1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "jit"
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
17 
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Module.h"
21 #include "llvm/ExecutionEngine/GenericValue.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MutexGuard.h"
26 #include "llvm/Support/ValueHandle.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/System/DynamicLibrary.h"
29 #include "llvm/System/Host.h"
30 #include "llvm/Target/TargetData.h"
31 #include <cmath>
32 #include <cstring>
33 using namespace llvm;
34 
35 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
36 STATISTIC(NumGlobals  , "Number of global vars initialized");
37 
38 ExecutionEngine *(*ExecutionEngine::JITCtor)(
39   Module *M,
40   std::string *ErrorStr,
41   JITMemoryManager *JMM,
42   CodeGenOpt::Level OptLevel,
43   bool GVsWithCode,
44   CodeModel::Model CMM,
45   StringRef MArch,
46   StringRef MCPU,
47   const SmallVectorImpl<std::string>& MAttrs) = 0;
48 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
49                                                 std::string *ErrorStr) = 0;
50 ExecutionEngine::EERegisterFn ExecutionEngine::ExceptionTableRegister = 0;
51 
52 
ExecutionEngine(Module * M)53 ExecutionEngine::ExecutionEngine(Module *M)
54   : EEState(*this),
55     LazyFunctionCreator(0) {
56   CompilingLazily         = false;
57   GVCompilationDisabled   = false;
58   SymbolSearchingDisabled = false;
59   Modules.push_back(M);
60   assert(M && "Module is null?");
61 }
62 
~ExecutionEngine()63 ExecutionEngine::~ExecutionEngine() {
64   clearAllGlobalMappings();
65   for (unsigned i = 0, e = Modules.size(); i != e; ++i)
66     delete Modules[i];
67 }
68 
69 namespace {
70 // This class automatically deletes the memory block when the GlobalVariable is
71 // destroyed.
72 class GVMemoryBlock : public CallbackVH {
GVMemoryBlock(const GlobalVariable * GV)73   GVMemoryBlock(const GlobalVariable *GV)
74     : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
75 
76 public:
77   // Returns the address the GlobalVariable should be written into.  The
78   // GVMemoryBlock object prefixes that.
Create(const GlobalVariable * GV,const TargetData & TD)79   static char *Create(const GlobalVariable *GV, const TargetData& TD) {
80     const Type *ElTy = GV->getType()->getElementType();
81     size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
82     void *RawMemory = ::operator new(
83       TargetData::RoundUpAlignment(sizeof(GVMemoryBlock),
84                                    TD.getPreferredAlignment(GV))
85       + GVSize);
86     new(RawMemory) GVMemoryBlock(GV);
87     return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
88   }
89 
deleted()90   virtual void deleted() {
91     // We allocated with operator new and with some extra memory hanging off the
92     // end, so don't just delete this.  I'm not sure if this is actually
93     // required.
94     this->~GVMemoryBlock();
95     ::operator delete(this);
96   }
97 };
98 }  // anonymous namespace
99 
getMemoryForGV(const GlobalVariable * GV)100 char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
101   return GVMemoryBlock::Create(GV, *getTargetData());
102 }
103 
104 /// removeModule - Remove a Module from the list of modules.
removeModule(Module * M)105 bool ExecutionEngine::removeModule(Module *M) {
106   for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
107         E = Modules.end(); I != E; ++I) {
108     Module *Found = *I;
109     if (Found == M) {
110       Modules.erase(I);
111       clearGlobalMappingsFromModule(M);
112       return true;
113     }
114   }
115   return false;
116 }
117 
118 /// FindFunctionNamed - Search all of the active modules to find the one that
119 /// defines FnName.  This is very slow operation and shouldn't be used for
120 /// general code.
FindFunctionNamed(const char * FnName)121 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
122   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
123     if (Function *F = Modules[i]->getFunction(FnName))
124       return F;
125   }
126   return 0;
127 }
128 
129 
RemoveMapping(const MutexGuard &,const GlobalValue * ToUnmap)130 void *ExecutionEngineState::RemoveMapping(
131   const MutexGuard &, const GlobalValue *ToUnmap) {
132   GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
133   void *OldVal;
134   if (I == GlobalAddressMap.end())
135     OldVal = 0;
136   else {
137     OldVal = I->second;
138     GlobalAddressMap.erase(I);
139   }
140 
141   GlobalAddressReverseMap.erase(OldVal);
142   return OldVal;
143 }
144 
145 /// addGlobalMapping - Tell the execution engine that the specified global is
146 /// at the specified location.  This is used internally as functions are JIT'd
147 /// and as global variables are laid out in memory.  It can and should also be
148 /// used by clients of the EE that want to have an LLVM global overlay
149 /// existing data in memory.
