1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements all of the non-inline methods for the LLVM instruction
11 // classes.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "LLVMContextImpl.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/Analysis/Dominators.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/CallSite.h"
25 #include "llvm/Support/ConstantRange.h"
26 #include "llvm/Support/MathExtras.h"
27 using namespace llvm;
28 
29 //===----------------------------------------------------------------------===//
30 //                            CallSite Class
31 //===----------------------------------------------------------------------===//
32 
getCallee() const33 User::op_iterator CallSite::getCallee() const {
34   Instruction *II(getInstruction());
35   return isCall()
36     ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37     : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
38 }
39 
40 //===----------------------------------------------------------------------===//
41 //                            TerminatorInst Class
42 //===----------------------------------------------------------------------===//
43 
44 // Out of line virtual method, so the vtable, etc has a home.
~TerminatorInst()45 TerminatorInst::~TerminatorInst() {
46 }
47 
48 //===----------------------------------------------------------------------===//
49 //                           UnaryInstruction Class
50 //===----------------------------------------------------------------------===//
51 
52 // Out of line virtual method, so the vtable, etc has a home.
~UnaryInstruction()53 UnaryInstruction::~UnaryInstruction() {
54 }
55 
56 //===----------------------------------------------------------------------===//
57 //                              SelectInst Class
58 //===----------------------------------------------------------------------===//
59 
60 /// areInvalidOperands - Return a string if the specified operands are invalid
61 /// for a select operation, otherwise return null.
areInvalidOperands(Value * Op0,Value * Op1,Value * Op2)62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63   if (Op1->getType() != Op2->getType())
64     return "both values to select must have same type";
65 
66   if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
67     // Vector select.
68     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
69       return "vector select condition element type must be i1";
70     const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
71     if (ET == 0)
72       return "selected values for vector select must be vectors";
73     if (ET->getNumElements() != VT->getNumElements())
74       return "vector select requires selected vectors to have "
75                    "the same vector length as select condition";
76   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
77     return "select condition must be i1 or <n x i1>";
78   }
79   return 0;
80 }
81 
82 
83 //===----------------------------------------------------------------------===//
84 //                               PHINode Class
85 //===----------------------------------------------------------------------===//
86 
PHINode(const PHINode & PN)87 PHINode::PHINode(const PHINode &PN)
88   : Instruction(PN.getType(), Instruction::PHI,
89                 allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
90     ReservedSpace(PN.getNumOperands()) {
91   Use *OL = OperandList;
92   for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
93     OL[i] = PN.getOperand(i);
94     OL[i+1] = PN.getOperand(i+1);
95   }
96   SubclassOptionalData = PN.SubclassOptionalData;
97 }
98 
~PHINode()99 PHINode::~PHINode() {
100   if (OperandList)
101     dropHungoffUses(OperandList);
102 }
103 
104 // removeIncomingValue - Remove an incoming value.  This is useful if a
105 // predecessor basic block is deleted.
removeIncomingValue(unsigned Idx,bool DeletePHIIfEmpty)106 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
107   unsigned NumOps = getNumOperands();
108   Use *OL = OperandList;
109   assert(Idx*2 < NumOps && "BB not in PHI node!");
110   Value *Removed = OL[Idx*2];
111 
112   // Move everything after this operand down.
113   //
114   // FIXME: we could just swap with the end of the list, then erase.  However,
115   // client might not expect this to happen.  The code as it is thrashes the
116   // use/def lists, which is kinda lame.
117   for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
118     OL[i-2] = OL[i];
119     OL[i-2+1] = OL[i+1];
120   }
121 
122   // Nuke the last value.
123   OL[NumOps-2].set(0);
124   OL[NumOps-2+1].set(0);
125   NumOperands = NumOps-2;
126 
127   // If the PHI node is dead, because it has zero entries, nuke it now.
128   if (NumOps == 2 && DeletePHIIfEmpty) {
129     // If anyone is using this PHI, make them use a dummy value instead...
130     replaceAllUsesWith(UndefValue::get(getType()));
131     eraseFromParent();
132   }
133   return Removed;
134 }
135 
136 /// resizeOperands - resize operands - This adjusts the length of the operands
137 /// list according to the following behavior:
138 ///   1. If NumOps == 0, grow the operand list in response to a push_back style
139 ///      of operation.  This grows the number of ops by 1.5 times.
140 ///   2. If NumOps > NumOperands, reserve space for NumOps operands.
141 ///   3. If NumOps == NumOperands, trim the reserved space.
142 ///
resizeOperands(unsigned NumOps)143 void PHINode::resizeOperands(unsigned NumOps) {
144   unsigned e = getNumOperands();
145   if (NumOps == 0) {
146     NumOps = e*3/2;
147     if (NumOps < 4) NumOps = 4;      // 4 op PHI nodes are VERY common.
148   } else if (NumOps*2 > NumOperands) {
149     // No resize needed.
150     if (ReservedSpace >= NumOps) return;
151   } else if (NumOps == NumOperands) {
152     if (ReservedSpace == NumOps) return;
153   } else {
154     return;
155   }
156 
157   ReservedSpace = NumOps;
158   Use *OldOps = OperandList;
159   Use *NewOps = allocHungoffUses(NumOps);
160   std::copy(OldOps, OldOps + e, NewOps);
161   OperandList = NewOps;
162   if (OldOps) Use::zap(OldOps, OldOps + e, true);
163 }
164 
165 /// hasConstantValue - If the specified PHI node always merges together the same
166 /// value, return the value, otherwise return null.
167 ///
168 /// If the PHI has undef operands, but all the rest of the operands are
169 /// some unique value, return that value if it can be proved that the
170 /// value dominates the PHI. If DT is null, use a conservative check,
171 /// otherwise use DT to test for dominance.
