1 //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tool implements a just-in-time compiler for LLVM, allowing direct
11 // execution of LLVM bitcode in an efficient manner.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "JIT.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/GlobalVariable.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/CodeGen/JITCodeEmitter.h"
23 #include "llvm/CodeGen/MachineCodeInfo.h"
24 #include "llvm/ExecutionEngine/GenericValue.h"
25 #include "llvm/ExecutionEngine/JITEventListener.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetJITInfo.h"
29 #include "llvm/Support/Dwarf.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/ManagedStatic.h"
32 #include "llvm/Support/MutexGuard.h"
33 #include "llvm/System/DynamicLibrary.h"
34 #include "llvm/Config/config.h"
35 
36 using namespace llvm;
37 
38 #ifdef __APPLE__
39 // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
40 // of atexit). It passes the address of linker generated symbol __dso_handle
41 // to the function.
42 // This configuration change happened at version 5330.
43 # include <AvailabilityMacros.h>
44 # if defined(MAC_OS_X_VERSION_10_4) && \
45      ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
46       (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
47        __APPLE_CC__ >= 5330))
48 #  ifndef HAVE___DSO_HANDLE
49 #   define HAVE___DSO_HANDLE 1
50 #  endif
51 # endif
52 #endif
53 
54 #if HAVE___DSO_HANDLE
55 extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
56 #endif
57 
58 namespace {
59 
60 static struct RegisterJIT {
RegisterJIT__anonb02dc7520111::RegisterJIT61   RegisterJIT() { JIT::Register(); }
62 } JITRegistrator;
63 
64 }
65 
LLVMLinkInJIT()66 extern "C" void LLVMLinkInJIT() {
67 }
68 
69 
70 #if defined(__GNUC__) && !defined(__ARM_EABI__) && !defined(__USING_SJLJ_EXCEPTIONS__)
71 
72 // libgcc defines the __register_frame function to dynamically register new
73 // dwarf frames for exception handling. This functionality is not portable
74 // across compilers and is only provided by GCC. We use the __register_frame
75 // function here so that code generated by the JIT cooperates with the unwinding
76 // runtime of libgcc. When JITting with exception handling enable, LLVM
77 // generates dwarf frames and registers it to libgcc with __register_frame.
78 //
79 // The __register_frame function works with Linux.
80 //
81 // Unfortunately, this functionality seems to be in libgcc after the unwinding
82 // library of libgcc for darwin was written. The code for darwin overwrites the
83 // value updated by __register_frame with a value fetched with "keymgr".
84 // "keymgr" is an obsolete functionality, which should be rewritten some day.
85 // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
86 // need a workaround in LLVM which uses the "keymgr" to dynamically modify the
87 // values of an opaque key, used by libgcc to find dwarf tables.
88 
89 extern "C" void __register_frame(void*);
90 
91 #if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
92 # define USE_KEYMGR 1
93 #else
94 # define USE_KEYMGR 0
95 #endif
96 
97 #if USE_KEYMGR
98 
99 namespace {
100 
101 // LibgccObject - This is the structure defined in libgcc. There is no #include
102 // provided for this structure, so we also define it here. libgcc calls it
103 // "struct object". The structure is undocumented in libgcc.
104 struct LibgccObject {
105   void *unused1;
106   void *unused2;
107   void *unused3;
108 
109   /// frame - Pointer to the exception table.
110   void *frame;
111 
112   /// encoding -  The encoding of the object?
113   union {
114     struct {
115       unsigned long sorted : 1;
116       unsigned long from_array : 1;
117       unsigned long mixed_encoding : 1;
118       unsigned long encoding : 8;
119       unsigned long count : 21;
120     } b;
121     size_t i;
122   } encoding;
123 
124   /// fde_end - libgcc defines this field only if some macro is defined. We
125   /// include this field even if it may not there, to make libgcc happy.
126   char *fde_end;
127 
128   /// next - At least we know it's a chained list!
129   struct LibgccObject *next;
130 };
131 
132 // "kemgr" stuff. Apparently, all frame tables are stored there.
133 extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
134 extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
135 #define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
136 
137 /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
138 /// probably contains all dwarf tables that are loaded.
