto long_compat;
196
197 if (!c2i_uint64_int(&utmp, &neg, &cont, len))
198 return 0;
199 if ((it->size & INTxx_FLAG_SIGNED) == 0 && neg) {
200 ASN1err(ASN1_F_UINT32_C2I, ASN1_R_ILLEGAL_NEGATIVE_VALUE);
201 return 0;
202 }
203 if (neg) {
204 if (utmp > ABS_INT32_MIN) {
205 ASN1err(ASN1_F_UINT32_C2I, ASN1_R_TOO_SMALL);
206 return 0;
207 }
208 utmp = 0 - utmp;
209 } else {
210 if (((it->size & INTxx_FLAG_SIGNED) != 0 && utmp > INT32_MAX)
211 || ((it->size & INTxx_FLAG_SIGNED) == 0 && utmp > UINT32_MAX)) {
212 ASN1err(ASN1_F_UINT32_C2I, ASN1_R_TOO_LARGE);
213 return 0;
214 }
215 }
216
217 long_compat:
218 utmp2 = (uint32_t)utmp;
219 memcpy(cp, &utmp2, sizeof(utmp2));
220 return 1;
221 }
222
uint32_print(BIO * out,ASN1_VALUE ** pval,const ASN1_ITEM * it,int indent,const ASN1_PCTX * pctx)223 static int uint32_print(BIO *out, ASN1_VALUE **pval, const ASN1_ITEM *it,
224 int indent, const ASN1_PCTX *pctx)
225 {
226 if ((it->size & INTxx_FLAG_SIGNED) == INTxx_FLAG_SIGNED)
227 return BIO_printf(out, "%d\n", **(int32_t **)pval);
228 return BIO_printf(out, "%u\n", **(uint32_t **)pval);
229 }
230
231
232 /* Define the primitives themselves */
233
234 static ASN1_PRIMITIVE_FUNCS uint32_pf = {
235 NULL, 0,
236 uint32_new,
237 uint32_free,
238 uint32_clear,
239 uint32_c2i,
240 uint32_i2c,
241 uint32_print
242 };
243
244 static ASN1_PRIMITIVE_FUNCS uint64_pf = {
245 NULL, 0,
246 uint64_new,
247 uint64_free,
248 uint64_clear,
249 uint64_c2i,
250 uint64_i2c,
251 uint64_print
252 };
253
254 ASN1_ITEM_start(INT32)
255 ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint32_pf,
256 INTxx_FLAG_SIGNED, "INT32"
257 ASN1_ITEM_end(INT32)
258
259 ASN1_ITEM_start(UINT32)
260 ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint32_pf, 0, "UINT32"
261 ASN1_ITEM_end(UINT32)
262
263 ASN1_ITEM_start(INT64)
264 ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint64_pf,
265 INTxx_FLAG_SIGNED, "INT64"
266 ASN1_ITEM_end(INT64)
267
268 ASN1_ITEM_start(UINT64)
269 ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint64_pf, 0, "UINT64"
270 ASN1_ITEM_end(UINT64)
271
272 ASN1_ITEM_start(ZINT32)
273 ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint32_pf,
274 INTxx_FLAG_ZERO_DEFAULT|INTxx_FLAG_SIGNED, "ZINT32"
275 ASN1_ITEM_end(ZINT32)
276
277 ASN1_ITEM_start(ZUINT32)
278 ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint32_pf,
279 INTxx_FLAG_ZERO_DEFAULT, "ZUINT32"
280 ASN1_ITEM_end(ZUINT32)
281
282 ASN1_ITEM_start(ZINT64)
283 ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint64_pf,
284 INTxx_FLAG_ZERO_DEFAULT|INTxx_FLAG_SIGNED, "ZINT64"
285 ASN1_ITEM_end(ZINT64)
286
287 ASN1_ITEM_start(ZUINT64)
288 ASN1_ITYPE_PRIMITIVE, V_ASN1_INTEGER, NULL, 0, &uint64_pf,
289 INTxx_FLAG_ZERO_DEFAULT, "ZUINT64"
290 ASN1_ITEM_end(ZUINT64)
291
292