172 ///
hasConstantValue(DominatorTree * DT) const173 Value *PHINode::hasConstantValue(DominatorTree *DT) const {
174   // If the PHI node only has one incoming value, eliminate the PHI node.
175   if (getNumIncomingValues() == 1) {
176     if (getIncomingValue(0) != this)   // not  X = phi X
177       return getIncomingValue(0);
178     return UndefValue::get(getType());  // Self cycle is dead.
179   }
180 
181   // Otherwise if all of the incoming values are the same for the PHI, replace
182   // the PHI node with the incoming value.
183   //
184   Value *InVal = 0;
185   bool HasUndefInput = false;
186   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
187     if (isa<UndefValue>(getIncomingValue(i))) {
188       HasUndefInput = true;
189     } else if (getIncomingValue(i) != this) { // Not the PHI node itself...
190       if (InVal && getIncomingValue(i) != InVal)
191         return 0;  // Not the same, bail out.
192       InVal = getIncomingValue(i);
193     }
194 
195   // The only case that could cause InVal to be null is if we have a PHI node
196   // that only has entries for itself.  In this case, there is no entry into the
197   // loop, so kill the PHI.
198   //
199   if (InVal == 0) InVal = UndefValue::get(getType());
200 
201   // If we have a PHI node like phi(X, undef, X), where X is defined by some
202   // instruction, we cannot always return X as the result of the PHI node.  Only
203   // do this if X is not an instruction (thus it must dominate the PHI block),
204   // or if the client is prepared to deal with this possibility.
205   if (!HasUndefInput || !isa<Instruction>(InVal))
206     return InVal;
207 
208   Instruction *IV = cast<Instruction>(InVal);
209   if (DT) {
210     // We have a DominatorTree. Do a precise test.
211     if (!DT->dominates(IV, this))
212       return 0;
213   } else {
214     // If it is in the entry block, it obviously dominates everything.
215     if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
216         isa<InvokeInst>(IV))
217       return 0;   // Cannot guarantee that InVal dominates this PHINode.
218   }
219 
220   // All of the incoming values are the same, return the value now.
221   return InVal;
222 }
223 
224 
225 //===----------------------------------------------------------------------===//
226 //                        CallInst Implementation
227 //===----------------------------------------------------------------------===//
228 
~CallInst()229 CallInst::~CallInst() {
230 }
231 
init(Value * Func,Value * const * Params,unsigned NumParams)232 void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
233   assert(NumOperands == NumParams+1 && "NumOperands not set up?");
234   Op<-1>() = Func;
235 
236   const FunctionType *FTy =
237     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
238   FTy = FTy;  // silence warning.
239 
240   assert((NumParams == FTy->getNumParams() ||
241           (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
242          "Calling a function with bad signature!");
243   for (unsigned i = 0; i != NumParams; ++i) {
244     assert((i >= FTy->getNumParams() ||
245             FTy->getParamType(i) == Params[i]->getType()) &&
246            "Calling a function with a bad signature!");
247     OperandList[i] = Params[i];
248   }
249 }
250 
init(Value * Func,Value * Actual1,Value * Actual2)251 void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
252   assert(NumOperands == 3 && "NumOperands not set up?");
253   Op<-1>() = Func;
254   Op<0>() = Actual1;
255   Op<1>() = Actual2;
256 
257   const FunctionType *FTy =
258     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
259   FTy = FTy;  // silence warning.
260 
261   assert((FTy->getNumParams() == 2 ||
262           (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
263          "Calling a function with bad signature");
264   assert((0 >= FTy->getNumParams() ||
265           FTy->getParamType(0) == Actual1->getType()) &&
266          "Calling a function with a bad signature!");
267   assert((1 >= FTy->getNumParams() ||
268           FTy->getParamType(1) == Actual2->getType()) &&
269          "Calling a function with a bad signature!");
270 }
271 
init(Value * Func,Value * Actual)272 void CallInst::init(Value *Func, Value *Actual) {
273   assert(NumOperands == 2 && "NumOperands not set up?");
274   Op<-1>() = Func;
275   Op<0>() = Actual;
276 
277   const FunctionType *FTy =
278     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
279   FTy = FTy;  // silence warning.
280 
281   assert((FTy->getNumParams() == 1 ||
282           (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
283          "Calling a function with bad signature");
284   assert((0 == FTy->getNumParams() ||
285           FTy->getParamType(0) == Actual->getType()) &&
286          "Calling a function with a bad signature!");
287 }
288 
init(Value * Func)289 void CallInst::init(Value *Func) {
290   assert(NumOperands == 1 && "NumOperands not set up?");