139 struct LibgccObjectInfo {
140 
141   /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
142   ///
143   struct LibgccObject* seenObjects;
144 
145   /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
146   ///
147   struct LibgccObject* unseenObjects;
148 
149   unsigned unused[2];
150 };
151 
152 /// darwin_register_frame - Since __register_frame does not work with darwin's
153 /// libgcc,we provide our own function, which "tricks" libgcc by modifying the
154 /// "Dwarf2 object list" key.
DarwinRegisterFrame(void * FrameBegin)155 void DarwinRegisterFrame(void* FrameBegin) {
156   // Get the key.
157   LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
158     _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
159   assert(LOI && "This should be preallocated by the runtime");
160 
161   // Allocate a new LibgccObject to represent this frame. Deallocation of this
162   // object may be impossible: since darwin code in libgcc was written after
163   // the ability to dynamically register frames, things may crash if we
164   // deallocate it.
165   struct LibgccObject* ob = (struct LibgccObject*)
166     malloc(sizeof(struct LibgccObject));
167 
168   // Do like libgcc for the values of the field.
169   ob->unused1 = (void *)-1;
170   ob->unused2 = 0;
171   ob->unused3 = 0;
172   ob->frame = FrameBegin;
173   ob->encoding.i = 0;
174   ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
175 
176   // Put the info on both places, as libgcc uses the first or the second
177   // field. Note that we rely on having two pointers here. If fde_end was a
178   // char, things would get complicated.
179   ob->fde_end = (char*)LOI->unseenObjects;
180   ob->next = LOI->unseenObjects;
181 
182   // Update the key's unseenObjects list.
183   LOI->unseenObjects = ob;
184 
185   // Finally update the "key". Apparently, libgcc requires it.
186   _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
187                                          LOI);
188 
189 }
190 
191 }
192 #endif // __APPLE__
193 #endif // __GNUC__
194 
195 /// createJIT - This is the factory method for creating a JIT for the current
196 /// machine, it does not fall back to the interpreter.  This takes ownership
197 /// of the module.
createJIT(Module * M,std::string * ErrorStr,JITMemoryManager * JMM,CodeGenOpt::Level OptLevel,bool GVsWithCode,CodeModel::Model CMM)198 ExecutionEngine *ExecutionEngine::createJIT(Module *M,
199                                             std::string *ErrorStr,
200                                             JITMemoryManager *JMM,
201                                             CodeGenOpt::Level OptLevel,
202                                             bool GVsWithCode,
203                                             CodeModel::Model CMM) {
204   // Use the defaults for extra parameters.  Users can use EngineBuilder to
205   // set them.
206   StringRef MArch = "";
207   StringRef MCPU = "";
208   SmallVector<std::string, 1> MAttrs;
209   return JIT::createJIT(M, ErrorStr, JMM, OptLevel, GVsWithCode, CMM,
210                         MArch, MCPU, MAttrs);
211 }
212 
createJIT(Module * M,std::string * ErrorStr,JITMemoryManager * JMM,CodeGenOpt::Level OptLevel,bool GVsWithCode,CodeModel::Model CMM,StringRef MArch,StringRef MCPU,const SmallVectorImpl<std::string> & MAttrs)213 ExecutionEngine *JIT::createJIT(Module *M,
214                                 std::string *ErrorStr,
215                                 JITMemoryManager *JMM,
216                                 CodeGenOpt::Level OptLevel,
217                                 bool GVsWithCode,
218                                 CodeModel::Model CMM,
219                                 StringRef MArch,
220                                 StringRef MCPU,
221                                 const SmallVectorImpl<std::string>& MAttrs) {
222   // Try to register the program as a source of symbols to resolve against.
223   sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
224 /* CLAMAV LOCAL: no dlopen */
225 //  if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
226 //   return 0;
227 
228   // Pick a target either via -march or by guessing the native arch.
229   TargetMachine *TM = JIT::selectTarget(M, MArch, MCPU, MAttrs, ErrorStr);
230   if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
231   TM->setCodeModel(CMM);
232 
233   // If the target supports JIT code generation, create a the JIT.
234   if (TargetJITInfo *TJ = TM->getJITInfo()) {
235     return new JIT(M, *TM, *TJ, JMM, OptLevel, GVsWithCode);
236   } else {
237     if (ErrorStr)
238       *ErrorStr = "target does not support JIT code generation";
239     return 0;
240   }
241 }
242 
243 namespace {
244 /// This class supports the global getPointerToNamedFunction(), which allows
245 /// bugpoint or gdb users to search for a function by name without any context.