addGlobalMapping(const GlobalValue * GV,void * Addr)150 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
151   MutexGuard locked(lock);
152 
153   DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
154         << "\' to [" << Addr << "]\n";);
155   void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
156   assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
157   CurVal = Addr;
158 
159   // If we are using the reverse mapping, add it too
160   if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
161     AssertingVH<const GlobalValue> &V =
162       EEState.getGlobalAddressReverseMap(locked)[Addr];
163     assert((V == 0 || GV == 0) && "GlobalMapping already established!");
164     V = GV;
165   }
166 }
167 
168 /// clearAllGlobalMappings - Clear all global mappings and start over again
169 /// use in dynamic compilation scenarios when you want to move globals
clearAllGlobalMappings()170 void ExecutionEngine::clearAllGlobalMappings() {
171   MutexGuard locked(lock);
172 
173   EEState.getGlobalAddressMap(locked).clear();
174   EEState.getGlobalAddressReverseMap(locked).clear();
175 }
176 
177 /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
178 /// particular module, because it has been removed from the JIT.
clearGlobalMappingsFromModule(Module * M)179 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
180   MutexGuard locked(lock);
181 
182   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) {
183     EEState.RemoveMapping(locked, FI);
184   }
185   for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
186        GI != GE; ++GI) {
187     EEState.RemoveMapping(locked, GI);
188   }
189 }
190 
191 /// updateGlobalMapping - Replace an existing mapping for GV with a new
192 /// address.  This updates both maps as required.  If "Addr" is null, the
193 /// entry for the global is removed from the mappings.
updateGlobalMapping(const GlobalValue * GV,void * Addr)194 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
195   MutexGuard locked(lock);
196 
197   ExecutionEngineState::GlobalAddressMapTy &Map =
198     EEState.getGlobalAddressMap(locked);
199 
200   // Deleting from the mapping?
201   if (Addr == 0) {
202     return EEState.RemoveMapping(locked, GV);
203   }
204 
205   void *&CurVal = Map[GV];
206   void *OldVal = CurVal;
207 
208   if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
209     EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
210   CurVal = Addr;
211 
212   // If we are using the reverse mapping, add it too
213   if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
214     AssertingVH<const GlobalValue> &V =
215       EEState.getGlobalAddressReverseMap(locked)[Addr];
216     assert((V == 0 || GV == 0) && "GlobalMapping already established!");
217     V = GV;
218   }
219   return OldVal;
220 }
221 
222 /// getPointerToGlobalIfAvailable - This returns the address of the specified
223 /// global value if it is has already been codegen'd, otherwise it returns null.
224 ///
getPointerToGlobalIfAvailable(const GlobalValue * GV)225 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
226   MutexGuard locked(lock);
227 
228   ExecutionEngineState::GlobalAddressMapTy::iterator I =
229     EEState.getGlobalAddressMap(locked).find(GV);
230   return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
231 }
232 
233 /// getGlobalValueAtAddress - Return the LLVM global value object that starts
234 /// at the specified address.
235 ///
getGlobalValueAtAddress(void * Addr)236 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
237   MutexGuard locked(lock);
238 
239   // If we haven't computed the reverse mapping yet, do so first.
240   if (EEState.getGlobalAddressReverseMap(locked).empty()) {
241     for (ExecutionEngineState::GlobalAddressMapTy::iterator
242          I = EEState.getGlobalAddressMap(locked).begin(),
243          E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
244       EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second,
245                                                                      I->first));
246   }
247 
248   std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
249     EEState.getGlobalAddressReverseMap(locked).find(Addr);
250   return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
251 }
252 
253 namespace {
254 class ArgvArray {
255   char *Array;
256   std::vector<char*> Values;
257 public:
ArgvArray()258   ArgvArray() : Array(NULL) {}
~ArgvArray()259   ~ArgvArray() { clear(); }
clear()260   void clear() {
261     delete[] Array;
262     Array = NULL;
263     for (size_t I = 0, E = Values.size(); I != E; ++I) {
264       delete[] Values[I];
265     }
266     Values.clear();
267   }
268   /// Turn a vector of strings into a nice argv style array of pointers to null
269   /// terminated strings.
270   void *reset(LLVMContext &C, ExecutionEngine *EE,
271               const std::vector<std::string> &InputArgv);
272 };
273 }  // anonymous namespace
reset(LLVMContext & C,ExecutionEngine * EE,const std::vector<std::string> & InputArgv)274 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
275                        const std::vector<std::string> &InputArgv) {
276   clear();  // Free the old contents.