291   Op<-1>() = Func;
292 
293   const FunctionType *FTy =
294     cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
295   FTy = FTy;  // silence warning.
296 
297   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
298 }
299 
CallInst(Value * Func,Value * Actual,const Twine & Name,Instruction * InsertBefore)300 CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
301                    Instruction *InsertBefore)
302   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
303                                    ->getElementType())->getReturnType(),
304                 Instruction::Call,
305                 OperandTraits<CallInst>::op_end(this) - 2,
306                 2, InsertBefore) {
307   init(Func, Actual);
308   setName(Name);
309 }
310 
CallInst(Value * Func,Value * Actual,const Twine & Name,BasicBlock * InsertAtEnd)311 CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
312                    BasicBlock  *InsertAtEnd)
313   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
314                                    ->getElementType())->getReturnType(),
315                 Instruction::Call,
316                 OperandTraits<CallInst>::op_end(this) - 2,
317                 2, InsertAtEnd) {
318   init(Func, Actual);
319   setName(Name);
320 }
CallInst(Value * Func,const Twine & Name,Instruction * InsertBefore)321 CallInst::CallInst(Value *Func, const Twine &Name,
322                    Instruction *InsertBefore)
323   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
324                                    ->getElementType())->getReturnType(),
325                 Instruction::Call,
326                 OperandTraits<CallInst>::op_end(this) - 1,
327                 1, InsertBefore) {
328   init(Func);
329   setName(Name);
330 }
331 
CallInst(Value * Func,const Twine & Name,BasicBlock * InsertAtEnd)332 CallInst::CallInst(Value *Func, const Twine &Name,
333                    BasicBlock *InsertAtEnd)
334   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
335                                    ->getElementType())->getReturnType(),
336                 Instruction::Call,
337                 OperandTraits<CallInst>::op_end(this) - 1,
338                 1, InsertAtEnd) {
339   init(Func);
340   setName(Name);
341 }
342 
CallInst(const CallInst & CI)343 CallInst::CallInst(const CallInst &CI)
344   : Instruction(CI.getType(), Instruction::Call,
345                 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
346                 CI.getNumOperands()) {
347   setAttributes(CI.getAttributes());
348   setTailCall(CI.isTailCall());
349   setCallingConv(CI.getCallingConv());
350 
351   Use *OL = OperandList;
352   Use *InOL = CI.OperandList;
353   for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
354     OL[i] = InOL[i];
355   SubclassOptionalData = CI.SubclassOptionalData;
356 }
357 
addAttribute(unsigned i,Attributes attr)358 void CallInst::addAttribute(unsigned i, Attributes attr) {
359   AttrListPtr PAL = getAttributes();
360   PAL = PAL.addAttr(i, attr);
361   setAttributes(PAL);
362 }
363 
removeAttribute(unsigned i,Attributes attr)364 void CallInst::removeAttribute(unsigned i, Attributes attr) {
365   AttrListPtr PAL = getAttributes();
366   PAL = PAL.removeAttr(i, attr);
367   setAttributes(PAL);
368 }
369 
paramHasAttr(unsigned i,Attributes attr) const370 bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
371   if (AttributeList.paramHasAttr(i, attr))
372     return true;
373   if (const Function *F = getCalledFunction())
374     return F->paramHasAttr(i, attr);
375   return false;
376 }
377 
378 /// IsConstantOne - Return true only if val is constant int 1
IsConstantOne(Value * val)379 static bool IsConstantOne(Value *val) {
380   assert(val && "IsConstantOne does not work with NULL val");
381   return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
382 }
383 
createMalloc(Instruction * InsertBefore,BasicBlock * InsertAtEnd,const Type * IntPtrTy,const Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)384 static Instruction *createMalloc(Instruction *InsertBefore,
385                                  BasicBlock *InsertAtEnd, const Type *IntPtrTy,
386                                  const Type *AllocTy, Value *AllocSize,
387                                  Value *ArraySize, Function *MallocF,
388                                  const Twine &Name) {
389   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
390          "createMalloc needs either InsertBefore or InsertAtEnd");
391 
392   // malloc(type) becomes:
393   //       bitcast (i8* malloc(typeSize)) to type*
394   // malloc(type, arraySize) becomes:
395   //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
396   if (!ArraySize)
397     ArraySize = ConstantInt::get(IntPtrTy, 1);
398   else if (ArraySize->getType() != IntPtrTy) {
399     if (InsertBefore)
400       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
401                                               "", InsertBefore);
402     else
403       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
404                                               "", InsertAtEnd);
405   }
406 
407   if (!IsConstantOne(ArraySize)) {
408     if (IsConstantOne(AllocSize)) {
409       AllocSize = ArraySize;         // Operand * 1 = Operand
410     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
411       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
412                                                      false /*ZExt*/);
413       // Malloc arg is constant product of type size and array size
414       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
415     } else {
416       // Multiply type size by the array size...
417       if (InsertBefore)
418         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
419                                               "mallocsize", InsertBefore);
420       else
421         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
422                                               "mallocsize", InsertAtEnd);
423     }
424   }
425 
426   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
427   // Create the call to Malloc.
428   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
429   Module* M = BB->getParent()->getParent();
430   const Type *BPTy = Type::getInt8PtrTy(BB->getContext());
431   Value *MallocFunc = MallocF;
432   if (!MallocFunc)
433     // prototype malloc as "void *malloc(size_t)"
434     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
435   const PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
436   CallInst *MCall = NULL;
437   Instruction *Result = NULL;
438   if (InsertBefore) {
439     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
440     Result = MCall;
441     if (Result->getType() != AllocPtrType)
442       // Create a cast instruction to convert to the right type...
443       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
444   } else {
445     MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
446     Result = MCall;
447     if (Result->getType() != AllocPtrType) {
448       InsertAtEnd->getInstList().push_back(MCall);
449       // Create a cast instruction to convert to the right type...
450       Result = new BitCastInst(MCall, AllocPtrType, Name);
451     }
452   }
453   MCall->setTailCall();
454   if (Function *F = dyn_cast<Function>(MallocFunc)) {
455     MCall->setCallingConv(F->getCallingConv());
456     if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
457   }
458   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
459 
460   return Result;
461 }
462 
463 /// CreateMalloc - Generate the IR for a call to malloc:
464 /// 1. Compute the malloc call's argument as the specified type's size,
465 ///    possibly multiplied by the array size if the array size is not
466 ///    constant 1.
467 /// 2. Call malloc with that argument.
468 /// 3. Bitcast the result of the malloc call to the specified type.