246 class JitPool {
247   SmallPtrSet<JIT*, 1> JITs;  // Optimize for process containing just 1 JIT.
248   mutable sys::Mutex Lock;
249 public:
Add(JIT * jit)250   void Add(JIT *jit) {
251     MutexGuard guard(Lock);
252     JITs.insert(jit);
253   }
Remove(JIT * jit)254   void Remove(JIT *jit) {
255     MutexGuard guard(Lock);
256     JITs.erase(jit);
257   }
getPointerToNamedFunction(const char * Name) const258   void *getPointerToNamedFunction(const char *Name) const {
259     MutexGuard guard(Lock);
260     assert(JITs.size() != 0 && "No Jit registered");
261     //search function in every instance of JIT
262     for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
263            end = JITs.end();
264          Jit != end; ++Jit) {
265       if (Function *F = (*Jit)->FindFunctionNamed(Name))
266         return (*Jit)->getPointerToFunction(F);
267     }
268     // The function is not available : fallback on the first created (will
269     // search in symbol of the current program/library)
270     return (*JITs.begin())->getPointerToNamedFunction(Name);
271   }
272 };
273 ManagedStatic<JitPool> AllJits;
274 }
275 extern "C" {
276   // getPointerToNamedFunction - This function is used as a global wrapper to
277   // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
278   // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
279   // need to resolve function(s) that are being mis-codegenerated, so we need to
280   // resolve their addresses at runtime, and this is the way to do it.
getPointerToNamedFunction(const char * Name)281   void *getPointerToNamedFunction(const char *Name) {
282     return AllJits->getPointerToNamedFunction(Name);
283   }
284 }
285 
JIT(Module * M,TargetMachine & tm,TargetJITInfo & tji,JITMemoryManager * JMM,CodeGenOpt::Level OptLevel,bool GVsWithCode)286 JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
287          JITMemoryManager *JMM, CodeGenOpt::Level OptLevel, bool GVsWithCode)
288   : ExecutionEngine(M), TM(tm), TJI(tji), AllocateGVsWithCode(GVsWithCode),
289     isAlreadyCodeGenerating(false) {
290   setTargetData(TM.getTargetData());
291 
292   jitstate = new JITState(M);
293 
294   // Initialize JCE
295   JCE = createEmitter(*this, JMM, TM);
296 
297   // Register in global list of all JITs.
298   AllJits->Add(this);
299 
300   // Add target data
301   MutexGuard locked(lock);
302   FunctionPassManager &PM = jitstate->getPM(locked);
303   PM.add(new TargetData(*TM.getTargetData()));
304 
305   // Turn the machine code intermediate representation into bytes in memory that
306   // may be executed.
307   if (TM.addPassesToEmitMachineCode(PM, *JCE, OptLevel)) {
308     report_fatal_error("Target does not support machine code emission!");
309   }
310 
311   // Register routine for informing unwinding runtime about new EH frames
312 #if defined(__GNUC__) && !defined(__ARM_EABI__) && !defined(__USING_SJLJ_EXCEPTIONS__)
313 #if USE_KEYMGR
314   struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
315     _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
316 
317   // The key is created on demand, and libgcc creates it the first time an
318   // exception occurs. Since we need the key to register frames, we create
319   // it now.
320   if (!LOI)
321     LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
322   _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
323   InstallExceptionTableRegister(DarwinRegisterFrame);
324 #else
325   InstallExceptionTableRegister(__register_frame);
326 #endif // __APPLE__
327 #endif // __GNUC__
328 
329   // Initialize passes.
330   PM.doInitialization();
331 }
332 
~JIT()333 JIT::~JIT() {
334   AllJits->Remove(this);
335   delete jitstate;
336   delete JCE;
337   delete &TM;
338 }
339 
340 /// addModule - Add a new Module to the JIT.  If we previously removed the last
341 /// Module, we need re-initialize jitstate with a valid Module.
addModule(Module * M)342 void JIT::addModule(Module *M) {
343   MutexGuard locked(lock);
344 
345   if (Modules.empty()) {
346     assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
347 
348     jitstate = new JITState(M);
349 
350     FunctionPassManager &PM = jitstate->getPM(locked);
351     PM.add(new TargetData(*TM.getTargetData()));
352 
353     // Turn the machine code intermediate representation into bytes in memory
354     // that may be executed.
