1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "ppc-codegen"
16 #include "PPC.h"
17 #include "PPCPredicates.h"
18 #include "PPCTargetMachine.h"
19 #include "PPCHazardRecognizers.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Constants.h"
28 #include "llvm/Function.h"
29 #include "llvm/GlobalValue.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 using namespace llvm;
36 
37 namespace {
38   //===--------------------------------------------------------------------===//
39   /// PPCDAGToDAGISel - PPC specific code to select PPC machine
40   /// instructions for SelectionDAG operations.
41   ///
42   class PPCDAGToDAGISel : public SelectionDAGISel {
43     const PPCTargetMachine &TM;
44     const PPCTargetLowering &PPCLowering;
45     const PPCSubtarget &PPCSubTarget;
46     unsigned GlobalBaseReg;
47   public:
PPCDAGToDAGISel(PPCTargetMachine & tm)48     explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
49       : SelectionDAGISel(tm), TM(tm),
50         PPCLowering(*TM.getTargetLowering()),
51         PPCSubTarget(*TM.getSubtargetImpl()) {}
52 
runOnMachineFunction(MachineFunction & MF)53     virtual bool runOnMachineFunction(MachineFunction &MF) {
54       // Make sure we re-emit a set of the global base reg if necessary
55       GlobalBaseReg = 0;
56       SelectionDAGISel::runOnMachineFunction(MF);
57 
58       InsertVRSaveCode(MF);
59       return true;
60     }
61 
62     /// getI32Imm - Return a target constant with the specified value, of type
63     /// i32.
getI32Imm(unsigned Imm)64     inline SDValue getI32Imm(unsigned Imm) {
65       return CurDAG->getTargetConstant(Imm, MVT::i32);
66     }
67 
68     /// getI64Imm - Return a target constant with the specified value, of type
69     /// i64.
getI64Imm(uint64_t Imm)70     inline SDValue getI64Imm(uint64_t Imm) {
71       return CurDAG->getTargetConstant(Imm, MVT::i64);
72     }
73 
74     /// getSmallIPtrImm - Return a target constant of pointer type.
getSmallIPtrImm(unsigned Imm)75     inline SDValue getSmallIPtrImm(unsigned Imm) {
76       return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
77     }
78 
79     /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
80     /// with any number of 0s on either side.  The 1s are allowed to wrap from
81     /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
82     /// 0x0F0F0000 is not, since all 1s are not contiguous.
83     static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
84 
85 
86     /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
87     /// rotate and mask opcode and mask operation.
88     static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
89                                 unsigned &SH, unsigned &MB, unsigned &ME);
90 
91     /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
92     /// base register.  Return the virtual register that holds this value.
93     SDNode *getGlobalBaseReg();
94 
95     // Select - Convert the specified operand from a target-independent to a
96     // target-specific node if it hasn't already been changed.
97     SDNode *Select(SDNode *N);
98 
99     SDNode *SelectBitfieldInsert(SDNode *N);
100 
101     /// SelectCC - Select a comparison of the specified values with the
102     /// specified condition code, returning the CR# of the expression.
103     SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl);
104 
105     /// SelectAddrImm - Returns true if the address N can be represented by
106     /// a base register plus a signed 16-bit displacement [r+imm].
SelectAddrImm(SDNode * Op,SDValue N,SDValue & Disp,SDValue & Base)107     bool SelectAddrImm(SDNode *Op, SDValue N, SDValue &Disp,
108                        SDValue &Base) {
109       return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
110     }
111 
112     /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
113     /// immediate field.  Because preinc imms have already been validated, just
114     /// accept it.
SelectAddrImmOffs(SDNode * Op,SDValue N,SDValue & Out) const115     bool SelectAddrImmOffs(SDNode *Op, SDValue N, SDValue &Out) const {
116       Out = N;
117       return true;
118     }
119 
120     /// SelectAddrIdx - Given the specified addressed, check to see if it can be
121     /// represented as an indexed [r+r] operation.  Returns false if it can
122     /// be represented by [r+imm], which are preferred.
SelectAddrIdx(SDNode * Op,SDValue N,SDValue & Base,SDValue & Index)123     bool SelectAddrIdx(SDNode *Op, SDValue N, SDValue &Base,
124                        SDValue &Index) {
125       return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
126     }
127 
128     /// SelectAddrIdxOnly - Given the specified addressed, force it to be
129     /// represented as an indexed [r+r] operation.
SelectAddrIdxOnly(SDNode * Op,SDValue N,SDValue & Base,SDValue & Index)130     bool SelectAddrIdxOnly(SDNode *Op, SDValue N, SDValue &Base,
131                            SDValue &Index) {
132       return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
133     }
134 
135     /// SelectAddrImmShift - Returns true if the address N can be represented by
136     /// a base register plus a signed 14-bit displacement [r+imm*4].  Suitable
137     /// for use by STD and friends.
