1 //===-- llvm/Target/TargetInstrDesc.h - Instruction Descriptors -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the TargetOperandInfo and TargetInstrDesc classes, which
11 // are used to describe target instructions and their operands.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_TARGET_TARGETINSTRDESC_H
16 #define LLVM_TARGET_TARGETINSTRDESC_H
17 
18 #include "llvm/System/DataTypes.h"
19 
20 namespace llvm {
21 
22 class TargetRegisterClass;
23 class TargetRegisterInfo;
24 
25 //===----------------------------------------------------------------------===//
26 // Machine Operand Flags and Description
27 //===----------------------------------------------------------------------===//
28 
29 namespace TOI {
30   // Operand constraints
31   enum OperandConstraint {
32     TIED_TO = 0,    // Must be allocated the same register as.
33     EARLY_CLOBBER   // Operand is an early clobber register operand
34   };
35 
36   /// OperandFlags - These are flags set on operands, but should be considered
37   /// private, all access should go through the TargetOperandInfo accessors.
38   /// See the accessors for a description of what these are.
39   enum OperandFlags {
40     LookupPtrRegClass = 0,
41     Predicate,
42     OptionalDef
43   };
44 }
45 
46 /// TargetOperandInfo - This holds information about one operand of a machine
47 /// instruction, indicating the register class for register operands, etc.
48 ///
49 class TargetOperandInfo {
50 public:
51   /// RegClass - This specifies the register class enumeration of the operand
52   /// if the operand is a register.  If isLookupPtrRegClass is set, then this is
53   /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to
54   /// get a dynamic register class.
55   ///
56   /// NOTE: This member should be considered to be private, all access should go
57   /// through "getRegClass(TRI)" below.
58   short RegClass;
59 
60   /// Flags - These are flags from the TOI::OperandFlags enum.
61   unsigned short Flags;
62 
63   /// Lower 16 bits are used to specify which constraints are set. The higher 16
64   /// bits are used to specify the value of constraints (4 bits each).
65   unsigned Constraints;
66   /// Currently no other information.
67 
68   /// getRegClass - Get the register class for the operand, handling resolution
69   /// of "symbolic" pointer register classes etc.  If this is not a register
70   /// operand, this returns null.
71   const TargetRegisterClass *getRegClass(const TargetRegisterInfo *TRI) const;
72 
73 
74   /// isLookupPtrRegClass - Set if this operand is a pointer value and it
75   /// requires a callback to look up its register class.
isLookupPtrRegClass()76   bool isLookupPtrRegClass() const { return Flags&(1 <<TOI::LookupPtrRegClass);}
77 
78   /// isPredicate - Set if this is one of the operands that made up of
79   /// the predicate operand that controls an isPredicable() instruction.
isPredicate()80   bool isPredicate() const { return Flags & (1 << TOI::Predicate); }
81 
82   /// isOptionalDef - Set if this operand is a optional def.
83   ///
isOptionalDef()84   bool isOptionalDef() const { return Flags & (1 << TOI::OptionalDef); }
85 };
86 
87 
88 //===----------------------------------------------------------------------===//
89 // Machine Instruction Flags and Description
90 //===----------------------------------------------------------------------===//
91 
92 /// TargetInstrDesc flags - These should be considered private to the
93 /// implementation of the TargetInstrDesc class.  Clients should use the
94 /// predicate methods on TargetInstrDesc, not use these directly.  These
95 /// all correspond to bitfields in the TargetInstrDesc::Flags field.
96 namespace TID {
97   enum {
98     Variadic = 0,
99     HasOptionalDef,
100     Return,
101     Call,
102     Barrier,
103     Terminator,
104     Branch,
105     IndirectBranch,
106     Predicable,
107     NotDuplicable,
108     Compare,
109     DelaySlot,
110     FoldableAsLoad,
111     MayLoad,
112     MayStore,
113     UnmodeledSideEffects,
114     Commutable,
115     ConvertibleTo3Addr,
116     UsesCustomInserter,
117     Rematerializable,
118     CheapAsAMove,
119     ExtraSrcRegAllocReq,
120     ExtraDefRegAllocReq
121   };
122 }
123 
124 /// TargetInstrDesc - Describe properties that are true of each
125 /// instruction in the target description file.  This captures information about
126 /// side effects, register use and many other things.  There is one instance of
127 /// this struct for each target instruction class, and the MachineInstr class
128 /// points to this struct directly to describe itself.