355     if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
356       report_fatal_error("Target does not support machine code emission!");
357     }
358 
359     // Initialize passes.
360     PM.doInitialization();
361   }
362 
363   ExecutionEngine::addModule(M);
364 }
365 
366 /// removeModule - If we are removing the last Module, invalidate the jitstate
367 /// since the PassManager it contains references a released Module.
removeModule(Module * M)368 bool JIT::removeModule(Module *M) {
369   bool result = ExecutionEngine::removeModule(M);
370 
371   MutexGuard locked(lock);
372 
373   if (jitstate->getModule() == M) {
374     delete jitstate;
375     jitstate = 0;
376   }
377 
378   if (!jitstate && !Modules.empty()) {
379     jitstate = new JITState(Modules[0]);
380 
381     FunctionPassManager &PM = jitstate->getPM(locked);
382     PM.add(new TargetData(*TM.getTargetData()));
383 
384     // Turn the machine code intermediate representation into bytes in memory
385     // that may be executed.
386     if (TM.addPassesToEmitMachineCode(PM, *JCE, CodeGenOpt::Default)) {
387       report_fatal_error("Target does not support machine code emission!");
388     }
389 
390     // Initialize passes.
391     PM.doInitialization();
392   }
393   return result;
394 }
395 
396 /// run - Start execution with the specified function and arguments.
397 ///
runFunction(Function * F,const std::vector<GenericValue> & ArgValues)398 GenericValue JIT::runFunction(Function *F,
399                               const std::vector<GenericValue> &ArgValues) {
400   assert(F && "Function *F was null at entry to run()");
401 
402   void *FPtr = getPointerToFunction(F);
403   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
404   const FunctionType *FTy = F->getFunctionType();
405   const Type *RetTy = FTy->getReturnType();
406 
407   assert((FTy->getNumParams() == ArgValues.size() ||
408           (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
409          "Wrong number of arguments passed into function!");
410   assert(FTy->getNumParams() == ArgValues.size() &&
411          "This doesn't support passing arguments through varargs (yet)!");
412 
413   // Handle some common cases first.  These cases correspond to common `main'
414   // prototypes.
415   if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
416     switch (ArgValues.size()) {
417     case 3:
418       if (FTy->getParamType(0)->isIntegerTy(32) &&
419           FTy->getParamType(1)->isPointerTy() &&
420           FTy->getParamType(2)->isPointerTy()) {
421         int (*PF)(int, char **, const char **) =
422           (int(*)(int, char **, const char **))(intptr_t)FPtr;
423 
424         // Call the function.
425         GenericValue rv;
426         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
427                                  (char **)GVTOP(ArgValues[1]),
428                                  (const char **)GVTOP(ArgValues[2])));
429         return rv;
430       }
431       break;
432     case 2:
433       if (FTy->getParamType(0)->isIntegerTy(32) &&
434           FTy->getParamType(1)->isPointerTy()) {
435         int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
436 
437         // Call the function.
438         GenericValue rv;
439         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
440                                  (char **)GVTOP(ArgValues[1])));
441         return rv;
442       }
443       break;
444     case 1:
445       if (FTy->getNumParams() == 1 &&
446           FTy->getParamType(0)->isIntegerTy(32)) {
447         GenericValue rv;
448         int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
449         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
450         return rv;
451       }
452       break;
453     }
454   }
455 
456   // Handle cases where no arguments are passed first.
457   if (ArgValues.empty()) {
458     GenericValue rv;
459     switch (RetTy->getTypeID()) {
460     default: llvm_unreachable("Unknown return type for function call!");
461     case Type::IntegerTyID: {
462       unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
463       if (BitWidth == 1)
464         rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
465       else if (BitWidth <= 8)
466         rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
467       else if (BitWidth <= 16)
468         rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
469       else if (BitWidth <= 32)
470         rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
471       else if (BitWidth <= 64)
472         rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
473       else
474         llvm_unreachable("Integer types > 64 bits not supported");
475       return rv;
476     }
477     case Type::VoidTyID:
478       rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
479       return rv;
480     case Type::FloatTyID:
481       rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
482       return rv;
483     case Type::DoubleTyID:
484       rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
485       return rv;
486     case Type::X86_FP80TyID:
487     case Type::FP128TyID:
488     case Type::PPC_FP128TyID:
489       llvm_unreachable("long double not supported yet");
490       return rv;
491     case Type::PointerTyID:
492       return PTOGV(((void*(*)())(intptr_t)FPtr)());
493     }
494   }
495 
496   // Okay, this is not one of our quick and easy cases.  Because we don't have a
497   // full FFI, we have to codegen a nullary stub function that just calls the
498   // function we are interested in, passing in constants for all of the
499   // arguments.  Make this function and return.