SelectAddrImmShift(SDNode * Op,SDValue N,SDValue & Disp,SDValue & Base)138     bool SelectAddrImmShift(SDNode *Op, SDValue N, SDValue &Disp,
139                             SDValue &Base) {
140       return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
141     }
142 
143     /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
144     /// inline asm expressions.  It is always correct to compute the value into
145     /// a register.  The case of adding a (possibly relocatable) constant to a
146     /// register can be improved, but it is wrong to substitute Reg+Reg for
147     /// Reg in an asm, because the load or store opcode would have to change.
SelectInlineAsmMemoryOperand(const SDValue & Op,char ConstraintCode,std::vector<SDValue> & OutOps)148    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
149                                               char ConstraintCode,
150                                               std::vector<SDValue> &OutOps) {
151       OutOps.push_back(Op);
152       return false;
153     }
154 
155     SDValue BuildSDIVSequence(SDNode *N);
156     SDValue BuildUDIVSequence(SDNode *N);
157 
158     void InsertVRSaveCode(MachineFunction &MF);
159 
getPassName() const160     virtual const char *getPassName() const {
161       return "PowerPC DAG->DAG Pattern Instruction Selection";
162     }
163 
164     /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
165     /// this target when scheduling the DAG.
CreateTargetHazardRecognizer()166     virtual ScheduleHazardRecognizer *CreateTargetHazardRecognizer() {
167       // Should use subtarget info to pick the right hazard recognizer.  For
168       // now, always return a PPC970 recognizer.
169       const TargetInstrInfo *II = TM.getInstrInfo();
170       assert(II && "No InstrInfo?");
171       return new PPCHazardRecognizer970(*II);
172     }
173 
174 // Include the pieces autogenerated from the target description.
175 #include "PPCGenDAGISel.inc"
176 
177 private:
178     SDNode *SelectSETCC(SDNode *N);
179   };
180 }
181 
182 /// InsertVRSaveCode - Once the entire function has been instruction selected,
183 /// all virtual registers are created and all machine instructions are built,
184 /// check to see if we need to save/restore VRSAVE.  If so, do it.
InsertVRSaveCode(MachineFunction & Fn)185 void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
186   // Check to see if this function uses vector registers, which means we have to
187   // save and restore the VRSAVE register and update it with the regs we use.
188   //
189   // In this case, there will be virtual registers of vector type created
190   // by the scheduler.  Detect them now.
191   bool HasVectorVReg = false;
192   for (unsigned i = TargetRegisterInfo::FirstVirtualRegister,
193        e = RegInfo->getLastVirtReg()+1; i != e; ++i)
194     if (RegInfo->getRegClass(i) == &PPC::VRRCRegClass) {
195       HasVectorVReg = true;
196       break;
197     }
198   if (!HasVectorVReg) return;  // nothing to do.
199 
200   // If we have a vector register, we want to emit code into the entry and exit
201   // blocks to save and restore the VRSAVE register.  We do this here (instead
202   // of marking all vector instructions as clobbering VRSAVE) for two reasons:
203   //
204   // 1. This (trivially) reduces the load on the register allocator, by not
205   //    having to represent the live range of the VRSAVE register.
206   // 2. This (more significantly) allows us to create a temporary virtual
207   //    register to hold the saved VRSAVE value, allowing this temporary to be
208   //    register allocated, instead of forcing it to be spilled to the stack.
209 
210   // Create two vregs - one to hold the VRSAVE register that is live-in to the
211   // function and one for the value after having bits or'd into it.
212   unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
213   unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
214 
215   const TargetInstrInfo &TII = *TM.getInstrInfo();
216   MachineBasicBlock &EntryBB = *Fn.begin();
217   DebugLoc dl;
218   // Emit the following code into the entry block:
219   // InVRSAVE = MFVRSAVE
220   // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
221   // MTVRSAVE UpdatedVRSAVE
222   MachineBasicBlock::iterator IP = EntryBB.begin();  // Insert Point
223   BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
224   BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
225           UpdatedVRSAVE).addReg(InVRSAVE);
226   BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
227 
228   // Find all return blocks, outputting a restore in each epilog.
229   for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
230     if (!BB->empty() && BB->back().getDesc().isReturn()) {
231       IP = BB->end(); --IP;
232 
233       // Skip over all terminator instructions, which are part of the return
234       // sequence.
235       MachineBasicBlock::iterator I2 = IP;
236       while (I2 != BB->begin() && (--I2)->getDesc().isTerminator())
237         IP = I2;
238 
239       // Emit: MTVRSAVE InVRSave
240       BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
241     }
242   }
243 }
244 
245 
246 /// getGlobalBaseReg - Output the instructions required to put the
247 /// base address to use for accessing globals into a register.
