1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef SELECTIONDAGBUILDER_H
15 #define SELECTIONDAGBUILDER_H
16 
17 #include "llvm/Constants.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/CodeGen/SelectionDAGNodes.h"
22 #include "llvm/CodeGen/ValueTypes.h"
23 #include "llvm/Support/CallSite.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <vector>
26 #include <set>
27 
28 namespace llvm {
29 
30 class AliasAnalysis;
31 class AllocaInst;
32 class BasicBlock;
33 class BitCastInst;
34 class BranchInst;
35 class CallInst;
36 class DbgValueInst;
37 class ExtractElementInst;
38 class ExtractValueInst;
39 class FCmpInst;
40 class FPExtInst;
41 class FPToSIInst;
42 class FPToUIInst;
43 class FPTruncInst;
44 class Function;
45 class FunctionLoweringInfo;
46 class GetElementPtrInst;
47 class GCFunctionInfo;
48 class ICmpInst;
49 class IntToPtrInst;
50 class IndirectBrInst;
51 class InvokeInst;
52 class InsertElementInst;
53 class InsertValueInst;
54 class Instruction;
55 class LoadInst;
56 class MachineBasicBlock;
57 class MachineInstr;
58 class MachineRegisterInfo;
59 class MDNode;
60 class PHINode;
61 class PtrToIntInst;
62 class ReturnInst;
63 class SDISelAsmOperandInfo;
64 class SDDbgValue;
65 class SExtInst;
66 class SelectInst;
67 class ShuffleVectorInst;
68 class SIToFPInst;
69 class StoreInst;
70 class SwitchInst;
71 class TargetData;
72 class TargetLowering;
73 class TruncInst;
74 class UIToFPInst;
75 class UnreachableInst;
76 class UnwindInst;
77 class VAArgInst;
78 class ZExtInst;
79 
80 //===----------------------------------------------------------------------===//
81 /// SelectionDAGBuilder - This is the common target-independent lowering
82 /// implementation that is parameterized by a TargetLowering object.
83 ///
84 class SelectionDAGBuilder {
85   /// CurDebugLoc - current file + line number.  Changes as we build the DAG.
86   DebugLoc CurDebugLoc;
87 
88   DenseMap<const Value*, SDValue> NodeMap;
89 
90   /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
91   /// to preserve debug information for incoming arguments.
92   DenseMap<const Value*, SDValue> UnusedArgNodeMap;
93 
94   /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
95   class DanglingDebugInfo {
96     const DbgValueInst* DI;
97     DebugLoc dl;
98     unsigned SDNodeOrder;
99   public:
DanglingDebugInfo()100     DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { }
DanglingDebugInfo(const DbgValueInst * di,DebugLoc DL,unsigned SDNO)101     DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
102       DI(di), dl(DL), SDNodeOrder(SDNO) { }
getDI()103     const DbgValueInst* getDI() { return DI; }
getdl()104     DebugLoc getdl() { return dl; }
getSDNodeOrder()105     unsigned getSDNodeOrder() { return SDNodeOrder; }
106   };
107 
108   /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
109   /// yet seen the referent.  We defer handling these until we do see it.
110   DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
111 
112 public:
113   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
114   /// them up and then emit token factor nodes when possible.  This allows us to
115   /// get simple disambiguation between loads without worrying about alias
116   /// analysis.
117   SmallVector<SDValue, 8> PendingLoads;
118 private:
119 
120   /// PendingExports - CopyToReg nodes that copy values to virtual registers
121   /// for export to other blocks need to be emitted before any terminator
122   /// instruction, but they have no other ordering requirements. We bunch them
123   /// up and the emit a single tokenfactor for them just before terminator
124   /// instructions.
125   SmallVector<SDValue, 8> PendingExports;
126 
127   /// SDNodeOrder - A unique monotonically increasing number used to order the
128   /// SDNodes we create.
129   unsigned SDNodeOrder;
130 
131   /// Case - A struct to record the Value for a switch case, and the
132   /// case's target basic block.