500 
501   // First, create the function.
502   FunctionType *STy=FunctionType::get(RetTy, false);
503   Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
504                                     F->getParent());
505 
506   // Insert a basic block.
507   BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
508 
509   // Convert all of the GenericValue arguments over to constants.  Note that we
510   // currently don't support varargs.
511   SmallVector<Value*, 8> Args;
512   for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
513     Constant *C = 0;
514     const Type *ArgTy = FTy->getParamType(i);
515     const GenericValue &AV = ArgValues[i];
516     switch (ArgTy->getTypeID()) {
517     default: llvm_unreachable("Unknown argument type for function call!");
518     case Type::IntegerTyID:
519         C = ConstantInt::get(F->getContext(), AV.IntVal);
520         break;
521     case Type::FloatTyID:
522         C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
523         break;
524     case Type::DoubleTyID:
525         C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
526         break;
527     case Type::PPC_FP128TyID:
528     case Type::X86_FP80TyID:
529     case Type::FP128TyID:
530         C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
531         break;
532     case Type::PointerTyID:
533       void *ArgPtr = GVTOP(AV);
534       if (sizeof(void*) == 4)
535         C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
536                              (int)(intptr_t)ArgPtr);
537       else
538         C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
539                              (intptr_t)ArgPtr);
540       // Cast the integer to pointer
541       C = ConstantExpr::getIntToPtr(C, ArgTy);
542       break;
543     }
544     Args.push_back(C);
545   }
546 
547   CallInst *TheCall = CallInst::Create(F, Args.begin(), Args.end(),
548                                        "", StubBB);
549   TheCall->setCallingConv(F->getCallingConv());
550   TheCall->setTailCall();
551   if (!TheCall->getType()->isVoidTy())
552     // Return result of the call.
553     ReturnInst::Create(F->getContext(), TheCall, StubBB);
554   else
555     ReturnInst::Create(F->getContext(), StubBB);           // Just return void.
556 
557   // Finally, call our nullary stub function.
558   GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
559   // Erase it, since no other function can have a reference to it.
560   Stub->eraseFromParent();
561   // And return the result.
562   return Result;
563 }
564 
RegisterJITEventListener(JITEventListener * L)565 void JIT::RegisterJITEventListener(JITEventListener *L) {
566   if (L == NULL)
567     return;
568   MutexGuard locked(lock);
569   EventListeners.push_back(L);
570 }
UnregisterJITEventListener(JITEventListener * L)571 void JIT::UnregisterJITEventListener(JITEventListener *L) {
572   if (L == NULL)
573     return;
574   MutexGuard locked(lock);
575   std::vector<JITEventListener*>::reverse_iterator I=
576       std::find(EventListeners.rbegin(), EventListeners.rend(), L);
577   if (I != EventListeners.rend()) {
578     std::swap(*I, EventListeners.back());
579     EventListeners.pop_back();
580   }
581 }
NotifyFunctionEmitted(const Function & F,void * Code,size_t Size,const JITEvent_EmittedFunctionDetails & Details)582 void JIT::NotifyFunctionEmitted(
583     const Function &F,
584     void *Code, size_t Size,
585     const JITEvent_EmittedFunctionDetails &Details) {
586   MutexGuard locked(lock);
587   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
588     EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
589   }
590 }
591 
NotifyFreeingMachineCode(void * OldPtr)592 void JIT::NotifyFreeingMachineCode(void *OldPtr) {
593   MutexGuard locked(lock);
594   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
595     EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
596   }
597 }
598 
599 /// runJITOnFunction - Run the FunctionPassManager full of
600 /// just-in-time compilation passes on F, hopefully filling in
601 /// GlobalAddress[F] with the address of F's machine code.