277   unsigned PtrSize = EE->getTargetData()->getPointerSize();
278   Array = new char[(InputArgv.size()+1)*PtrSize];
279 
280   DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
281   const Type *SBytePtr = Type::getInt8PtrTy(C);
282 
283   for (unsigned i = 0; i != InputArgv.size(); ++i) {
284     unsigned Size = InputArgv[i].size()+1;
285     char *Dest = new char[Size];
286     Values.push_back(Dest);
287     DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
288 
289     std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
290     Dest[Size-1] = 0;
291 
292     // Endian safe: Array[i] = (PointerTy)Dest;
293     EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
294                            SBytePtr);
295   }
296 
297   // Null terminate it
298   EE->StoreValueToMemory(PTOGV(0),
299                          (GenericValue*)(Array+InputArgv.size()*PtrSize),
300                          SBytePtr);
301   return Array;
302 }
303 
304 
305 /// runStaticConstructorsDestructors - This method is used to execute all of
306 /// the static constructors or destructors for a module, depending on the
307 /// value of isDtors.
runStaticConstructorsDestructors(Module * module,bool isDtors)308 void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
309                                                        bool isDtors) {
310   const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
311 
312   // Execute global ctors/dtors for each module in the program.
313 
314  GlobalVariable *GV = module->getNamedGlobal(Name);
315 
316  // If this global has internal linkage, or if it has a use, then it must be
317  // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
318  // this is the case, don't execute any of the global ctors, __main will do
319  // it.
320  if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
321 
322  // Should be an array of '{ int, void ()* }' structs.  The first value is
323  // the init priority, which we ignore.
324  ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
325  if (!InitList) return;
326  for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
327    if (ConstantStruct *CS =
328        dyn_cast<ConstantStruct>(InitList->getOperand(i))) {
329      if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
330 
331      Constant *FP = CS->getOperand(1);
332      if (FP->isNullValue())
333        break;  // Found a null terminator, exit.
334 
335      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
336        if (CE->isCast())
337          FP = CE->getOperand(0);
338      if (Function *F = dyn_cast<Function>(FP)) {
339        // Execute the ctor/dtor function!
340        runFunction(F, std::vector<GenericValue>());
341      }
342    }
343 }
344 
345 /// runStaticConstructorsDestructors - This method is used to execute all of
346 /// the static constructors or destructors for a program, depending on the
347 /// value of isDtors.
runStaticConstructorsDestructors(bool isDtors)348 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
349   // Execute global ctors/dtors for each module in the program.
350   for (unsigned m = 0, e = Modules.size(); m != e; ++m)
351     runStaticConstructorsDestructors(Modules[m], isDtors);
352 }
353 
354 #ifndef NDEBUG
355 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
isTargetNullPtr(ExecutionEngine * EE,void * Loc)356 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
357   unsigned PtrSize = EE->getTargetData()->getPointerSize();
358   for (unsigned i = 0; i < PtrSize; ++i)
359     if (*(i + (uint8_t*)Loc))
360       return false;
361   return true;
362 }
363 #endif
364 
365 /// runFunctionAsMain - This is a helper function which wraps runFunction to
366 /// handle the common task of starting up main with the specified argc, argv,
367 /// and envp parameters.
runFunctionAsMain(Function * Fn,const std::vector<std::string> & argv,const char * const * envp)368 int ExecutionEngine::runFunctionAsMain(Function *Fn,
369                                        const std::vector<std::string> &argv,
370                                        const char * const * envp) {
371   std::vector<GenericValue> GVArgs;
372   GenericValue GVArgc;
373   GVArgc.IntVal = APInt(32, argv.size());
374 
375   // Check main() type
376   unsigned NumArgs = Fn->getFunctionType()->getNumParams();
377   const FunctionType *FTy = Fn->getFunctionType();
378   const Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
379   switch (NumArgs) {
380   case 3:
381    if (FTy->getParamType(2) != PPInt8Ty) {
382      report_fatal_error("Invalid type for third argument of main() supplied");
383    }
384    // FALLS THROUGH
385   case 2:
386    if (FTy->getParamType(1) != PPInt8Ty) {
387      report_fatal_error("Invalid type for second argument of main() supplied");
388    }
389    // FALLS THROUGH
390   case 1:
391    if (!FTy->getParamType(0)->isIntegerTy(32)) {
392      report_fatal_error("Invalid type for first argument of main() supplied");
393    }
394    // FALLS THROUGH
395   case 0:
396    if (!FTy->getReturnType()->isIntegerTy() &&
397        !FTy->getReturnType()->isVoidTy()) {
398      report_fatal_error("Invalid return type of main() supplied");
399    }
400    break;
401   default:
402    report_fatal_error("Invalid number of arguments of main() supplied");
403   }
404 
405   ArgvArray CArgv;
406   ArgvArray CEnv;
407   if (NumArgs) {
408     GVArgs.push_back(GVArgc); // Arg #0 = argc.
409     if (NumArgs > 1) {
410       // Arg #1 = argv.
411       GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
412       assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
413              "argv[0] was null after CreateArgv");
414       if (NumArgs > 2) {
415         std::vector<std::string> EnvVars;
416         for (unsigned i = 0; envp[i]; ++i)
417           EnvVars.push_back(envp[i]);
418         // Arg #2 = envp.
419         GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
420       }
421     }
422   }
423   return runFunction(Fn, GVArgs).IntVal.getZExtValue();
424 }
425 
426 /// If possible, create a JIT, unless the caller specifically requests an
427 /// Interpreter or there's an error. If even an Interpreter cannot be created,
428 /// NULL is returned.