129 class TargetInstrDesc {
130 public:
131   unsigned short  Opcode;        // The opcode number
132   unsigned short  NumOperands;   // Num of args (may be more if variable_ops)
133   unsigned short  NumDefs;       // Num of args that are definitions
134   unsigned short  SchedClass;    // enum identifying instr sched class
135   const char *    Name;          // Name of the instruction record in td file
136   unsigned        Flags;         // Flags identifying machine instr class
137   uint64_t        TSFlags;       // Target Specific Flag values
138   const unsigned *ImplicitUses;  // Registers implicitly read by this instr
139   const unsigned *ImplicitDefs;  // Registers implicitly defined by this instr
140   const TargetRegisterClass **RCBarriers; // Reg classes completely "clobbered"
141   const TargetOperandInfo *OpInfo; // 'NumOperands' entries about operands
142 
143   /// getOperandConstraint - Returns the value of the specific constraint if
144   /// it is set. Returns -1 if it is not set.
getOperandConstraint(unsigned OpNum,TOI::OperandConstraint Constraint)145   int getOperandConstraint(unsigned OpNum,
146                            TOI::OperandConstraint Constraint) const {
147     if (OpNum < NumOperands &&
148         (OpInfo[OpNum].Constraints & (1 << Constraint))) {
149       unsigned Pos = 16 + Constraint * 4;
150       return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf;
151     }
152     return -1;
153   }
154 
155   /// getRegClass - Returns the register class constraint for OpNum, or NULL.
getRegClass(unsigned OpNum,const TargetRegisterInfo * TRI)156   const TargetRegisterClass *getRegClass(unsigned OpNum,
157                                          const TargetRegisterInfo *TRI) const {
158     return OpNum < NumOperands ? OpInfo[OpNum].getRegClass(TRI) : 0;
159   }
160 
161   /// getOpcode - Return the opcode number for this descriptor.
getOpcode()162   unsigned getOpcode() const {
163     return Opcode;
164   }
165 
166   /// getName - Return the name of the record in the .td file for this
167   /// instruction, for example "ADD8ri".
getName()168   const char *getName() const {
169     return Name;
170   }
171 
172   /// getNumOperands - Return the number of declared MachineOperands for this
173   /// MachineInstruction.  Note that variadic (isVariadic() returns true)
174   /// instructions may have additional operands at the end of the list, and note
175   /// that the machine instruction may include implicit register def/uses as
176   /// well.
getNumOperands()177   unsigned getNumOperands() const {
178     return NumOperands;
179   }
180 
181   /// getNumDefs - Return the number of MachineOperands that are register
182   /// definitions.  Register definitions always occur at the start of the
183   /// machine operand list.  This is the number of "outs" in the .td file,
184   /// and does not include implicit defs.
getNumDefs()185   unsigned getNumDefs() const {
186     return NumDefs;
187   }
188 
189   /// isVariadic - Return true if this instruction can have a variable number of
190   /// operands.  In this case, the variable operands will be after the normal
191   /// operands but before the implicit definitions and uses (if any are
192   /// present).
isVariadic()193   bool isVariadic() const {
194     return Flags & (1 << TID::Variadic);
195   }
196 
197   /// hasOptionalDef - Set if this instruction has an optional definition, e.g.
198   /// ARM instructions which can set condition code if 's' bit is set.
hasOptionalDef()199   bool hasOptionalDef() const {
200     return Flags & (1 << TID::HasOptionalDef);
201   }
202 
203   /// getImplicitUses - Return a list of registers that are potentially
204   /// read by any instance of this machine instruction.  For example, on X86,
205   /// the "adc" instruction adds two register operands and adds the carry bit in
206   /// from the flags register.  In this case, the instruction is marked as
207   /// implicitly reading the flags.  Likewise, the variable shift instruction on
208   /// X86 is marked as implicitly reading the 'CL' register, which it always
209   /// does.