CreateMalloc(Instruction * InsertBefore,const Type * IntPtrTy,const Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)469 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
470                                     const Type *IntPtrTy, const Type *AllocTy,
471                                     Value *AllocSize, Value *ArraySize,
472                                     Function * MallocF,
473                                     const Twine &Name) {
474   return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
475                       ArraySize, MallocF, Name);
476 }
477 
478 /// CreateMalloc - Generate the IR for a call to malloc:
479 /// 1. Compute the malloc call's argument as the specified type's size,
480 ///    possibly multiplied by the array size if the array size is not
481 ///    constant 1.
482 /// 2. Call malloc with that argument.
483 /// 3. Bitcast the result of the malloc call to the specified type.
484 /// Note: This function does not add the bitcast to the basic block, that is the
485 /// responsibility of the caller.
CreateMalloc(BasicBlock * InsertAtEnd,const Type * IntPtrTy,const Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)486 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
487                                     const Type *IntPtrTy, const Type *AllocTy,
488                                     Value *AllocSize, Value *ArraySize,
489                                     Function *MallocF, const Twine &Name) {
490   return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
491                       ArraySize, MallocF, Name);
492 }
493 
createFree(Value * Source,Instruction * InsertBefore,BasicBlock * InsertAtEnd)494 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
495                                BasicBlock *InsertAtEnd) {
496   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
497          "createFree needs either InsertBefore or InsertAtEnd");
498   assert(Source->getType()->isPointerTy() &&
499          "Can not free something of nonpointer type!");
500 
501   BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
502   Module* M = BB->getParent()->getParent();
503 
504   const Type *VoidTy = Type::getVoidTy(M->getContext());
505   const Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
506   // prototype free as "void free(void*)"
507   Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
508   CallInst* Result = NULL;
509   Value *PtrCast = Source;
510   if (InsertBefore) {
511     if (Source->getType() != IntPtrTy)
512       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
513     Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
514   } else {
515     if (Source->getType() != IntPtrTy)
516       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
517     Result = CallInst::Create(FreeFunc, PtrCast, "");
518   }
519   Result->setTailCall();
520   if (Function *F = dyn_cast<Function>(FreeFunc))
521     Result->setCallingConv(F->getCallingConv());
522 
523   return Result;
524 }
525 
526 /// CreateFree - Generate the IR for a call to the builtin free function.
CreateFree(Value * Source,Instruction * InsertBefore)527 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
528   return createFree(Source, InsertBefore, NULL);
529 }
530 
531 /// CreateFree - Generate the IR for a call to the builtin free function.
532 /// Note: This function does not add the call to the basic block, that is the
533 /// responsibility of the caller.
CreateFree(Value * Source,BasicBlock * InsertAtEnd)534 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
535   Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
536   assert(FreeCall && "CreateFree did not create a CallInst");
537   return FreeCall;
538 }
539 
540 //===----------------------------------------------------------------------===//
541 //                        InvokeInst Implementation
542 //===----------------------------------------------------------------------===//
543 
init(Value * Fn,BasicBlock * IfNormal,BasicBlock * IfException,Value * const * Args,unsigned NumArgs)544 void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
545                       Value* const *Args, unsigned NumArgs) {
546   assert(NumOperands == 3+NumArgs && "NumOperands not set up?");
547   Op<-3>() = Fn;
548   Op<-2>() = IfNormal;
549   Op<-1>() = IfException;
550   const FunctionType *FTy =
551     cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
552   FTy = FTy;  // silence warning.
553 
554   assert(((NumArgs == FTy->getNumParams()) ||
555           (FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
556          "Invoking a function with bad signature");
557 
558   Use *OL = OperandList;
559   for (unsigned i = 0, e = NumArgs; i != e; i++) {
560     assert((i >= FTy->getNumParams() ||
561             FTy->getParamType(i) == Args[i]->getType()) &&
562            "Invoking a function with a bad signature!");
563 
564     OL[i] = Args[i];
565   }
566 }
567 
InvokeInst(const InvokeInst & II)568 InvokeInst::InvokeInst(const InvokeInst &II)
569   : TerminatorInst(II.getType(), Instruction::Invoke,
570                    OperandTraits<InvokeInst>::op_end(this)
571                    - II.getNumOperands(),
572                    II.getNumOperands()) {
573   setAttributes(II.getAttributes());
574   setCallingConv(II.getCallingConv());
575   Use *OL = OperandList, *InOL = II.OperandList;
576   for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
577     OL[i] = InOL[i];
578   SubclassOptionalData = II.SubclassOptionalData;
579 }
580 
getSuccessorV(unsigned idx) const581 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
582   return getSuccessor(idx);
583 }
getNumSuccessorsV() const584 unsigned InvokeInst::getNumSuccessorsV() const {
585   return getNumSuccessors();
586 }
setSuccessorV(unsigned idx,BasicBlock * B)587 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
588   return setSuccessor(idx, B);
589 }
590 
paramHasAttr(unsigned i,Attributes attr) const591 bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
592   if (AttributeList.paramHasAttr(i, attr))
593     return true;
594   if (const Function *F = getCalledFunction())
595     return F->paramHasAttr(i, attr);
596   return false;
597 }
598 
addAttribute(unsigned i,Attributes attr)599 void InvokeInst::addAttribute(unsigned i, Attributes attr) {
600   AttrListPtr PAL = getAttributes();
601   PAL = PAL.addAttr(i, attr);
602   setAttributes(PAL);
603 }
604 
removeAttribute(unsigned i,Attributes attr)605 void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
606   AttrListPtr PAL = getAttributes();
607   PAL = PAL.removeAttr(i, attr);
608   setAttributes(PAL);
609 }
610 
611 
612 //===----------------------------------------------------------------------===//
613 //                        ReturnInst Implementation
614 //===----------------------------------------------------------------------===//
615 
ReturnInst(const ReturnInst & RI)616 ReturnInst::ReturnInst(const ReturnInst &RI)
617   : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
618                    OperandTraits<ReturnInst>::op_end(this) -
619                      RI.getNumOperands(),
620                    RI.getNumOperands()) {
621   if (RI.getNumOperands())
622     Op<0>() = RI.Op<0>();
623   SubclassOptionalData = RI.SubclassOptionalData;
624 }
625 
ReturnInst(LLVMContext & C,Value * retVal,Instruction * InsertBefore)626 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
627   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
628                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
629                    InsertBefore) {
630   if (retVal)
631     Op<0>() = retVal;
632 }
ReturnInst(LLVMContext & C,Value * retVal,BasicBlock * InsertAtEnd)633 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
634   : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
635                    OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
636                    InsertAtEnd) {
637   if (retVal)
638     Op<0>() = retVal;
639 }
ReturnInst(LLVMContext & Context,BasicBlock * InsertAtEnd)640 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
641   : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
642                    OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
643 }
644 
getNumSuccessorsV() const645 unsigned ReturnInst::getNumSuccessorsV() const {
646   return getNumSuccessors();
647 }
648 
649 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
650 /// emit the vtable for the class in this translation unit.