429 ///
create(Module * M,bool ForceInterpreter,std::string * ErrorStr,CodeGenOpt::Level OptLevel,bool GVsWithCode)430 ExecutionEngine *ExecutionEngine::create(Module *M,
431                                          bool ForceInterpreter,
432                                          std::string *ErrorStr,
433                                          CodeGenOpt::Level OptLevel,
434                                          bool GVsWithCode) {
435   return EngineBuilder(M)
436       .setEngineKind(ForceInterpreter
437                      ? EngineKind::Interpreter
438                      : EngineKind::JIT)
439       .setErrorStr(ErrorStr)
440       .setOptLevel(OptLevel)
441       .setAllocateGVsWithCode(GVsWithCode)
442       .create();
443 }
444 
create()445 ExecutionEngine *EngineBuilder::create() {
446   // Make sure we can resolve symbols in the program as well. The zero arg
447   // to the function tells DynamicLibrary to load the program, not a library.
448 /* CLAMAV LOCAL: allow for no dlopen */
449 //  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
450 //    return 0;
451 
452   // If the user specified a memory manager but didn't specify which engine to
453   // create, we assume they only want the JIT, and we fail if they only want
454   // the interpreter.
455   if (JMM) {
456     if (WhichEngine & EngineKind::JIT)
457       WhichEngine = EngineKind::JIT;
458     else {
459       if (ErrorStr)
460         *ErrorStr = "Cannot create an interpreter with a memory manager.";
461       return 0;
462     }
463   }
464 
465   // Unless the interpreter was explicitly selected or the JIT is not linked,
466   // try making a JIT.
467   if (WhichEngine & EngineKind::JIT) {
468     if (ExecutionEngine::JITCtor) {
469       ExecutionEngine *EE =
470         ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel,
471                                  AllocateGVsWithCode, CMModel,
472                                  MArch, MCPU, MAttrs);
473       if (EE) return EE;
474     }
475   }
476 
477   // If we can't make a JIT and we didn't request one specifically, try making
478   // an interpreter instead.
479   if (WhichEngine & EngineKind::Interpreter) {
480     if (ExecutionEngine::InterpCtor)
481       return ExecutionEngine::InterpCtor(M, ErrorStr);
482     if (ErrorStr)
483       *ErrorStr = "Interpreter has not been linked in.";
484     return 0;
485   }
486 
487   if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
488     if (ErrorStr)
489       *ErrorStr = "JIT has not been linked in.";
490   }
491   return 0;
492 }
493 
494 /// getPointerToGlobal - This returns the address of the specified global
495 /// value.  This may involve code generation if it's a function.
496 ///
getPointerToGlobal(const GlobalValue * GV)497 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
498   if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
499     return getPointerToFunction(F);
500 
501   MutexGuard locked(lock);
502   void *p = EEState.getGlobalAddressMap(locked)[GV];
503   if (p)
504     return p;
505 
506   // Global variable might have been added since interpreter started.
507   if (GlobalVariable *GVar =
508           const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
509     EmitGlobalVariable(GVar);
510   else
511     llvm_unreachable("Global hasn't had an address allocated yet!");
512   return EEState.getGlobalAddressMap(locked)[GV];
513 }
514 
515 /// This function converts a Constant* into a GenericValue. The interesting
516 /// part is if C is a ConstantExpr.
517 /// @brief Get a GenericValue for a Constant*
getConstantValue(const Constant * C)518 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
519   // If its undefined, return the garbage.
520   if (isa<UndefValue>(C)) {
521     GenericValue Result;
522     switch (C->getType()->getTypeID()) {
523     case Type::IntegerTyID:
524     case Type::X86_FP80TyID:
525     case Type::FP128TyID:
526     case Type::PPC_FP128TyID:
527       // Although the value is undefined, we still have to construct an APInt
528       // with the correct bit width.