248 ///
getGlobalBaseReg()249 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
250   if (!GlobalBaseReg) {
251     const TargetInstrInfo &TII = *TM.getInstrInfo();
252     // Insert the set of GlobalBaseReg into the first MBB of the function
253     MachineBasicBlock &FirstMBB = MF->front();
254     MachineBasicBlock::iterator MBBI = FirstMBB.begin();
255     DebugLoc dl;
256 
257     if (PPCLowering.getPointerTy() == MVT::i32) {
258       GlobalBaseReg = RegInfo->createVirtualRegister(PPC::GPRCRegisterClass);
259       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR), PPC::LR);
260       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
261     } else {
262       GlobalBaseReg = RegInfo->createVirtualRegister(PPC::G8RCRegisterClass);
263       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8), PPC::LR8);
264       BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
265     }
266   }
267   return CurDAG->getRegister(GlobalBaseReg,
268                              PPCLowering.getPointerTy()).getNode();
269 }
270 
271 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
272 /// or 64-bit immediate, and if the value can be accurately represented as a
273 /// sign extension from a 16-bit value.  If so, this returns true and the
274 /// immediate.
isIntS16Immediate(SDNode * N,short & Imm)275 static bool isIntS16Immediate(SDNode *N, short &Imm) {
276   if (N->getOpcode() != ISD::Constant)
277     return false;
278 
279   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
280   if (N->getValueType(0) == MVT::i32)
281     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
282   else
283     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
284 }
285 
isIntS16Immediate(SDValue Op,short & Imm)286 static bool isIntS16Immediate(SDValue Op, short &Imm) {
287   return isIntS16Immediate(Op.getNode(), Imm);
288 }
289 
290 
291 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
292 /// operand. If so Imm will receive the 32-bit value.
isInt32Immediate(SDNode * N,unsigned & Imm)293 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
294   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
295     Imm = cast<ConstantSDNode>(N)->getZExtValue();
296     return true;
297   }
298   return false;
299 }
300 
301 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
302 /// operand.  If so Imm will receive the 64-bit value.
isInt64Immediate(SDNode * N,uint64_t & Imm)303 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
304   if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
305     Imm = cast<ConstantSDNode>(N)->getZExtValue();
306     return true;
307   }
308   return false;
309 }
310 
311 // isInt32Immediate - This method tests to see if a constant operand.
312 // If so Imm will receive the 32 bit value.
isInt32Immediate(SDValue N,unsigned & Imm)313 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
314   return isInt32Immediate(N.getNode(), Imm);
315 }
316 
317 
318 // isOpcWithIntImmediate - This method tests to see if the node is a specific
319 // opcode and that it has a immediate integer right operand.
320 // If so Imm will receive the 32 bit value.
isOpcWithIntImmediate(SDNode * N,unsigned Opc,unsigned & Imm)321 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
322   return N->getOpcode() == Opc
323          && isInt32Immediate(N->getOperand(1).getNode(), Imm);
324 }
325 
isRunOfOnes(unsigned Val,unsigned & MB,unsigned & ME)326 bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
327   if (isShiftedMask_32(Val)) {
328     // look for the first non-zero bit
329     MB = CountLeadingZeros_32(Val);
330     // look for the first zero bit after the run of ones
331     ME = CountLeadingZeros_32((Val - 1) ^ Val);
332     return true;
333   } else {
334     Val = ~Val; // invert mask
335     if (isShiftedMask_32(Val)) {
336       // effectively look for the first zero bit
337       ME = CountLeadingZeros_32(Val) - 1;
338       // effectively look for the first one bit after the run of zeros
339       MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
340       return true;
341     }
342   }
343   // no run present
344   return false;
345 }
346 
isRotateAndMask(SDNode * N,unsigned Mask,bool isShiftMask,unsigned & SH,unsigned & MB,unsigned & ME)347 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
348                                       bool isShiftMask, unsigned &SH,
349                                       unsigned &MB, unsigned &ME) {
350   // Don't even go down this path for i64, since different logic will be
351   // necessary for rldicl/rldicr/rldimi.
352   if (N->getValueType(0) != MVT::i32)
353     return false;
354 
355   unsigned Shift  = 32;
356   unsigned Indeterminant = ~0;  // bit mask marking indeterminant results
357   unsigned Opcode = N->getOpcode();
358   if (N->getNumOperands() != 2 ||
359       !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
360     return false;
361 
362   if (Opcode == ISD::SHL) {
363     // apply shift left to mask if it comes first
364     if (isShiftMask) Mask = Mask << Shift;
365     // determine which bits are made indeterminant by shift
366     Indeterminant = ~(0xFFFFFFFFu << Shift);
367   } else if (Opcode == ISD::SRL) {
368     // apply shift right to mask if it comes first
369     if (isShiftMask) Mask = Mask >> Shift;
370     // determine which bits are made indeterminant by shift
371     Indeterminant = ~(0xFFFFFFFFu >> Shift);
372     // adjust for the left rotate
373     Shift = 32 - Shift;
374   } else if (Opcode == ISD::ROTL) {
375     Indeterminant = 0;
376   } else {
377     return false;
378   }
379 
380   // if the mask doesn't intersect any Indeterminant bits
381   if (Mask && !(Mask & Indeterminant)) {
382     SH = Shift & 31;
383     // make sure the mask is still a mask (wrap arounds may not be)
384     return isRunOfOnes(Mask, MB, ME);
385   }
386   return false;
387 }
388 
389 /// SelectBitfieldInsert - turn an or of two masked values into
390 /// the rotate left word immediate then mask insert (rlwimi) instruction.