133   struct Case {
134     Constant* Low;
135     Constant* High;
136     MachineBasicBlock* BB;
137 
CaseCase138     Case() : Low(0), High(0), BB(0) { }
CaseCase139     Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
140       Low(low), High(high), BB(bb) { }
sizeCase141     APInt size() const {
142       const APInt &rHigh = cast<ConstantInt>(High)->getValue();
143       const APInt &rLow  = cast<ConstantInt>(Low)->getValue();
144       return (rHigh - rLow + 1ULL);
145     }
146   };
147 
148   struct CaseBits {
149     uint64_t Mask;
150     MachineBasicBlock* BB;
151     unsigned Bits;
152 
CaseBitsCaseBits153     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
154       Mask(mask), BB(bb), Bits(bits) { }
155   };
156 
157   typedef std::vector<Case>           CaseVector;
158   typedef std::vector<CaseBits>       CaseBitsVector;
159   typedef CaseVector::iterator        CaseItr;
160   typedef std::pair<CaseItr, CaseItr> CaseRange;
161 
162   /// CaseRec - A struct with ctor used in lowering switches to a binary tree
163   /// of conditional branches.
164   struct CaseRec {
CaseRecCaseRec165     CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
166             CaseRange r) :
167     CaseBB(bb), LT(lt), GE(ge), Range(r) {}
168 
169     /// CaseBB - The MBB in which to emit the compare and branch
170     MachineBasicBlock *CaseBB;
171     /// LT, GE - If nonzero, we know the current case value must be less-than or
172     /// greater-than-or-equal-to these Constants.
173     const Constant *LT;
174     const Constant *GE;
175     /// Range - A pair of iterators representing the range of case values to be
176     /// processed at this point in the binary search tree.
177     CaseRange Range;
178   };
179 
180   typedef std::vector<CaseRec> CaseRecVector;
181 
182   /// The comparison function for sorting the switch case values in the vector.
183   /// WARNING: Case ranges should be disjoint!
184   struct CaseCmp {
operatorCaseCmp185     bool operator()(const Case &C1, const Case &C2) {
186       assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
187       const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
188       const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
189       return CI1->getValue().slt(CI2->getValue());
190     }
191   };
192 
193   struct CaseBitsCmp {
operatorCaseBitsCmp194     bool operator()(const CaseBits &C1, const CaseBits &C2) {
195       return C1.Bits > C2.Bits;
196     }
197   };
198 
199   size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
200 
201   /// CaseBlock - This structure is used to communicate between
202   /// SelectionDAGBuilder and SDISel for the code generation of additional basic
203   /// blocks needed by multi-case switch statements.
204   struct CaseBlock {
CaseBlockCaseBlock205     CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
206               const Value *cmpmiddle,
207               MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
208               MachineBasicBlock *me)
209       : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
210         TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
211     // CC - the condition code to use for the case block's setcc node
212     ISD::CondCode CC;
213     // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
214     // Emit by default LHS op RHS. MHS is used for range comparisons:
215     // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
216     const Value *CmpLHS, *CmpMHS, *CmpRHS;
217     // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
218     MachineBasicBlock *TrueBB, *FalseBB;
219     // ThisBB - the block into which to emit the code for the setcc and branches
220     MachineBasicBlock *ThisBB;
221   };
222   struct JumpTable {
JumpTableJumpTable223     JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
224               MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
225 
226     /// Reg - the virtual register containing the index of the jump table entry
227     //. to jump to.
228     unsigned Reg;
229     /// JTI - the JumpTableIndex for this jump table in the function.
230     unsigned JTI;
231     /// MBB - the MBB into which to emit the code for the indirect jump.
232     MachineBasicBlock *MBB;
233     /// Default - the MBB of the default bb, which is a successor of the range
234     /// check MBB.  This is when updating PHI nodes in successors.