602 ///
runJITOnFunction(Function * F,MachineCodeInfo * MCI)603 void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
604   MutexGuard locked(lock);
605 
606   class MCIListener : public JITEventListener {
607     MachineCodeInfo *const MCI;
608    public:
609     MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
610     virtual void NotifyFunctionEmitted(const Function &,
611                                        void *Code, size_t Size,
612                                        const EmittedFunctionDetails &) {
613       MCI->setAddress(Code);
614       MCI->setSize(Size);
615     }
616   };
617   MCIListener MCIL(MCI);
618   if (MCI)
619     RegisterJITEventListener(&MCIL);
620 
621   runJITOnFunctionUnlocked(F, locked);
622 
623   if (MCI)
624     UnregisterJITEventListener(&MCIL);
625 }
626 
runJITOnFunctionUnlocked(Function * F,const MutexGuard & locked)627 void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
628   assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
629 
630   jitTheFunction(F, locked);
631 
632   // If the function referred to another function that had not yet been
633   // read from bitcode, and we are jitting non-lazily, emit it now.
634   while (!jitstate->getPendingFunctions(locked).empty()) {
635     Function *PF = jitstate->getPendingFunctions(locked).back();
636     jitstate->getPendingFunctions(locked).pop_back();
637 
638     assert(!PF->hasAvailableExternallyLinkage() &&
639            "Externally-defined function should not be in pending list.");
640 
641     jitTheFunction(PF, locked);
642 
643     // Now that the function has been jitted, ask the JITEmitter to rewrite
644     // the stub with real address of the function.
645     updateFunctionStub(PF);
646   }
647 }
648 
jitTheFunction(Function * F,const MutexGuard & locked)649 void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
650   isAlreadyCodeGenerating = true;
651   jitstate->getPM(locked).run(*F);
652   isAlreadyCodeGenerating = false;
653 
654   // clear basic block addresses after this function is done
655   getBasicBlockAddressMap(locked).clear();
656 }
657 
658 /// getPointerToFunction - This method is used to get the address of the
659 /// specified function, compiling it if neccesary.
660 ///
getPointerToFunction(Function * F)661 void *JIT::getPointerToFunction(Function *F) {
662 
663   if (void *Addr = getPointerToGlobalIfAvailable(F))
664     return Addr;   // Check if function already code gen'd
665 
666   MutexGuard locked(lock);
667 
668   // Now that this thread owns the lock, make sure we read in the function if it
669   // exists in this Module.
670   std::string ErrorMsg;
671   if (F->Materialize(&ErrorMsg)) {
672     report_fatal_error("Error reading function '" + F->getName()+
673                       "' from bitcode file: " + ErrorMsg);
674   }
675 
676   // ... and check if another thread has already code gen'd the function.
677   if (void *Addr = getPointerToGlobalIfAvailable(F))
678     return Addr;
679 
680   if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
681     bool AbortOnFailure = !F->hasExternalWeakLinkage();
682     void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
683     addGlobalMapping(F, Addr);
684     return Addr;
685   }
686 
687   runJITOnFunctionUnlocked(F, locked);
688 
689   void *Addr = getPointerToGlobalIfAvailable(F);
690   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
691   return Addr;
692 }
693 
addPointerToBasicBlock(const BasicBlock * BB,void * Addr)694 void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
695   MutexGuard locked(lock);
696 
697   BasicBlockAddressMapTy::iterator I =
698     getBasicBlockAddressMap(locked).find(BB);
699   if (I == getBasicBlockAddressMap(locked).end()) {
700     getBasicBlockAddressMap(locked)[BB] = Addr;
701   } else {
702     // ignore repeats: some BBs can be split into few MBBs?
703   }
704 }
705 
clearPointerToBasicBlock(const BasicBlock * BB)706 void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
707   MutexGuard locked(lock);
708   getBasicBlockAddressMap(locked).erase(BB);
709 }
710 
getPointerToBasicBlock(BasicBlock * BB)711 void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
712   // make sure it's function is compiled by JIT
713   (void)getPointerToFunction(BB->getParent());
714 
715   // resolve basic block address
716   MutexGuard locked(lock);
717 
718   BasicBlockAddressMapTy::iterator I =
719     getBasicBlockAddressMap(locked).find(BB);
720   if (I != getBasicBlockAddressMap(locked).end()) {
721     return I->second;
722   } else {
723     assert(0 && "JIT does not have BB address for address-of-label, was"
724            " it eliminated by optimizer?");
725     return 0;
726   }
727 }
728 
729 /// getOrEmitGlobalVariable - Return the address of the specified global
730 /// variable, possibly emitting it to memory if needed.  This is used by the
731 /// Emitter.
getOrEmitGlobalVariable(const GlobalVariable * GV)732 void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
733   MutexGuard locked(lock);
734 
735   void *Ptr = getPointerToGlobalIfAvailable(GV);
736   if (Ptr) return Ptr;
737 
738   // If the global is external, just remember the address.