210   ///
211   /// This method returns null if the instruction has no implicit uses.
getImplicitUses()212   const unsigned *getImplicitUses() const {
213     return ImplicitUses;
214   }
215 
216   /// getNumImplicitUses - Return the number of implicit uses this instruction
217   /// has.
getNumImplicitUses()218   unsigned getNumImplicitUses() const {
219     if (ImplicitUses == 0) return 0;
220     unsigned i = 0;
221     for (; ImplicitUses[i]; ++i) /*empty*/;
222     return i;
223   }
224 
225 
226   /// getImplicitDefs - Return a list of registers that are potentially
227   /// written by any instance of this machine instruction.  For example, on X86,
228   /// many instructions implicitly set the flags register.  In this case, they
229   /// are marked as setting the FLAGS.  Likewise, many instructions always
230   /// deposit their result in a physical register.  For example, the X86 divide
231   /// instruction always deposits the quotient and remainder in the EAX/EDX
232   /// registers.  For that instruction, this will return a list containing the
233   /// EAX/EDX/EFLAGS registers.
234   ///
235   /// This method returns null if the instruction has no implicit defs.
getImplicitDefs()236   const unsigned *getImplicitDefs() const {
237     return ImplicitDefs;
238   }
239 
240   /// getNumImplicitDefs - Return the number of implicit defs this instruction
241   /// has.
getNumImplicitDefs()242   unsigned getNumImplicitDefs() const {
243     if (ImplicitDefs == 0) return 0;
244     unsigned i = 0;
245     for (; ImplicitDefs[i]; ++i) /*empty*/;
246     return i;
247   }
248 
249   /// hasImplicitUseOfPhysReg - Return true if this instruction implicitly
250   /// uses the specified physical register.
hasImplicitUseOfPhysReg(unsigned Reg)251   bool hasImplicitUseOfPhysReg(unsigned Reg) const {
252     if (const unsigned *ImpUses = ImplicitUses)
253       for (; *ImpUses; ++ImpUses)
254         if (*ImpUses == Reg) return true;
255     return false;
256   }
257 
258   /// hasImplicitDefOfPhysReg - Return true if this instruction implicitly
259   /// defines the specified physical register.
hasImplicitDefOfPhysReg(unsigned Reg)260   bool hasImplicitDefOfPhysReg(unsigned Reg) const {
261     if (const unsigned *ImpDefs = ImplicitDefs)
262       for (; *ImpDefs; ++ImpDefs)
263         if (*ImpDefs == Reg) return true;
264     return false;
265   }
266 
267   /// getRegClassBarriers - Return a list of register classes that are
268   /// completely clobbered by this machine instruction. For example, on X86
269   /// the call instructions will completely clobber all the registers in the
270   /// fp stack and XMM classes.
271   ///
272   /// This method returns null if the instruction doesn't completely clobber
273   /// any register class.
getRegClassBarriers()274   const TargetRegisterClass **getRegClassBarriers() const {
275     return RCBarriers;
276   }
277 
278   /// getSchedClass - Return the scheduling class for this instruction.  The
279   /// scheduling class is an index into the InstrItineraryData table.  This
280   /// returns zero if there is no known scheduling information for the
281   /// instruction.
282   ///
getSchedClass()283   unsigned getSchedClass() const {
284     return SchedClass;
285   }
286 
isReturn()287   bool isReturn() const {
288     return Flags & (1 << TID::Return);
289   }
290 
isCall()291   bool isCall() const {
292     return Flags & (1 << TID::Call);
293   }
294 
295   /// isBarrier - Returns true if the specified instruction stops control flow
296   /// from executing the instruction immediately following it.  Examples include
297   /// unconditional branches and return instructions.
isBarrier()298   bool isBarrier() const {
299     return Flags & (1 << TID::Barrier);
300   }
301 
302   /// isTerminator - Returns true if this instruction part of the terminator for
303   /// a basic block.  Typically this is things like return and branch
304   /// instructions.