529       Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
530       break;
531     default:
532       break;
533     }
534     return Result;
535   }
536 
537   // If the value is a ConstantExpr
538   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
539     Constant *Op0 = CE->getOperand(0);
540     switch (CE->getOpcode()) {
541     case Instruction::GetElementPtr: {
542       // Compute the index
543       GenericValue Result = getConstantValue(Op0);
544       SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
545       uint64_t Offset =
546         TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size());
547 
548       char* tmp = (char*) Result.PointerVal;
549       Result = PTOGV(tmp + Offset);
550       return Result;
551     }
552     case Instruction::Trunc: {
553       GenericValue GV = getConstantValue(Op0);
554       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
555       GV.IntVal = GV.IntVal.trunc(BitWidth);
556       return GV;
557     }
558     case Instruction::ZExt: {
559       GenericValue GV = getConstantValue(Op0);
560       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
561       GV.IntVal = GV.IntVal.zext(BitWidth);
562       return GV;
563     }
564     case Instruction::SExt: {
565       GenericValue GV = getConstantValue(Op0);
566       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
567       GV.IntVal = GV.IntVal.sext(BitWidth);
568       return GV;
569     }
570     case Instruction::FPTrunc: {
571       // FIXME long double
572       GenericValue GV = getConstantValue(Op0);
573       GV.FloatVal = float(GV.DoubleVal);
574       return GV;
575     }
576     case Instruction::FPExt:{
577       // FIXME long double
578       GenericValue GV = getConstantValue(Op0);
579       GV.DoubleVal = double(GV.FloatVal);
580       return GV;
581     }
582     case Instruction::UIToFP: {
583       GenericValue GV = getConstantValue(Op0);
584       if (CE->getType()->isFloatTy())
585         GV.FloatVal = float(GV.IntVal.roundToDouble());
586       else if (CE->getType()->isDoubleTy())
587         GV.DoubleVal = GV.IntVal.roundToDouble();
588       else if (CE->getType()->isX86_FP80Ty()) {
589         const uint64_t zero[] = {0, 0};
590         APFloat apf = APFloat(APInt(80, 2, zero));
591         (void)apf.convertFromAPInt(GV.IntVal,
592                                    false,
593                                    APFloat::rmNearestTiesToEven);
594         GV.IntVal = apf.bitcastToAPInt();
595       }
596       return GV;
597     }
598     case Instruction::SIToFP: {
599       GenericValue GV = getConstantValue(Op0);
600       if (CE->getType()->isFloatTy())
601         GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
602       else if (CE->getType()->isDoubleTy())
603         GV.DoubleVal = GV.IntVal.signedRoundToDouble();
604       else if (CE->getType()->isX86_FP80Ty()) {
605         const uint64_t zero[] = { 0, 0};
606         APFloat apf = APFloat(APInt(80, 2, zero));
607         (void)apf.convertFromAPInt(GV.IntVal,
608                                    true,
609                                    APFloat::rmNearestTiesToEven);
610         GV.IntVal = apf.bitcastToAPInt();
611       }
612       return GV;
613     }
614     case Instruction::FPToUI: // double->APInt conversion handles sign
615     case Instruction::FPToSI: {
616       GenericValue GV = getConstantValue(Op0);
617       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
618       if (Op0->getType()->isFloatTy())
619         GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
620       else if (Op0->getType()->isDoubleTy())
621         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
622       else if (Op0->getType()->isX86_FP80Ty()) {
623         APFloat apf = APFloat(GV.IntVal);
624         uint64_t v;
625         bool ignored;
626         (void)apf.convertToInteger(&v, BitWidth,
627                                    CE->getOpcode()==Instruction::FPToSI,
628                                    APFloat::rmTowardZero, &ignored);
629         GV.IntVal = v; // endian?
630       }
631       return GV;
632     }
633     case Instruction::PtrToInt: {
634       GenericValue GV = getConstantValue(Op0);
635       uint32_t PtrWidth = TD->getPointerSizeInBits();
636       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
637       return GV;
638     }
639     case Instruction::IntToPtr: {
640       GenericValue GV = getConstantValue(Op0);
641       uint32_t PtrWidth = TD->getPointerSizeInBits();
642       if (PtrWidth != GV.IntVal.getBitWidth())
643         GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
644       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
645       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
646       return GV;
647     }
648     case Instruction::BitCast: {
649       GenericValue GV = getConstantValue(Op0);
650       const Type* DestTy = CE->getType();
651       switch (Op0->getType()->getTypeID()) {
652         default: llvm_unreachable("Invalid bitcast operand");
653         case Type::IntegerTyID:
654           assert(DestTy->isFloatingPointTy() && "invalid bitcast");
655           if (DestTy->isFloatTy())
656             GV.FloatVal = GV.IntVal.bitsToFloat();
657           else if (DestTy->isDoubleTy())
658             GV.DoubleVal = GV.IntVal.bitsToDouble();
659           break;
660         case Type::FloatTyID:
661           assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
662           GV.IntVal.floatToBits(GV.FloatVal);
663           break;
664         case Type::DoubleTyID:
665           assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
666           GV.IntVal.doubleToBits(GV.DoubleVal);
667           break;
668         case Type::PointerTyID:
669           assert(DestTy->isPointerTy() && "Invalid bitcast");
670           break; // getConstantValue(Op0)  above already converted it
671       }
672       return GV;
673     }
674     case Instruction::Add:
675     case Instruction::FAdd:
676     case Instruction::Sub:
677     case Instruction::FSub:
678     case Instruction::Mul:
679     case Instruction::FMul:
680     case Instruction::UDiv:
681     case Instruction::SDiv:
682     case Instruction::URem:
683     case Instruction::SRem:
684     case Instruction::And:
685     case Instruction::Or:
686     case Instruction::Xor: {
687       GenericValue LHS = getConstantValue(Op0);
688       GenericValue RHS = getConstantValue(CE->getOperand(1));
689       GenericValue GV;
690       switch (CE->getOperand(0)->getType()->getTypeID()) {
691       default: llvm_unreachable("Bad add type!");
692       case Type::IntegerTyID:
693         switch (CE->getOpcode()) {
694           default: llvm_unreachable("Invalid integer opcode");
695           case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
696           case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
697           case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
698           case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
699           case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
700           case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
701           case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
702           case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
703           case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
704           case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
705         }
706         break;
707       case Type::FloatTyID:
708         switch (CE->getOpcode()) {
709           default: llvm_unreachable("Invalid float opcode");
710           case Instruction::FAdd:
711             GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
712           case Instruction::FSub:
713             GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
714           case Instruction::FMul:
715             GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
716           case Instruction::FDiv:
717             GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
718           case Instruction::FRem:
719             GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
720         }
721         break;
722       case Type::DoubleTyID:
723         switch (CE->getOpcode()) {
724           default: llvm_unreachable("Invalid double opcode");
725           case Instruction::FAdd:
726             GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
727           case Instruction::FSub:
728             GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
729           case Instruction::FMul:
730             GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
731           case Instruction::FDiv:
732             GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
733           case Instruction::FRem:
734             GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
735         }
736         break;
737       case Type::X86_FP80TyID:
738       case Type::PPC_FP128TyID:
739       case Type::FP128TyID: {
740         APFloat apfLHS = APFloat(LHS.IntVal);
741         switch (CE->getOpcode()) {
742           default: llvm_unreachable("Invalid long double opcode");llvm_unreachable(0);
743           case Instruction::FAdd:
744             apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
745             GV.IntVal = apfLHS.bitcastToAPInt();
746             break;
747           case Instruction::FSub:
748             apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
749             GV.IntVal = apfLHS.bitcastToAPInt();
750             break;
751           case Instruction::FMul:
752             apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
753             GV.IntVal = apfLHS.bitcastToAPInt();
754             break;
755           case Instruction::FDiv:
756             apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
757             GV.IntVal = apfLHS.bitcastToAPInt();
758             break;
759           case Instruction::FRem:
760             apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
761             GV.IntVal = apfLHS.bitcastToAPInt();
762             break;
763           }
764         }
765         break;
766       }
767       return GV;
768     }
769     default:
770       break;
771     }
772     std::string msg;
773     raw_string_ostream Msg(msg);
774     Msg << "ConstantExpr not handled: " << *CE;
775     report_fatal_error(Msg.str());
776   }
777 
778   GenericValue Result;
779   switch (C->getType()->getTypeID()) {
780   case Type::FloatTyID:
781     Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
782     break;
783   case Type::DoubleTyID:
784     Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
785     break;
786   case Type::X86_FP80TyID:
787   case Type::FP128TyID:
788   case Type::PPC_FP128TyID:
789     Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
790     break;
791   case Type::IntegerTyID:
792     Result.IntVal = cast<ConstantInt>(C)->getValue();
793     break;
794   case Type::PointerTyID:
795     if (isa<ConstantPointerNull>(C))
796       Result.PointerVal = 0;
797     else if (const Function *F = dyn_cast<Function>(C))
798       Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
799     else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
800       Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
801     else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
802       Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
803                                                         BA->getBasicBlock())));
804     else
805       llvm_unreachable("Unknown constant pointer type!");
806     break;
807   default:
808     std::string msg;
809     raw_string_ostream Msg(msg);
810     Msg << "ERROR: Constant unimplemented for type: " << *C->getType();
811     report_fatal_error(Msg.str());
812   }
813   return Result;
814 }
815 
816 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
817 /// with the integer held in IntVal.
StoreIntToMemory(const APInt & IntVal,uint8_t * Dst,unsigned StoreBytes)818 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
819                              unsigned StoreBytes) {
820   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
821   uint8_t *Src = (uint8_t *)IntVal.getRawData();
822 
823   if (sys::isLittleEndianHost())
824     // Little-endian host - the source is ordered from LSB to MSB.  Order the
825     // destination from LSB to MSB: Do a straight copy.
826     memcpy(Dst, Src, StoreBytes);
827   else {
828     // Big-endian host - the source is an array of 64 bit words ordered from
829     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
830     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
831     while (StoreBytes > sizeof(uint64_t)) {
832       StoreBytes -= sizeof(uint64_t);
833       // May not be aligned so use memcpy.
834       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
835       Src += sizeof(uint64_t);
836     }
837 
838     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
839   }
840 }
841 
842 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.  Ptr
843 /// is the address of the memory at which to store Val, cast to GenericValue *.
844 /// It is not a pointer to a GenericValue containing the address at which to
845 /// store Val.