SelectBitfieldInsert(SDNode * N)391 SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
392   SDValue Op0 = N->getOperand(0);
393   SDValue Op1 = N->getOperand(1);
394   DebugLoc dl = N->getDebugLoc();
395 
396   APInt LKZ, LKO, RKZ, RKO;
397   CurDAG->ComputeMaskedBits(Op0, APInt::getAllOnesValue(32), LKZ, LKO);
398   CurDAG->ComputeMaskedBits(Op1, APInt::getAllOnesValue(32), RKZ, RKO);
399 
400   unsigned TargetMask = LKZ.getZExtValue();
401   unsigned InsertMask = RKZ.getZExtValue();
402 
403   if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
404     unsigned Op0Opc = Op0.getOpcode();
405     unsigned Op1Opc = Op1.getOpcode();
406     unsigned Value, SH = 0;
407     TargetMask = ~TargetMask;
408     InsertMask = ~InsertMask;
409 
410     // If the LHS has a foldable shift and the RHS does not, then swap it to the
411     // RHS so that we can fold the shift into the insert.
412     if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
413       if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
414           Op0.getOperand(0).getOpcode() == ISD::SRL) {
415         if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
416             Op1.getOperand(0).getOpcode() != ISD::SRL) {
417           std::swap(Op0, Op1);
418           std::swap(Op0Opc, Op1Opc);
419           std::swap(TargetMask, InsertMask);
420         }
421       }
422     } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
423       if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
424           Op1.getOperand(0).getOpcode() != ISD::SRL) {
425         std::swap(Op0, Op1);
426         std::swap(Op0Opc, Op1Opc);
427         std::swap(TargetMask, InsertMask);
428       }
429     }
430 
431     unsigned MB, ME;
432     if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
433       SDValue Tmp1, Tmp2;
434 
435       if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
436           isInt32Immediate(Op1.getOperand(1), Value)) {
437         Op1 = Op1.getOperand(0);
438         SH  = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
439       }
440       if (Op1Opc == ISD::AND) {
441         unsigned SHOpc = Op1.getOperand(0).getOpcode();
442         if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
443             isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
444           Op1 = Op1.getOperand(0).getOperand(0);
445           SH  = (SHOpc == ISD::SHL) ? Value : 32 - Value;
446         } else {
447           Op1 = Op1.getOperand(0);
448         }
449       }
450 
451       SH &= 31;
452       SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
453                           getI32Imm(ME) };
454       return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
455     }
456   }
457   return 0;
458 }
459 
460 /// SelectCC - Select a comparison of the specified values with the specified
461 /// condition code, returning the CR# of the expression.
SelectCC(SDValue LHS,SDValue RHS,ISD::CondCode CC,DebugLoc dl)462 SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
463                                     ISD::CondCode CC, DebugLoc dl) {
464   // Always select the LHS.
465   unsigned Opc;
466 
467   if (LHS.getValueType() == MVT::i32) {
468     unsigned Imm;
469     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
470       if (isInt32Immediate(RHS, Imm)) {
471         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
472         if (isUInt<16>(Imm))
473           return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
474                                                 getI32Imm(Imm & 0xFFFF)), 0);
475         // If this is a 16-bit signed immediate, fold it.
476         if (isInt<16>((int)Imm))
477           return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
478                                                 getI32Imm(Imm & 0xFFFF)), 0);
479 
480         // For non-equality comparisons, the default code would materialize the
481         // constant, then compare against it, like this:
482         //   lis r2, 4660
483         //   ori r2, r2, 22136
484         //   cmpw cr0, r3, r2
485         // Since we are just comparing for equality, we can emit this instead:
486         //   xoris r0,r3,0x1234
487         //   cmplwi cr0,r0,0x5678
488         //   beq cr0,L6
489         SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
490                                            getI32Imm(Imm >> 16)), 0);
491         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
492                                               getI32Imm(Imm & 0xFFFF)), 0);
493       }
494       Opc = PPC::CMPLW;
495     } else if (ISD::isUnsignedIntSetCC(CC)) {
496       if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
497         return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
498                                               getI32Imm(Imm & 0xFFFF)), 0);
499       Opc = PPC::CMPLW;
500     } else {
501       short SImm;
502       if (isIntS16Immediate(RHS, SImm))
503         return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
504                                               getI32Imm((int)SImm & 0xFFFF)),
505                          0);
506       Opc = PPC::CMPW;
507     }
508   } else if (LHS.getValueType() == MVT::i64) {
509     uint64_t Imm;
510     if (CC == ISD::SETEQ || CC == ISD::SETNE) {
511       if (isInt64Immediate(RHS.getNode(), Imm)) {
512         // SETEQ/SETNE comparison with 16-bit immediate, fold it.