setSuccessorV(unsigned idx,BasicBlock * NewSucc)651 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
652   llvm_unreachable("ReturnInst has no successors!");
653 }
654 
getSuccessorV(unsigned idx) const655 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
656   llvm_unreachable("ReturnInst has no successors!");
657   return 0;
658 }
659 
~ReturnInst()660 ReturnInst::~ReturnInst() {
661 }
662 
663 //===----------------------------------------------------------------------===//
664 //                        UnwindInst Implementation
665 //===----------------------------------------------------------------------===//
666 
UnwindInst(LLVMContext & Context,Instruction * InsertBefore)667 UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
668   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
669                    0, 0, InsertBefore) {
670 }
UnwindInst(LLVMContext & Context,BasicBlock * InsertAtEnd)671 UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
672   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
673                    0, 0, InsertAtEnd) {
674 }
675 
676 
getNumSuccessorsV() const677 unsigned UnwindInst::getNumSuccessorsV() const {
678   return getNumSuccessors();
679 }
680 
setSuccessorV(unsigned idx,BasicBlock * NewSucc)681 void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
682   llvm_unreachable("UnwindInst has no successors!");
683 }
684 
getSuccessorV(unsigned idx) const685 BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
686   llvm_unreachable("UnwindInst has no successors!");
687   return 0;
688 }
689 
690 //===----------------------------------------------------------------------===//
691 //                      UnreachableInst Implementation
692 //===----------------------------------------------------------------------===//
693 
UnreachableInst(LLVMContext & Context,Instruction * InsertBefore)694 UnreachableInst::UnreachableInst(LLVMContext &Context,
695                                  Instruction *InsertBefore)
696   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
697                    0, 0, InsertBefore) {
698 }
UnreachableInst(LLVMContext & Context,BasicBlock * InsertAtEnd)699 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
700   : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
701                    0, 0, InsertAtEnd) {
702 }
703 
getNumSuccessorsV() const704 unsigned UnreachableInst::getNumSuccessorsV() const {
705   return getNumSuccessors();
706 }
707 
setSuccessorV(unsigned idx,BasicBlock * NewSucc)708 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
709   llvm_unreachable("UnwindInst has no successors!");
710 }
711 
getSuccessorV(unsigned idx) const712 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
713   llvm_unreachable("UnwindInst has no successors!");
714   return 0;
715 }
716 
717 //===----------------------------------------------------------------------===//
718 //                        BranchInst Implementation
719 //===----------------------------------------------------------------------===//
720 
AssertOK()721 void BranchInst::AssertOK() {
722   if (isConditional())
723     assert(getCondition()->getType()->isIntegerTy(1) &&
724            "May only branch on boolean predicates!");
725 }
726 
BranchInst(BasicBlock * IfTrue,Instruction * InsertBefore)727 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
728   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
729                    OperandTraits<BranchInst>::op_end(this) - 1,
730                    1, InsertBefore) {
731   assert(IfTrue != 0 && "Branch destination may not be null!");
732   Op<-1>() = IfTrue;
733 }
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,Instruction * InsertBefore)734 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
735                        Instruction *InsertBefore)
736   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
737                    OperandTraits<BranchInst>::op_end(this) - 3,
738                    3, InsertBefore) {
739   Op<-1>() = IfTrue;
740   Op<-2>() = IfFalse;
741   Op<-3>() = Cond;
742 #ifndef NDEBUG
743   AssertOK();
744 #endif
745 }
746 
BranchInst(BasicBlock * IfTrue,BasicBlock * InsertAtEnd)747 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
748   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
749                    OperandTraits<BranchInst>::op_end(this) - 1,
750                    1, InsertAtEnd) {
751   assert(IfTrue != 0 && "Branch destination may not be null!");
752   Op<-1>() = IfTrue;
753 }
754 
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,BasicBlock * InsertAtEnd)755 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
756            BasicBlock *InsertAtEnd)
757   : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
758                    OperandTraits<BranchInst>::op_end(this) - 3,
759                    3, InsertAtEnd) {
760   Op<-1>() = IfTrue;
761   Op<-2>() = IfFalse;
762   Op<-3>() = Cond;
763 #ifndef NDEBUG
764   AssertOK();
765 #endif
766 }
767 
768 
BranchInst(const BranchInst & BI)769 BranchInst::BranchInst(const BranchInst &BI) :
770   TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
771                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
772                  BI.getNumOperands()) {
773   Op<-1>() = BI.Op<-1>();
774   if (BI.getNumOperands() != 1) {
775     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
776     Op<-3>() = BI.Op<-3>();
777     Op<-2>() = BI.Op<-2>();
778   }
779   SubclassOptionalData = BI.SubclassOptionalData;
780 }
781 
782 
getPrefix()783 Use* Use::getPrefix() {
784   PointerIntPair<Use**, 2, PrevPtrTag> &PotentialPrefix(this[-1].Prev);
785   if (PotentialPrefix.getOpaqueValue())