StoreValueToMemory(const GenericValue & Val,GenericValue * Ptr,const Type * Ty)846 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
847                                          GenericValue *Ptr, const Type *Ty) {
848   const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
849 
850   switch (Ty->getTypeID()) {
851   case Type::IntegerTyID:
852     StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
853     break;
854   case Type::FloatTyID:
855     *((float*)Ptr) = Val.FloatVal;
856     break;
857   case Type::DoubleTyID:
858     *((double*)Ptr) = Val.DoubleVal;
859     break;
860   case Type::X86_FP80TyID:
861     memcpy(Ptr, Val.IntVal.getRawData(), 10);
862     break;
863   case Type::PointerTyID:
864     // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
865     if (StoreBytes != sizeof(PointerTy))
866       memset(Ptr, 0, StoreBytes);
867 
868     *((PointerTy*)Ptr) = Val.PointerVal;
869     break;
870   default:
871     dbgs() << "Cannot store value of type " << *Ty << "!\n";
872   }
873 
874   if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
875     // Host and target are different endian - reverse the stored bytes.
876     std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
877 }
878 
879 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
880 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
LoadIntFromMemory(APInt & IntVal,uint8_t * Src,unsigned LoadBytes)881 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
882   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
883   uint8_t *Dst = (uint8_t *)IntVal.getRawData();
884 
885   if (sys::isLittleEndianHost())
886     // Little-endian host - the destination must be ordered from LSB to MSB.
887     // The source is ordered from LSB to MSB: Do a straight copy.
888     memcpy(Dst, Src, LoadBytes);
889   else {
890     // Big-endian - the destination is an array of 64 bit words ordered from
891     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
892     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
893     // a word.
894     while (LoadBytes > sizeof(uint64_t)) {
895       LoadBytes -= sizeof(uint64_t);
896       // May not be aligned so use memcpy.
897       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
898       Dst += sizeof(uint64_t);
899     }
900 
901     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
902   }
903 }
904 
905 /// FIXME: document
906 ///
LoadValueFromMemory(GenericValue & Result,GenericValue * Ptr,const Type * Ty)907 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
908                                           GenericValue *Ptr,
909                                           const Type *Ty) {
910   const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
911 
912   switch (Ty->getTypeID()) {
913   case Type::IntegerTyID:
914     // An APInt with all words initially zero.
915     Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
916     LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
917     break;
918   case Type::FloatTyID:
919     Result.FloatVal = *((float*)Ptr);
920     break;
921   case Type::DoubleTyID:
922     Result.DoubleVal = *((double*)Ptr);
923     break;
924   case Type::PointerTyID:
925     Result.PointerVal = *((PointerTy*)Ptr);
926     break;
927   case Type::X86_FP80TyID: {
928     // This is endian dependent, but it will only work on x86 anyway.
929     // FIXME: Will not trap if loading a signaling NaN.
930     uint64_t y[2];
931     memcpy(y, Ptr, 10);
932     Result.IntVal = APInt(80, 2, y);
933     break;
934   }
935   default:
936     std::string msg;
937     raw_string_ostream Msg(msg);
938     Msg << "Cannot load value of type " << *Ty << "!";
939     report_fatal_error(Msg.str());
940   }
941 }
942 
943 // InitializeMemory - Recursive function to apply a Constant value into the
944 // specified memory location...
945 //
InitializeMemory(const Constant * Init,void * Addr)946 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
947   DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
948   DEBUG(Init->dump());
949   if (isa<UndefValue>(Init)) {
950     return;
951   } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
952     unsigned ElementSize =
953       getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
954     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
955       InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
956     return;
957   } else if (isa<ConstantAggregateZero>(Init)) {
958     memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
959     return;
960   } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
961     unsigned ElementSize =
962       getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
963     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
964       InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
965     return;
966   } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
967     const StructLayout *SL =
968       getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
969     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
970       InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
971     return;
972   } else if (Init->getType()->isFirstClassType()) {
973     GenericValue Val = getConstantValue(Init);
974     StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
975     return;
976   }
977 
978   dbgs() << "Bad Type: " << *Init->getType() << "\n";
979   llvm_unreachable("Unknown constant type to initialize memory with!");
980 }
981 
982 /// EmitGlobals - Emit all of the global variables to memory, storing their
983 /// addresses into GlobalAddress.  This must make sure to copy the contents of
984 /// their initializers into the memory.
985 ///
emitGlobals()986 void ExecutionEngine::emitGlobals() {
987 
988   // Loop over all of the global variables in the program, allocating the memory
989   // to hold them.  If there is more than one module, do a prepass over globals
990   // to figure out how the different modules should link together.
991   //
992   std::map<std::pair<std::string, const Type*>,
993            const GlobalValue*> LinkedGlobalsMap;
994 
995   if (Modules.size() != 1) {
996     for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
997       Module &M = *Modules[m];
998       for (Module::const_global_iterator I = M.global_begin(),
999            E = M.global_end(); I != E; ++I) {
1000         const GlobalValue *GV = I;
1001         if (GV->hasLocalLinkage() || GV->isDeclaration() ||
1002             GV->hasAppendingLinkage() || !GV->hasName())
1003           continue;// Ignore external globals and globals with internal linkage.