513         if (isUInt<16>(Imm))
514           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
515                                                 getI32Imm(Imm & 0xFFFF)), 0);
516         // If this is a 16-bit signed immediate, fold it.
517         if (isInt<16>(Imm))
518           return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
519                                                 getI32Imm(Imm & 0xFFFF)), 0);
520 
521         // For non-equality comparisons, the default code would materialize the
522         // constant, then compare against it, like this:
523         //   lis r2, 4660
524         //   ori r2, r2, 22136
525         //   cmpd cr0, r3, r2
526         // Since we are just comparing for equality, we can emit this instead:
527         //   xoris r0,r3,0x1234
528         //   cmpldi cr0,r0,0x5678
529         //   beq cr0,L6
530         if (isUInt<32>(Imm)) {
531           SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
532                                              getI64Imm(Imm >> 16)), 0);
533           return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
534                                                 getI64Imm(Imm & 0xFFFF)), 0);
535         }
536       }
537       Opc = PPC::CMPLD;
538     } else if (ISD::isUnsignedIntSetCC(CC)) {
539       if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
540         return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
541                                               getI64Imm(Imm & 0xFFFF)), 0);
542       Opc = PPC::CMPLD;
543     } else {
544       short SImm;
545       if (isIntS16Immediate(RHS, SImm))
546         return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
547                                               getI64Imm(SImm & 0xFFFF)),
548                          0);
549       Opc = PPC::CMPD;
550     }
551   } else if (LHS.getValueType() == MVT::f32) {
552     Opc = PPC::FCMPUS;
553   } else {
554     assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
555     Opc = PPC::FCMPUD;
556   }
557   return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
558 }
559 
getPredicateForSetCC(ISD::CondCode CC)560 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
561   switch (CC) {
562   case ISD::SETUEQ:
563   case ISD::SETONE:
564   case ISD::SETOLE:
565   case ISD::SETOGE:
566     llvm_unreachable("Should be lowered by legalize!");
567   default: llvm_unreachable("Unknown condition!");
568   case ISD::SETOEQ:
569   case ISD::SETEQ:  return PPC::PRED_EQ;
570   case ISD::SETUNE:
571   case ISD::SETNE:  return PPC::PRED_NE;
572   case ISD::SETOLT:
573   case ISD::SETLT:  return PPC::PRED_LT;
574   case ISD::SETULE:
575   case ISD::SETLE:  return PPC::PRED_LE;
576   case ISD::SETOGT:
577   case ISD::SETGT:  return PPC::PRED_GT;
578   case ISD::SETUGE:
579   case ISD::SETGE:  return PPC::PRED_GE;
580   case ISD::SETO:   return PPC::PRED_NU;
581   case ISD::SETUO:  return PPC::PRED_UN;
582     // These two are invalid for floating point.  Assume we have int.
583   case ISD::SETULT: return PPC::PRED_LT;
584   case ISD::SETUGT: return PPC::PRED_GT;
585   }
586 }
587 
588 /// getCRIdxForSetCC - Return the index of the condition register field
589 /// associated with the SetCC condition, and whether or not the field is
590 /// treated as inverted.  That is, lt = 0; ge = 0 inverted.
591 ///
592 /// If this returns with Other != -1, then the returned comparison is an or of
593 /// two simpler comparisons.  In this case, Invert is guaranteed to be false.
getCRIdxForSetCC(ISD::CondCode CC,bool & Invert,int & Other)594 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
595   Invert = false;
596   Other = -1;
597   switch (CC) {
598   default: llvm_unreachable("Unknown condition!");
599   case ISD::SETOLT:
600   case ISD::SETLT:  return 0;                  // Bit #0 = SETOLT
601   case ISD::SETOGT:
602   case ISD::SETGT:  return 1;                  // Bit #1 = SETOGT
603   case ISD::SETOEQ:
604   case ISD::SETEQ:  return 2;                  // Bit #2 = SETOEQ
605   case ISD::SETUO:  return 3;                  // Bit #3 = SETUO
606   case ISD::SETUGE:
607   case ISD::SETGE:  Invert = true; return 0;   // !Bit #0 = SETUGE
608   case ISD::SETULE:
609   case ISD::SETLE:  Invert = true; return 1;   // !Bit #1 = SETULE
610   case ISD::SETUNE:
611   case ISD::SETNE:  Invert = true; return 2;   // !Bit #2 = SETUNE
612   case ISD::SETO:   Invert = true; return 3;   // !Bit #3 = SETO
613   case ISD::SETUEQ:
614   case ISD::SETOGE:
615   case ISD::SETOLE:
616   case ISD::SETONE:
617     llvm_unreachable("Invalid branch code: should be expanded by legalize");
618   // These are invalid for floating point.  Assume integer.