305   ///
306   /// Various passes use this to insert code into the bottom of a basic block,
307   /// but before control flow occurs.
isTerminator()308   bool isTerminator() const {
309     return Flags & (1 << TID::Terminator);
310   }
311 
312   /// isBranch - Returns true if this is a conditional, unconditional, or
313   /// indirect branch.  Predicates below can be used to discriminate between
314   /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
315   /// get more information.
isBranch()316   bool isBranch() const {
317     return Flags & (1 << TID::Branch);
318   }
319 
320   /// isIndirectBranch - Return true if this is an indirect branch, such as a
321   /// branch through a register.
isIndirectBranch()322   bool isIndirectBranch() const {
323     return Flags & (1 << TID::IndirectBranch);
324   }
325 
326   /// isConditionalBranch - Return true if this is a branch which may fall
327   /// through to the next instruction or may transfer control flow to some other
328   /// block.  The TargetInstrInfo::AnalyzeBranch method can be used to get more
329   /// information about this branch.
isConditionalBranch()330   bool isConditionalBranch() const {
331     return isBranch() & !isBarrier() & !isIndirectBranch();
332   }
333 
334   /// isUnconditionalBranch - Return true if this is a branch which always
335   /// transfers control flow to some other block.  The
336   /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
337   /// about this branch.
isUnconditionalBranch()338   bool isUnconditionalBranch() const {
339     return isBranch() & isBarrier() & !isIndirectBranch();
340   }
341 
342   // isPredicable - Return true if this instruction has a predicate operand that
343   // controls execution.  It may be set to 'always', or may be set to other
344   /// values.   There are various methods in TargetInstrInfo that can be used to
345   /// control and modify the predicate in this instruction.
isPredicable()346   bool isPredicable() const {
347     return Flags & (1 << TID::Predicable);
348   }
349 
350   /// isCompare - Return true if this instruction is a comparison.
isCompare()351   bool isCompare() const {
352     return Flags & (1 << TID::Compare);
353   }
354 
355   /// isNotDuplicable - Return true if this instruction cannot be safely
356   /// duplicated.  For example, if the instruction has a unique labels attached
357   /// to it, duplicating it would cause multiple definition errors.
isNotDuplicable()358   bool isNotDuplicable() const {
359     return Flags & (1 << TID::NotDuplicable);
360   }
361 
362   /// hasDelaySlot - Returns true if the specified instruction has a delay slot
363   /// which must be filled by the code generator.
hasDelaySlot()364   bool hasDelaySlot() const {
365     return Flags & (1 << TID::DelaySlot);
366   }
367 
368   /// canFoldAsLoad - Return true for instructions that can be folded as
369   /// memory operands in other instructions. The most common use for this
370   /// is instructions that are simple loads from memory that don't modify
371   /// the loaded value in any way, but it can also be used for instructions
372   /// that can be expressed as constant-pool loads, such as V_SETALLONES
373   /// on x86, to allow them to be folded when it is beneficial.
374   /// This should only be set on instructions that return a value in their
375   /// only virtual register definition.
canFoldAsLoad()376   bool canFoldAsLoad() const {
377     return Flags & (1 << TID::FoldableAsLoad);
378   }
379 
380   //===--------------------------------------------------------------------===//
381   // Side Effect Analysis
382   //===--------------------------------------------------------------------===//
383 
384   /// mayLoad - Return true if this instruction could possibly read memory.
385   /// Instructions with this flag set are not necessarily simple load
386   /// instructions, they may load a value and modify it, for example.
mayLoad()387   bool mayLoad() const {
388     return Flags & (1 << TID::MayLoad);
389   }
390 
391 
392   /// mayStore - Return true if this instruction could possibly modify memory.
393   /// Instructions with this flag set are not necessarily simple store
394   /// instructions, they may store a modified value based on their operands, or
395   /// may not actually modify anything, for example.
mayStore()396   bool mayStore() const {
397     return Flags & (1 << TID::MayStore);
398   }
399 
400   /// hasUnmodeledSideEffects - Return true if this instruction has side
401   /// effects that are not modeled by other flags.  This does not return true
402   /// for instructions whose effects are captured by:
403   ///
404   ///  1. Their operand list and implicit definition/use list.  Register use/def
405   ///     info is explicit for instructions.
406   ///  2. Memory accesses.  Use mayLoad/mayStore.
407   ///  3. Calling, branching, returning: use isCall/isReturn/isBranch.
408   ///
409   /// Examples of side effects would be modifying 'invisible' machine state like
410   /// a control register, flushing a cache, modifying a register invisible to
411   /// LLVM, etc.
412   ///
hasUnmodeledSideEffects()413   bool hasUnmodeledSideEffects() const {
414     return Flags & (1 << TID::UnmodeledSideEffects);
415   }
416 
417   //===--------------------------------------------------------------------===//
418   // Flags that indicate whether an instruction can be modified by a method.