235     MachineBasicBlock *Default;
236   };
237   struct JumpTableHeader {
238     JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
239                     bool E = false):
FirstJumpTableHeader240       First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
241     APInt First;
242     APInt Last;
243     const Value *SValue;
244     MachineBasicBlock *HeaderBB;
245     bool Emitted;
246   };
247   typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
248 
249   struct BitTestCase {
BitTestCaseBitTestCase250     BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
251       Mask(M), ThisBB(T), TargetBB(Tr) { }
252     uint64_t Mask;
253     MachineBasicBlock *ThisBB;
254     MachineBasicBlock *TargetBB;
255   };
256 
257   typedef SmallVector<BitTestCase, 3> BitTestInfo;
258 
259   struct BitTestBlock {
BitTestBlockBitTestBlock260     BitTestBlock(APInt F, APInt R, const Value* SV,
261                  unsigned Rg, bool E,
262                  MachineBasicBlock* P, MachineBasicBlock* D,
263                  const BitTestInfo& C):
264       First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E),
265       Parent(P), Default(D), Cases(C) { }
266     APInt First;
267     APInt Range;
268     const Value *SValue;
269     unsigned Reg;
270     bool Emitted;
271     MachineBasicBlock *Parent;
272     MachineBasicBlock *Default;
273     BitTestInfo Cases;
274   };
275 
276 public:
277   // TLI - This is information that describes the available target features we
278   // need for lowering.  This indicates when operations are unavailable,
279   // implemented with a libcall, etc.
280   const TargetMachine &TM;
281   const TargetLowering &TLI;
282   SelectionDAG &DAG;
283   const TargetData *TD;
284   AliasAnalysis *AA;
285 
286   /// SwitchCases - Vector of CaseBlock structures used to communicate
287   /// SwitchInst code generation information.
288   std::vector<CaseBlock> SwitchCases;
289   /// JTCases - Vector of JumpTable structures used to communicate
290   /// SwitchInst code generation information.
291   std::vector<JumpTableBlock> JTCases;
292   /// BitTestCases - Vector of BitTestBlock structures used to communicate
293   /// SwitchInst code generation information.
294   std::vector<BitTestBlock> BitTestCases;
295 
296   // Emit PHI-node-operand constants only once even if used by multiple
297   // PHI nodes.
298   DenseMap<const Constant *, unsigned> ConstantsOut;
299 
300   /// FuncInfo - Information about the function as a whole.
301   ///
302   FunctionLoweringInfo &FuncInfo;
303 
304   /// OptLevel - What optimization level we're generating code for.
305   ///
306   CodeGenOpt::Level OptLevel;
307 
308   /// GFI - Garbage collection metadata for the function.
309   GCFunctionInfo *GFI;
310 
311   /// HasTailCall - This is set to true if a call in the current
312   /// block has been translated as a tail call. In this case,
313   /// no subsequent DAG nodes should be created.
314   ///
315   bool HasTailCall;
316 
317   LLVMContext *Context;
318 
SelectionDAGBuilder(SelectionDAG & dag,FunctionLoweringInfo & funcinfo,CodeGenOpt::Level ol)319   SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
320                       CodeGenOpt::Level ol)
321     : SDNodeOrder(0), TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
322       DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
323       HasTailCall(false), Context(dag.getContext()) {
324   }
325 
326   void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
327 
328   /// clear - Clear out the current SelectionDAG and the associated
329   /// state and prepare this SelectionDAGBuilder object to be used
330   /// for a new block. This doesn't clear out information about
331   /// additional blocks that are needed to complete switch lowering
332   /// or PHI node updating; that information is cleared out as it is
333   /// consumed.
334   void clear();
335 
336   /// getRoot - Return the current virtual root of the Selection DAG,
337   /// flushing any PendingLoad items. This must be done before emitting
338   /// a store or any other node that may need to be ordered after any
339   /// prior load instructions.
340   ///
341   SDValue getRoot();
342 
343   /// getControlRoot - Similar to getRoot, but instead of flushing all the
344   /// PendingLoad items, flush all the PendingExports items. It is necessary
345   /// to do this before emitting a terminator instruction.