619   case ISD::SETULT: return 0;
620   case ISD::SETUGT: return 1;
621   }
622   return 0;
623 }
624 
SelectSETCC(SDNode * N)625 SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
626   DebugLoc dl = N->getDebugLoc();
627   unsigned Imm;
628   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
629   if (isInt32Immediate(N->getOperand(1), Imm)) {
630     // We can codegen setcc op, imm very efficiently compared to a brcond.
631     // Check for those cases here.
632     // setcc op, 0
633     if (Imm == 0) {
634       SDValue Op = N->getOperand(0);
635       switch (CC) {
636       default: break;
637       case ISD::SETEQ: {
638         Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
639         SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
640         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
641       }
642       case ISD::SETNE: {
643         SDValue AD =
644           SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
645                                          Op, getI32Imm(~0U)), 0);
646         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
647                                     AD.getValue(1));
648       }
649       case ISD::SETLT: {
650         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
651         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
652       }
653       case ISD::SETGT: {
654         SDValue T =
655           SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
656         T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
657         SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
658         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
659       }
660       }
661     } else if (Imm == ~0U) {        // setcc op, -1
662       SDValue Op = N->getOperand(0);
663       switch (CC) {
664       default: break;
665       case ISD::SETEQ:
666         Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
667                                             Op, getI32Imm(1)), 0);
668         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
669                               SDValue(CurDAG->getMachineNode(PPC::LI, dl,
670                                                              MVT::i32,
671                                                              getI32Imm(0)), 0),
672                                       Op.getValue(1));
673       case ISD::SETNE: {
674         Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
675         SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
676                                             Op, getI32Imm(~0U));
677         return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
678                                     Op, SDValue(AD, 1));
679       }
680       case ISD::SETLT: {
681         SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
682                                                     getI32Imm(1)), 0);
683         SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
684                                                     Op), 0);
685         SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
686         return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
687       }
688       case ISD::SETGT: {
689         SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
690         Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4),
691                      0);
692         return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
693                                     getI32Imm(1));
694       }
695       }
696     }
697   }
698 
699   bool Inv;
700   int OtherCondIdx;
701   unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx);
702   SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
703   SDValue IntCR;
704 
705   // Force the ccreg into CR7.
706   SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
707 
708   SDValue InFlag(0, 0);  // Null incoming flag value.
709   CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
710                                InFlag).getValue(1);
711 
712   if (PPCSubTarget.isGigaProcessor() && OtherCondIdx == -1)
713     IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
714                                            CCReg), 0);
715  else
716     IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
717                                            CR7Reg, CCReg), 0);
718 
719   SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
720                       getI32Imm(31), getI32Imm(31) };
721   if (OtherCondIdx == -1 && !Inv)
722     return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
723 
724   // Get the specified bit.
725   SDValue Tmp =
726     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
727   if (Inv) {
728     assert(OtherCondIdx == -1 && "Can't have split plus negation");
729     return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
730   }
731 
732   // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT.
733   // We already got the bit for the first part of the comparison (e.g. SETULE).
734 
735   // Get the other bit of the comparison.
736   Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
737   SDValue OtherCond =
738     SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
739 
740   return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
741 }
742 
743 
744 // Select - Convert the specified operand from a target-independent to a
745 // target-specific node if it hasn't already been changed.
Select(SDNode * N)746 SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
747   DebugLoc dl = N->getDebugLoc();
748   if (N->isMachineOpcode())
749     return NULL;   // Already selected.
750 
751   switch (N->getOpcode()) {
752   default: break;
753 
754   case ISD::Constant: {
755     if (N->getValueType(0) == MVT::i64) {
756       // Get 64 bit value.
757       int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
758       // Assume no remaining bits.
759       unsigned Remainder = 0;
760       // Assume no shift required.
761       unsigned Shift = 0;
762 
763       // If it can't be represented as a 32 bit value.
764       if (!isInt<32>(Imm)) {
765         Shift = CountTrailingZeros_64(Imm);
766         int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
767 
768         // If the shifted value fits 32 bits.
769         if (isInt<32>(ImmSh)) {
770           // Go with the shifted value.
771           Imm = ImmSh;
772         } else {
773           // Still stuck with a 64 bit value.
774           Remainder = Imm;
775           Shift = 32;
776           Imm >>= 32;
777         }
778       }
779 
780       // Intermediate operand.
781       SDNode *Result;
782 
783       // Handle first 32 bits.
784       unsigned Lo = Imm & 0xFFFF;
785       unsigned Hi = (Imm >> 16) & 0xFFFF;
786 
787       // Simple value.
788       if (isInt<16>(Imm)) {
789        // Just the Lo bits.
790         Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
791       } else if (Lo) {
792         // Handle the Hi bits.
793         unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
794         Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
795         // And Lo bits.
796         Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
797                                         SDValue(Result, 0), getI32Imm(Lo));
798       } else {
799        // Just the Hi bits.
800         Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
801       }
802 
803       // If no shift, we're done.