786     return 0;
787 
788   return reinterpret_cast<Use*>((char*)&PotentialPrefix + 1);
789 }
790 
~BranchInst()791 BranchInst::~BranchInst() {
792   if (NumOperands == 1) {
793     if (Use *Prefix = OperandList->getPrefix()) {
794       Op<-1>() = 0;
795       //
796       // mark OperandList to have a special value for scrutiny
797       // by baseclass destructors and operator delete
798       OperandList = Prefix;
799     } else {
800       NumOperands = 3;
801       OperandList = op_begin();
802     }
803   }
804 }
805 
806 
getSuccessorV(unsigned idx) const807 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
808   return getSuccessor(idx);
809 }
getNumSuccessorsV() const810 unsigned BranchInst::getNumSuccessorsV() const {
811   return getNumSuccessors();
812 }
setSuccessorV(unsigned idx,BasicBlock * B)813 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
814   setSuccessor(idx, B);
815 }
816 
817 
818 //===----------------------------------------------------------------------===//
819 //                        AllocaInst Implementation
820 //===----------------------------------------------------------------------===//
821 
getAISize(LLVMContext & Context,Value * Amt)822 static Value *getAISize(LLVMContext &Context, Value *Amt) {
823   if (!Amt)
824     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
825   else {
826     assert(!isa<BasicBlock>(Amt) &&
827            "Passed basic block into allocation size parameter! Use other ctor");
828     assert(Amt->getType()->isIntegerTy() &&
829            "Allocation array size is not an integer!");
830   }
831   return Amt;
832 }
833 
AllocaInst(const Type * Ty,Value * ArraySize,const Twine & Name,Instruction * InsertBefore)834 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
835                        const Twine &Name, Instruction *InsertBefore)
836   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
837                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
838   setAlignment(0);
839   assert(!Ty->isVoidTy() && "Cannot allocate void!");
840   setName(Name);
841 }
842 
AllocaInst(const Type * Ty,Value * ArraySize,const Twine & Name,BasicBlock * InsertAtEnd)843 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
844                        const Twine &Name, BasicBlock *InsertAtEnd)
845   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
846                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
847   setAlignment(0);
848   assert(!Ty->isVoidTy() && "Cannot allocate void!");
849   setName(Name);
850 }
851 
AllocaInst(const Type * Ty,const Twine & Name,Instruction * InsertBefore)852 AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
853                        Instruction *InsertBefore)
854   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
855                      getAISize(Ty->getContext(), 0), InsertBefore) {
856   setAlignment(0);
857   assert(!Ty->isVoidTy() && "Cannot allocate void!");
858   setName(Name);
859 }
860 
AllocaInst(const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)861 AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
862                        BasicBlock *InsertAtEnd)
863   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
864                      getAISize(Ty->getContext(), 0), InsertAtEnd) {
865   setAlignment(0);
866   assert(!Ty->isVoidTy() && "Cannot allocate void!");
867   setName(Name);
868 }
869 
AllocaInst(const Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,Instruction * InsertBefore)870 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
871                        const Twine &Name, Instruction *InsertBefore)
872   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
873                      getAISize(Ty->getContext(), ArraySize), InsertBefore) {
874   setAlignment(Align);
875   assert(!Ty->isVoidTy() && "Cannot allocate void!");
876   setName(Name);
877 }
878 
AllocaInst(const Type * Ty,Value * ArraySize,unsigned Align,const Twine & Name,BasicBlock * InsertAtEnd)879 AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
880                        const Twine &Name, BasicBlock *InsertAtEnd)
881   : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
882                      getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
883   setAlignment(Align);
884   assert(!Ty->isVoidTy() && "Cannot allocate void!");
885   setName(Name);
886 }
887 
888 // Out of line virtual method, so the vtable, etc has a home.
~AllocaInst()889 AllocaInst::~AllocaInst() {
890 }
891 
setAlignment(unsigned Align)892 void AllocaInst::setAlignment(unsigned Align) {
893   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
894   assert(Align <= MaximumAlignment &&
895          "Alignment is greater than MaximumAlignment!");
896   setInstructionSubclassData(Log2_32(Align) + 1);
897   assert(getAlignment() == Align && "Alignment representation error!");
898 }
899 
isArrayAllocation() const900 bool AllocaInst::isArrayAllocation() const {
901   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
902     return CI->getZExtValue() != 1;
903   return true;
904 }
905 
getAllocatedType() const906 const Type *AllocaInst::getAllocatedType() const {
907   return getType()->getElementType();
908 }
909 
910 /// isStaticAlloca - Return true if this alloca is in the entry block of the
911 /// function and is a constant size.  If so, the code generator will fold it
912 /// into the prolog/epilog code, so it is basically free.
isStaticAlloca() const913 bool AllocaInst::isStaticAlloca() const {
914   // Must be constant size.
915   if (!isa<ConstantInt>(getArraySize())) return false;
916 
917   // Must be in the entry block.