346   ///
347   SDValue getControlRoot();
348 
getCurDebugLoc()349   DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
350 
getSDNodeOrder()351   unsigned getSDNodeOrder() const { return SDNodeOrder; }
352 
353   void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
354 
355   /// AssignOrderingToNode - Assign an ordering to the node. The order is gotten
356   /// from how the code appeared in the source. The ordering is used by the
357   /// scheduler to effectively turn off scheduling.
358   void AssignOrderingToNode(const SDNode *Node);
359 
360   void visit(const Instruction &I);
361 
362   void visit(unsigned Opcode, const User &I);
363 
364   // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
365   // generate the debug data structures now that we've seen its definition.
366   void resolveDanglingDebugInfo(const Value *V, SDValue Val);
367   SDValue getValue(const Value *V);
368   SDValue getNonRegisterValue(const Value *V);
369   SDValue getValueImpl(const Value *V);
370 
setValue(const Value * V,SDValue NewN)371   void setValue(const Value *V, SDValue NewN) {
372     SDValue &N = NodeMap[V];
373     assert(N.getNode() == 0 && "Already set a value for this node!");
374     N = NewN;
375   }
376 
setUnusedArgValue(const Value * V,SDValue NewN)377   void setUnusedArgValue(const Value *V, SDValue NewN) {
378     SDValue &N = UnusedArgNodeMap[V];
379     assert(N.getNode() == 0 && "Already set a value for this node!");
380     N = NewN;
381   }
382 
383   void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
384                             std::set<unsigned> &OutputRegs,
385                             std::set<unsigned> &InputRegs);
386 
387   void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
388                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
389                             MachineBasicBlock *SwitchBB, unsigned Opc);
390   void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
391                                     MachineBasicBlock *FBB,
392                                     MachineBasicBlock *CurBB,
393                                     MachineBasicBlock *SwitchBB);
394   bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
395   bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
396   void CopyToExportRegsIfNeeded(const Value *V);
397   void ExportFromCurrentBlock(const Value *V);
398   void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
399                    MachineBasicBlock *LandingPad = NULL);
400 
401 private:
402   // Terminator instructions.
403   void visitRet(const ReturnInst &I);
404   void visitBr(const BranchInst &I);
405   void visitSwitch(const SwitchInst &I);
406   void visitIndirectBr(const IndirectBrInst &I);
visitUnreachable(const UnreachableInst & I)407   void visitUnreachable(const UnreachableInst &I) { /* noop */ }
408 
409   // Helpers for visitSwitch
410   bool handleSmallSwitchRange(CaseRec& CR,
411                               CaseRecVector& WorkList,
412                               const Value* SV,
413                               MachineBasicBlock* Default,
414                               MachineBasicBlock *SwitchBB);
415   bool handleJTSwitchCase(CaseRec& CR,
416                           CaseRecVector& WorkList,
417                           const Value* SV,
418                           MachineBasicBlock* Default,
419                           MachineBasicBlock *SwitchBB);
420   bool handleBTSplitSwitchCase(CaseRec& CR,
421                                CaseRecVector& WorkList,
422                                const Value* SV,
423                                MachineBasicBlock* Default,
424                                MachineBasicBlock *SwitchBB);
425   bool handleBitTestsSwitchCase(CaseRec& CR,
426                                 CaseRecVector& WorkList,
427                                 const Value* SV,
428                                 MachineBasicBlock* Default,
429                                 MachineBasicBlock *SwitchBB);
430 public:
431   void visitSwitchCase(CaseBlock &CB,
432                        MachineBasicBlock *SwitchBB);
433   void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
434   void visitBitTestCase(MachineBasicBlock* NextMBB,
435                         unsigned Reg,
436                         BitTestCase &B,
437                         MachineBasicBlock *SwitchBB);
438   void visitJumpTable(JumpTable &JT);
439   void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
440                             MachineBasicBlock *SwitchBB);
441 
442 private:
443   // These all get lowered before this pass.