1004 
1005         const GlobalValue *&GVEntry =
1006           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1007 
1008         // If this is the first time we've seen this global, it is the canonical
1009         // version.
1010         if (!GVEntry) {
1011           GVEntry = GV;
1012           continue;
1013         }
1014 
1015         // If the existing global is strong, never replace it.
1016         if (GVEntry->hasExternalLinkage() ||
1017             GVEntry->hasDLLImportLinkage() ||
1018             GVEntry->hasDLLExportLinkage())
1019           continue;
1020 
1021         // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1022         // symbol.  FIXME is this right for common?
1023         if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1024           GVEntry = GV;
1025       }
1026     }
1027   }
1028 
1029   std::vector<const GlobalValue*> NonCanonicalGlobals;
1030   for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1031     Module &M = *Modules[m];
1032     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1033          I != E; ++I) {
1034       // In the multi-module case, see what this global maps to.
1035       if (!LinkedGlobalsMap.empty()) {
1036         if (const GlobalValue *GVEntry =
1037               LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1038           // If something else is the canonical global, ignore this one.
1039           if (GVEntry != &*I) {
1040             NonCanonicalGlobals.push_back(I);
1041             continue;
1042           }
1043         }
1044       }
1045 
1046       if (!I->isDeclaration()) {
1047         addGlobalMapping(I, getMemoryForGV(I));
1048       } else {
1049         // External variable reference. Try to use the dynamic loader to
1050         // get a pointer to it.
1051         if (void *SymAddr =
1052             sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1053           addGlobalMapping(I, SymAddr);
1054         else {
1055           report_fatal_error("Could not resolve external global address: "
1056                             +I->getName());
1057         }
1058       }
1059     }
1060 
1061     // If there are multiple modules, map the non-canonical globals to their
1062     // canonical location.
1063     if (!NonCanonicalGlobals.empty()) {
1064       for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1065         const GlobalValue *GV = NonCanonicalGlobals[i];
1066         const GlobalValue *CGV =
1067           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1068         void *Ptr = getPointerToGlobalIfAvailable(CGV);
1069         assert(Ptr && "Canonical global wasn't codegen'd!");
1070         addGlobalMapping(GV, Ptr);
1071       }
1072     }
1073 
1074     // Now that all of the globals are set up in memory, loop through them all
1075     // and initialize their contents.
1076     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1077          I != E; ++I) {
1078       if (!I->isDeclaration()) {
1079         if (!LinkedGlobalsMap.empty()) {
1080           if (const GlobalValue *GVEntry =
1081                 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1082             if (GVEntry != &*I)  // Not the canonical variable.
1083               continue;
1084         }
1085         EmitGlobalVariable(I);
1086       }
1087     }
1088   }
1089 }
1090 
1091 // EmitGlobalVariable - This method emits the specified global variable to the
1092 // address specified in GlobalAddresses, or allocates new memory if it's not
1093 // already in the map.
EmitGlobalVariable(const GlobalVariable * GV)1094 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1095   void *GA = getPointerToGlobalIfAvailable(GV);
1096 
1097   if (GA == 0) {
1098     // If it's not already specified, allocate memory for the global.
1099     GA = getMemoryForGV(GV);
1100     addGlobalMapping(GV, GA);
1101   }
1102 
1103   // Don't initialize if it's thread local, let the client do it.
1104   if (!GV->isThreadLocal())
1105     InitializeMemory(GV->getInitializer(), GA);
1106 
1107   const Type *ElTy = GV->getType()->getElementType();
1108   size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1109   NumInitBytes += (unsigned)GVSize;
1110   ++NumGlobals;
1111 }
1112 
ExecutionEngineState(ExecutionEngine & EE)1113 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1114   : EE(EE), GlobalAddressMap(this) {
1115 }
1116 
getMutex(ExecutionEngineState * EES)1117 sys::Mutex *ExecutionEngineState::AddressMapConfig::getMutex(
1118   ExecutionEngineState *EES) {
1119   return &EES->EE.lock;
1120 }
onDelete(ExecutionEngineState * EES,const GlobalValue * Old)1121 void ExecutionEngineState::AddressMapConfig::onDelete(
1122   ExecutionEngineState *EES, const GlobalValue *Old) {
1123   void *OldVal = EES->GlobalAddressMap.lookup(Old);
1124   EES->GlobalAddressReverseMap.erase(OldVal);
1125 }
1126 
onRAUW(ExecutionEngineState *,const GlobalValue *,const GlobalValue *)1127 void ExecutionEngineState::AddressMapConfig::onRAUW(
1128   ExecutionEngineState *, const GlobalValue *, const GlobalValue *) {
1129   assert(false && "The ExecutionEngine doesn't know how to handle a"
1130          " RAUW on a value it has a global mapping for.");
1131 }
1132