918   const BasicBlock *Parent = getParent();
919   return Parent == &Parent->getParent()->front();
920 }
921 
922 //===----------------------------------------------------------------------===//
923 //                           LoadInst Implementation
924 //===----------------------------------------------------------------------===//
925 
AssertOK()926 void LoadInst::AssertOK() {
927   assert(getOperand(0)->getType()->isPointerTy() &&
928          "Ptr must have pointer type.");
929 }
930 
LoadInst(Value * Ptr,const Twine & Name,Instruction * InsertBef)931 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
932   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
933                      Load, Ptr, InsertBef) {
934   setVolatile(false);
935   setAlignment(0);
936   AssertOK();
937   setName(Name);
938 }
939 
LoadInst(Value * Ptr,const Twine & Name,BasicBlock * InsertAE)940 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
941   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
942                      Load, Ptr, InsertAE) {
943   setVolatile(false);
944   setAlignment(0);
945   AssertOK();
946   setName(Name);
947 }
948 
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,Instruction * InsertBef)949 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
950                    Instruction *InsertBef)
951   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
952                      Load, Ptr, InsertBef) {
953   setVolatile(isVolatile);
954   setAlignment(0);
955   AssertOK();
956   setName(Name);
957 }
958 
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,Instruction * InsertBef)959 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
960                    unsigned Align, Instruction *InsertBef)
961   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
962                      Load, Ptr, InsertBef) {
963   setVolatile(isVolatile);
964   setAlignment(Align);
965   AssertOK();
966   setName(Name);
967 }
968 
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,unsigned Align,BasicBlock * InsertAE)969 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
970                    unsigned Align, BasicBlock *InsertAE)
971   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
972                      Load, Ptr, InsertAE) {
973   setVolatile(isVolatile);
974   setAlignment(Align);
975   AssertOK();
976   setName(Name);
977 }
978 
LoadInst(Value * Ptr,const Twine & Name,bool isVolatile,BasicBlock * InsertAE)979 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
980                    BasicBlock *InsertAE)
981   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
982                      Load, Ptr, InsertAE) {
983   setVolatile(isVolatile);
984   setAlignment(0);
985   AssertOK();
986   setName(Name);
987 }
988 
989 
990 
LoadInst(Value * Ptr,const char * Name,Instruction * InsertBef)991 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
992   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
993                      Load, Ptr, InsertBef) {
994   setVolatile(false);
995   setAlignment(0);
996   AssertOK();
997   if (Name && Name[0]) setName(Name);
998 }
999 
LoadInst(Value * Ptr,const char * Name,BasicBlock * InsertAE)1000 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1001   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1002                      Load, Ptr, InsertAE) {
1003   setVolatile(false);
1004   setAlignment(0);
1005   AssertOK();
1006   if (Name && Name[0]) setName(Name);
1007 }
1008 
LoadInst(Value * Ptr,const char * Name,bool isVolatile,Instruction * InsertBef)1009 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1010                    Instruction *InsertBef)
1011 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1012                    Load, Ptr, InsertBef) {
1013   setVolatile(isVolatile);
1014   setAlignment(0);
1015   AssertOK();
1016   if (Name && Name[0]) setName(Name);
1017 }
1018 
LoadInst(Value * Ptr,const char * Name,bool isVolatile,BasicBlock * InsertAE)1019 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1020                    BasicBlock *InsertAE)
1021   : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1022                      Load, Ptr, InsertAE) {
1023   setVolatile(isVolatile);
1024   setAlignment(0);
1025   AssertOK();
1026   if (Name && Name[0]) setName(Name);
1027 }
1028 
setAlignment(unsigned Align)1029 void LoadInst::setAlignment(unsigned Align) {
1030   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1031   assert(Align <= MaximumAlignment &&
1032          "Alignment is greater than MaximumAlignment!");
1033   setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
1034                              ((Log2_32(Align)+1)<<1));
1035   assert(getAlignment() == Align && "Alignment representation error!");
1036 }
1037 
1038 //===----------------------------------------------------------------------===//
1039 //                           StoreInst Implementation
1040 //===----------------------------------------------------------------------===//
1041 
AssertOK()1042 void StoreInst::AssertOK() {
1043   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1044   assert(getOperand(1)->getType()->isPointerTy() &&
1045          "Ptr must have pointer type!");
1046   assert(getOperand(0)->getType() ==
1047                  cast<PointerType>(getOperand(1)->getType())->getElementType()
1048          && "Ptr must be a pointer to Val type!");
1049 }
1050 
1051 
StoreInst(Value * val,Value * addr,Instruction * InsertBefore)1052 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1053   : Instruction(Type::getVoidTy(val->getContext()), Store,
1054                 OperandTraits<StoreInst>::op_begin(this),
1055                 OperandTraits<StoreInst>::operands(this),
1056                 InsertBefore) {
1057   Op<0>() = val;
1058   Op<1>() = addr;
1059   setVolatile(false);
1060   setAlignment(0);
1061   AssertOK();
1062 }
1063 
StoreInst(Value * val,Value * addr,BasicBlock * InsertAtEnd)1064 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1065   : Instruction(Type::getVoidTy(val->getContext()), Store,
1066                 OperandTraits<StoreInst>::op_begin(this),