739   if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
740 #if HAVE___DSO_HANDLE
741     if (GV->getName() == "__dso_handle")
742       return (void*)&__dso_handle;
743 #endif
744     Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
745     if (Ptr == 0) {
746       report_fatal_error("Could not resolve external global address: "
747                         +GV->getName());
748     }
749     addGlobalMapping(GV, Ptr);
750   } else {
751     // If the global hasn't been emitted to memory yet, allocate space and
752     // emit it into memory.
753     Ptr = getMemoryForGV(GV);
754     addGlobalMapping(GV, Ptr);
755     EmitGlobalVariable(GV);  // Initialize the variable.
756   }
757   return Ptr;
758 }
759 
760 /// recompileAndRelinkFunction - This method is used to force a function
761 /// which has already been compiled, to be compiled again, possibly
762 /// after it has been modified. Then the entry to the old copy is overwritten
763 /// with a branch to the new copy. If there was no old copy, this acts
764 /// just like JIT::getPointerToFunction().
765 ///
recompileAndRelinkFunction(Function * F)766 void *JIT::recompileAndRelinkFunction(Function *F) {
767   void *OldAddr = getPointerToGlobalIfAvailable(F);
768 
769   // If it's not already compiled there is no reason to patch it up.
770   if (OldAddr == 0) { return getPointerToFunction(F); }
771 
772   // Delete the old function mapping.
773   addGlobalMapping(F, 0);
774 
775   // Recodegen the function
776   runJITOnFunction(F);
777 
778   // Update state, forward the old function to the new function.
779   void *Addr = getPointerToGlobalIfAvailable(F);
780   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
781   TJI.replaceMachineCodeForFunction(OldAddr, Addr);
782   return Addr;
783 }
784 
785 /// getMemoryForGV - This method abstracts memory allocation of global
786 /// variable so that the JIT can allocate thread local variables depending
787 /// on the target.
788 ///
getMemoryForGV(const GlobalVariable * GV)789 char* JIT::getMemoryForGV(const GlobalVariable* GV) {
790   char *Ptr;
791 
792   // GlobalVariable's which are not "constant" will cause trouble in a server
793   // situation. It's returned in the same block of memory as code which may
794   // not be writable.
795   if (isGVCompilationDisabled() && !GV->isConstant()) {
796     report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
797   }
798 
799   // Some applications require globals and code to live together, so they may
800   // be allocated into the same buffer, but in general globals are allocated
801   // through the memory manager which puts them near the code but not in the
802   // same buffer.
803   const Type *GlobalType = GV->getType()->getElementType();
804   size_t S = getTargetData()->getTypeAllocSize(GlobalType);
805   size_t A = getTargetData()->getPreferredAlignment(GV);
806   if (GV->isThreadLocal()) {
807     MutexGuard locked(lock);
808     Ptr = TJI.allocateThreadLocalMemory(S);
809   } else if (TJI.allocateSeparateGVMemory()) {
810     if (A <= 8) {
811       Ptr = (char*)malloc(S);
812     } else {
813       // Allocate S+A bytes of memory, then use an aligned pointer within that
814       // space.
815       Ptr = (char*)malloc(S+A);
816       unsigned MisAligned = ((intptr_t)Ptr & (A-1));
817       Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
818     }
819   } else if (AllocateGVsWithCode) {
820     Ptr = (char*)JCE->allocateSpace(S, A);
821   } else {
822     Ptr = (char*)JCE->allocateGlobal(S, A);
823   }
824   return Ptr;
825 }
826 
addPendingFunction(Function * F)827 void JIT::addPendingFunction(Function *F) {
828   MutexGuard locked(lock);
829   jitstate->getPendingFunctions(locked).push_back(F);
830 }
831 
832 
~JITEventListener()833 JITEventListener::~JITEventListener() {}
834