804       if (!Shift) return Result;
805 
806       // Shift for next step if the upper 32-bits were not zero.
807       if (Imm) {
808         Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
809                                         SDValue(Result, 0),
810                                         getI32Imm(Shift),
811                                         getI32Imm(63 - Shift));
812       }
813 
814       // Add in the last bits as required.
815       if ((Hi = (Remainder >> 16) & 0xFFFF)) {
816         Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
817                                         SDValue(Result, 0), getI32Imm(Hi));
818       }
819       if ((Lo = Remainder & 0xFFFF)) {
820         Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
821                                         SDValue(Result, 0), getI32Imm(Lo));
822       }
823 
824       return Result;
825     }
826     break;
827   }
828 
829   case ISD::SETCC:
830     return SelectSETCC(N);
831   case PPCISD::GlobalBaseReg:
832     return getGlobalBaseReg();
833 
834   case ISD::FrameIndex: {
835     int FI = cast<FrameIndexSDNode>(N)->getIndex();
836     SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
837     unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
838     if (N->hasOneUse())
839       return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
840                                   getSmallIPtrImm(0));
841     return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
842                                   getSmallIPtrImm(0));
843   }
844 
845   case PPCISD::MFCR: {
846     SDValue InFlag = N->getOperand(1);
847     // Use MFOCRF if supported.
848     if (PPCSubTarget.isGigaProcessor())
849       return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
850                                     N->getOperand(0), InFlag);
851     else
852       return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
853                                     N->getOperand(0), InFlag);
854   }
855 
856   case ISD::SDIV: {
857     // FIXME: since this depends on the setting of the carry flag from the srawi
858     //        we should really be making notes about that for the scheduler.
859     // FIXME: It sure would be nice if we could cheaply recognize the
860     //        srl/add/sra pattern the dag combiner will generate for this as
861     //        sra/addze rather than having to handle sdiv ourselves.  oh well.
862     unsigned Imm;
863     if (isInt32Immediate(N->getOperand(1), Imm)) {
864       SDValue N0 = N->getOperand(0);
865       if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
866         SDNode *Op =
867           CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Flag,
868                                  N0, getI32Imm(Log2_32(Imm)));
869         return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
870                                     SDValue(Op, 0), SDValue(Op, 1));
871       } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
872         SDNode *Op =
873           CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Flag,
874                                  N0, getI32Imm(Log2_32(-Imm)));
875         SDValue PT =
876           SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
877                                          SDValue(Op, 0), SDValue(Op, 1)),
878                     0);
879         return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
880       }
881     }
882 
883     // Other cases are autogenerated.
884     break;
885   }
886 
887   case ISD::LOAD: {
888     // Handle preincrement loads.
889     LoadSDNode *LD = cast<LoadSDNode>(N);
890     EVT LoadedVT = LD->getMemoryVT();
891 
892     // Normal loads are handled by code generated from the .td file.
893     if (LD->getAddressingMode() != ISD::PRE_INC)
894       break;
895 
896     SDValue Offset = LD->getOffset();
897     if (isa<ConstantSDNode>(Offset) ||
898         Offset.getOpcode() == ISD::TargetGlobalAddress) {
899 
900       unsigned Opcode;
901       bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
902       if (LD->getValueType(0) != MVT::i64) {
903         // Handle PPC32 integer and normal FP loads.
904         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
905         switch (LoadedVT.getSimpleVT().SimpleTy) {
906           default: llvm_unreachable("Invalid PPC load type!");
907           case MVT::f64: Opcode = PPC::LFDU; break;
908           case MVT::f32: Opcode = PPC::LFSU; break;
909           case MVT::i32: Opcode = PPC::LWZU; break;
910           case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
911           case MVT::i1:
912           case MVT::i8:  Opcode = PPC::LBZU; break;
913         }
914       } else {
915         assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
916         assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
917         switch (LoadedVT.getSimpleVT().SimpleTy) {
918           default: llvm_unreachable("Invalid PPC load type!");
919           case MVT::i64: Opcode = PPC::LDU; break;
920           case MVT::i32: Opcode = PPC::LWZU8; break;
921           case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
922           case MVT::i1:
923           case MVT::i8:  Opcode = PPC::LBZU8; break;
924         }
925       }
926 
927       SDValue Chain = LD->getChain();
928       SDValue Base = LD->getBasePtr();
929       SDValue Ops[] = { Offset, Base, Chain };
930       // FIXME: PPC64
931       return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
932                                     PPCLowering.getPointerTy(),
933                                     MVT::Other, Ops, 3);
934     } else {
935       llvm_unreachable("R+R preindex loads not supported yet!");
936     }
937   }
938 
939   case ISD::AND: {
940     unsigned Imm, Imm2, SH, MB, ME;
941 
942     // If this is an and of a value rotated between 0 and 31 bits and then and'd
943     // with a mask, emit rlwinm
944     if (isInt32Immediate(N->getOperand(1), Imm) &&
945         isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
946       SDValue Val = N->getOperand(0).getOperand(0);
947       SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
948       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
949     }
950     // If this is just a masked value where the input is not handled above, and
951     // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
952     if (isInt32Immediate(N->getOperand(1), Imm) &&
953         isRunOfOnes(Imm, MB, ME) &&
954         N->getOperand(0).getOpcode() != ISD::ROTL) {
955       SDValue Val = N->getOperand(0);
956       SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
957       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
958     }
959     // AND X, 0 -> 0, not "rlwinm 32".