444   void visitInvoke(const InvokeInst &I);
445   void visitUnwind(const UnwindInst &I);
446 
447   void visitBinary(const User &I, unsigned OpCode);
448   void visitShift(const User &I, unsigned Opcode);
visitAdd(const User & I)449   void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
visitFAdd(const User & I)450   void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
visitSub(const User & I)451   void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
452   void visitFSub(const User &I);
visitMul(const User & I)453   void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
visitFMul(const User & I)454   void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
visitURem(const User & I)455   void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
visitSRem(const User & I)456   void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
visitFRem(const User & I)457   void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
visitUDiv(const User & I)458   void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
visitSDiv(const User & I)459   void visitSDiv(const User &I) { visitBinary(I, ISD::SDIV); }
visitFDiv(const User & I)460   void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
visitAnd(const User & I)461   void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
visitOr(const User & I)462   void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
visitXor(const User & I)463   void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
visitShl(const User & I)464   void visitShl (const User &I) { visitShift(I, ISD::SHL); }
visitLShr(const User & I)465   void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
visitAShr(const User & I)466   void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
467   void visitICmp(const User &I);
468   void visitFCmp(const User &I);
469   // Visit the conversion instructions
470   void visitTrunc(const User &I);
471   void visitZExt(const User &I);
472   void visitSExt(const User &I);
473   void visitFPTrunc(const User &I);
474   void visitFPExt(const User &I);
475   void visitFPToUI(const User &I);
476   void visitFPToSI(const User &I);
477   void visitUIToFP(const User &I);
478   void visitSIToFP(const User &I);
479   void visitPtrToInt(const User &I);
480   void visitIntToPtr(const User &I);
481   void visitBitCast(const User &I);
482 
483   void visitExtractElement(const User &I);
484   void visitInsertElement(const User &I);
485   void visitShuffleVector(const User &I);
486 
487   void visitExtractValue(const ExtractValueInst &I);
488   void visitInsertValue(const InsertValueInst &I);
489 
490   void visitGetElementPtr(const User &I);
491   void visitSelect(const User &I);
492 
493   void visitAlloca(const AllocaInst &I);
494   void visitLoad(const LoadInst &I);
495   void visitStore(const StoreInst &I);
496   void visitPHI(const PHINode &I);
497   void visitCall(const CallInst &I);
498   bool visitMemCmpCall(const CallInst &I);
499 
500   void visitInlineAsm(ImmutableCallSite CS);
501   const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
502   void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
503 
504   void visitPow(const CallInst &I);
505   void visitExp2(const CallInst &I);
506   void visitExp(const CallInst &I);
507   void visitLog(const CallInst &I);
508   void visitLog2(const CallInst &I);
509   void visitLog10(const CallInst &I);
510 
511   void visitVAStart(const CallInst &I);
512   void visitVAArg(const VAArgInst &I);
513   void visitVAEnd(const CallInst &I);
514   void visitVACopy(const CallInst &I);
515 
visitUserOp1(const Instruction & I)516   void visitUserOp1(const Instruction &I) {
517     llvm_unreachable("UserOp1 should not exist at instruction selection time!");
518   }
visitUserOp2(const Instruction & I)519   void visitUserOp2(const Instruction &I) {
520     llvm_unreachable("UserOp2 should not exist at instruction selection time!");
521   }
522 
523   const char *implVisitBinaryAtomic(const CallInst& I, ISD::NodeType Op);
524   const char *implVisitAluOverflow(const CallInst &I, ISD::NodeType Op);
525 
526   void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
527 
528   /// EmitFuncArgumentDbgValue - If V is an function argument then create
529   /// corresponding DBG_VALUE machine instruction for it now. At the end of
530   /// instruction selection, they will be inserted to the entry BB.
531   bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
532                                 int64_t Offset, const SDValue &N);
533 };
534 
535 } // end namespace llvm
536 
537 #endif
538