419   //===--------------------------------------------------------------------===//
420 
421   /// isCommutable - Return true if this may be a 2- or 3-address
422   /// instruction (of the form "X = op Y, Z, ..."), which produces the same
423   /// result if Y and Z are exchanged.  If this flag is set, then the
424   /// TargetInstrInfo::commuteInstruction method may be used to hack on the
425   /// instruction.
426   ///
427   /// Note that this flag may be set on instructions that are only commutable
428   /// sometimes.  In these cases, the call to commuteInstruction will fail.
429   /// Also note that some instructions require non-trivial modification to
430   /// commute them.
isCommutable()431   bool isCommutable() const {
432     return Flags & (1 << TID::Commutable);
433   }
434 
435   /// isConvertibleTo3Addr - Return true if this is a 2-address instruction
436   /// which can be changed into a 3-address instruction if needed.  Doing this
437   /// transformation can be profitable in the register allocator, because it
438   /// means that the instruction can use a 2-address form if possible, but
439   /// degrade into a less efficient form if the source and dest register cannot
440   /// be assigned to the same register.  For example, this allows the x86
441   /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
442   /// is the same speed as the shift but has bigger code size.
443   ///
444   /// If this returns true, then the target must implement the
445   /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
446   /// is allowed to fail if the transformation isn't valid for this specific
447   /// instruction (e.g. shl reg, 4 on x86).
448   ///
isConvertibleTo3Addr()449   bool isConvertibleTo3Addr() const {
450     return Flags & (1 << TID::ConvertibleTo3Addr);
451   }
452 
453   /// usesCustomInsertionHook - Return true if this instruction requires
454   /// custom insertion support when the DAG scheduler is inserting it into a
455   /// machine basic block.  If this is true for the instruction, it basically
456   /// means that it is a pseudo instruction used at SelectionDAG time that is
457   /// expanded out into magic code by the target when MachineInstrs are formed.
458   ///
459   /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
460   /// is used to insert this into the MachineBasicBlock.
usesCustomInsertionHook()461   bool usesCustomInsertionHook() const {
462     return Flags & (1 << TID::UsesCustomInserter);
463   }
464 
465   /// isRematerializable - Returns true if this instruction is a candidate for
466   /// remat.  This flag is deprecated, please don't use it anymore.  If this
467   /// flag is set, the isReallyTriviallyReMaterializable() method is called to
468   /// verify the instruction is really rematable.
isRematerializable()469   bool isRematerializable() const {
470     return Flags & (1 << TID::Rematerializable);
471   }
472 
473   /// isAsCheapAsAMove - Returns true if this instruction has the same cost (or
474   /// less) than a move instruction. This is useful during certain types of
475   /// optimizations (e.g., remat during two-address conversion or machine licm)
476   /// where we would like to remat or hoist the instruction, but not if it costs
477   /// more than moving the instruction into the appropriate register. Note, we
478   /// are not marking copies from and to the same register class with this flag.
isAsCheapAsAMove()479   bool isAsCheapAsAMove() const {
480     return Flags & (1 << TID::CheapAsAMove);
481   }
482 
483   /// hasExtraSrcRegAllocReq - Returns true if this instruction source operands
484   /// have special register allocation requirements that are not captured by the
485   /// operand register classes. e.g. ARM::STRD's two source registers must be an
486   /// even / odd pair, ARM::STM registers have to be in ascending order.
487   /// Post-register allocation passes should not attempt to change allocations
488   /// for sources of instructions with this flag.
hasExtraSrcRegAllocReq()489   bool hasExtraSrcRegAllocReq() const {
490     return Flags & (1 << TID::ExtraSrcRegAllocReq);
491   }
492 
493   /// hasExtraDefRegAllocReq - Returns true if this instruction def operands
494   /// have special register allocation requirements that are not captured by the
495   /// operand register classes. e.g. ARM::LDRD's two def registers must be an
496   /// even / odd pair, ARM::LDM registers have to be in ascending order.
497   /// Post-register allocation passes should not attempt to change allocations
498   /// for definitions of instructions with this flag.
hasExtraDefRegAllocReq()499   bool hasExtraDefRegAllocReq() const {
500     return Flags & (1 << TID::ExtraDefRegAllocReq);
501   }
502 };
503 
504 } // end namespace llvm
505 
506 #endif
507