960     if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
961       ReplaceUses(SDValue(N, 0), N->getOperand(1));
962       return NULL;
963     }
964     // ISD::OR doesn't get all the bitfield insertion fun.
965     // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
966     if (isInt32Immediate(N->getOperand(1), Imm) &&
967         N->getOperand(0).getOpcode() == ISD::OR &&
968         isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
969       unsigned MB, ME;
970       Imm = ~(Imm^Imm2);
971       if (isRunOfOnes(Imm, MB, ME)) {
972         SDValue Ops[] = { N->getOperand(0).getOperand(0),
973                             N->getOperand(0).getOperand(1),
974                             getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
975         return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
976       }
977     }
978 
979     // Other cases are autogenerated.
980     break;
981   }
982   case ISD::OR:
983     if (N->getValueType(0) == MVT::i32)
984       if (SDNode *I = SelectBitfieldInsert(N))
985         return I;
986 
987     // Other cases are autogenerated.
988     break;
989   case ISD::SHL: {
990     unsigned Imm, SH, MB, ME;
991     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
992         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
993       SDValue Ops[] = { N->getOperand(0).getOperand(0),
994                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
995       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
996     }
997 
998     // Other cases are autogenerated.
999     break;
1000   }
1001   case ISD::SRL: {
1002     unsigned Imm, SH, MB, ME;
1003     if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
1004         isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1005       SDValue Ops[] = { N->getOperand(0).getOperand(0),
1006                           getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1007       return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1008     }
1009 
1010     // Other cases are autogenerated.
1011     break;
1012   }
1013   case ISD::SELECT_CC: {
1014     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1015 
1016     // Handle the setcc cases here.  select_cc lhs, 0, 1, 0, cc
1017     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1018       if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1019         if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1020           if (N1C->isNullValue() && N3C->isNullValue() &&
1021               N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
1022               // FIXME: Implement this optzn for PPC64.
1023               N->getValueType(0) == MVT::i32) {
1024             SDNode *Tmp =
1025               CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Flag,
1026                                      N->getOperand(0), getI32Imm(~0U));
1027             return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
1028                                         SDValue(Tmp, 0), N->getOperand(0),
1029                                         SDValue(Tmp, 1));
1030           }
1031 
1032     SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
1033     unsigned BROpc = getPredicateForSetCC(CC);
1034 
1035     unsigned SelectCCOp;
1036     if (N->getValueType(0) == MVT::i32)
1037       SelectCCOp = PPC::SELECT_CC_I4;
1038     else if (N->getValueType(0) == MVT::i64)
1039       SelectCCOp = PPC::SELECT_CC_I8;
1040     else if (N->getValueType(0) == MVT::f32)
1041       SelectCCOp = PPC::SELECT_CC_F4;
1042     else if (N->getValueType(0) == MVT::f64)
1043       SelectCCOp = PPC::SELECT_CC_F8;
1044     else
1045       SelectCCOp = PPC::SELECT_CC_VRRC;
1046 
1047     SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
1048                         getI32Imm(BROpc) };
1049     return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
1050   }
1051   case PPCISD::COND_BRANCH: {
1052     // Op #0 is the Chain.
1053     // Op #1 is the PPC::PRED_* number.
1054     // Op #2 is the CR#
1055     // Op #3 is the Dest MBB
1056     // Op #4 is the Flag.
1057     // Prevent PPC::PRED_* from being selected into LI.
1058     SDValue Pred =
1059       getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
1060     SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
1061       N->getOperand(0), N->getOperand(4) };
1062     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
1063   }
1064   case ISD::BR_CC: {
1065     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1066     SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
1067     SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
1068                         N->getOperand(4), N->getOperand(0) };
1069     return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
1070   }
1071   case ISD::BRIND: {
1072     // FIXME: Should custom lower this.
1073     SDValue Chain = N->getOperand(0);
1074     SDValue Target = N->getOperand(1);
1075     unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
1076     Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Target,
1077                                            Chain), 0);
1078     return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
1079   }
1080   }
1081 
1082   return SelectCode(N);
1083 }
1084 
1085 
1086 
1087 /// createPPCISelDag - This pass converts a legalized DAG into a
1088 /// PowerPC-specific DAG, ready for instruction scheduling.
1089 ///
createPPCISelDag(PPCTargetMachine & TM)1090 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
1091   return new PPCDAGToDAGISel(TM);
1092 }
1093 
1094