1067                 OperandTraits<StoreInst>::operands(this),
1068                 InsertAtEnd) {
1069   Op<0>() = val;
1070   Op<1>() = addr;
1071   setVolatile(false);
1072   setAlignment(0);
1073   AssertOK();
1074 }
1075 
StoreInst(Value * val,Value * addr,bool isVolatile,Instruction * InsertBefore)1076 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1077                      Instruction *InsertBefore)
1078   : Instruction(Type::getVoidTy(val->getContext()), Store,
1079                 OperandTraits<StoreInst>::op_begin(this),
1080                 OperandTraits<StoreInst>::operands(this),
1081                 InsertBefore) {
1082   Op<0>() = val;
1083   Op<1>() = addr;
1084   setVolatile(isVolatile);
1085   setAlignment(0);
1086   AssertOK();
1087 }
1088 
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,Instruction * InsertBefore)1089 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1090                      unsigned Align, Instruction *InsertBefore)
1091   : Instruction(Type::getVoidTy(val->getContext()), Store,
1092                 OperandTraits<StoreInst>::op_begin(this),
1093                 OperandTraits<StoreInst>::operands(this),
1094                 InsertBefore) {
1095   Op<0>() = val;
1096   Op<1>() = addr;
1097   setVolatile(isVolatile);
1098   setAlignment(Align);
1099   AssertOK();
1100 }
1101 
StoreInst(Value * val,Value * addr,bool isVolatile,unsigned Align,BasicBlock * InsertAtEnd)1102 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1103                      unsigned Align, BasicBlock *InsertAtEnd)
1104   : Instruction(Type::getVoidTy(val->getContext()), Store,
1105                 OperandTraits<StoreInst>::op_begin(this),
1106                 OperandTraits<StoreInst>::operands(this),
1107                 InsertAtEnd) {
1108   Op<0>() = val;
1109   Op<1>() = addr;
1110   setVolatile(isVolatile);
1111   setAlignment(Align);
1112   AssertOK();
1113 }
1114 
StoreInst(Value * val,Value * addr,bool isVolatile,BasicBlock * InsertAtEnd)1115 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1116                      BasicBlock *InsertAtEnd)
1117   : Instruction(Type::getVoidTy(val->getContext()), Store,
1118                 OperandTraits<StoreInst>::op_begin(this),
1119                 OperandTraits<StoreInst>::operands(this),
1120                 InsertAtEnd) {
1121   Op<0>() = val;
1122   Op<1>() = addr;
1123   setVolatile(isVolatile);
1124   setAlignment(0);
1125   AssertOK();
1126 }
1127 
setAlignment(unsigned Align)1128 void StoreInst::setAlignment(unsigned Align) {
1129   assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1130   assert(Align <= MaximumAlignment &&
1131          "Alignment is greater than MaximumAlignment!");
1132   setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
1133                              ((Log2_32(Align)+1) << 1));
1134   assert(getAlignment() == Align && "Alignment representation error!");
1135 }
1136 
1137 //===----------------------------------------------------------------------===//
1138 //                       GetElementPtrInst Implementation
1139 //===----------------------------------------------------------------------===//
1140 
retrieveAddrSpace(const Value * Val)1141 static unsigned retrieveAddrSpace(const Value *Val) {
1142   return cast<PointerType>(Val->getType())->getAddressSpace();
1143 }
1144 
init(Value * Ptr,Value * const * Idx,unsigned NumIdx,const Twine & Name)1145 void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
1146                              const Twine &Name) {
1147   assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
1148   Use *OL = OperandList;
1149   OL[0] = Ptr;
1150 
1151   for (unsigned i = 0; i != NumIdx; ++i)
1152     OL[i+1] = Idx[i];
1153 
1154   setName(Name);
1155 }
1156 
init(Value * Ptr,Value * Idx,const Twine & Name)1157 void GetElementPtrInst::init(Value *Ptr, Value *Idx, const Twine &Name) {
1158   assert(NumOperands == 2 && "NumOperands not initialized?");
1159   Use *OL = OperandList;
1160   OL[0] = Ptr;
1161   OL[1] = Idx;
1162 
1163   setName(Name);
1164 }
1165 
GetElementPtrInst(const GetElementPtrInst & GEPI)1166 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1167   : Instruction(GEPI.getType(), GetElementPtr,
1168                 OperandTraits<GetElementPtrInst>::op_end(this)
1169                 - GEPI.getNumOperands(),
1170                 GEPI.getNumOperands()) {
1171   Use *OL = OperandList;
1172   Use *GEPIOL = GEPI.OperandList;
1173   for (unsigned i = 0, E = NumOperands; i != E; ++i)
1174     OL[i] = GEPIOL[i];
1175   SubclassOptionalData = GEPI.SubclassOptionalData;
1176 }
1177 
GetElementPtrInst(Value * Ptr,Value * Idx,const Twine & Name,Instruction * InBe)1178 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1179                                      const Twine &Name, Instruction *InBe)
1180   : Instruction(PointerType::get(
1181       checkType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)),
1182                 GetElementPtr,
1183                 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1184                 2, InBe) {
1185   init(Ptr, Idx, Name);
1186 }
1187 
GetElementPtrInst(Value * Ptr,Value * Idx,const Twine & Name,BasicBlock * IAE)1188 GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1189                                      const Twine &Name, BasicBlock *IAE)
1190   : Instruction(PointerType::get(
1191             checkType(getIndexedType(Ptr->getType(),Idx)),
1192                 retrieveAddrSpace(Ptr)),
1193                 GetElementPtr,
1194                 OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1195                 2, IAE) {
1196   init(Ptr, Idx, Name);
1197 }
1198 
1199 /// getIndexedType - Returns the type of the element that would be accessed with
1200 /// a gep instruction with the specified parameters.
1201 ///
1202 /// The Idxs pointer should point to a continuous piece of memory containing the
1203 /// indices, either as Value* or uint64_t.
1204 ///
1205 /// A null type is returned if the indices are invalid for the specified
1206 /// pointer type.
1207 ///
1208 template <typename IndexTy>
getIndexedTypeInternal(const Type * Ptr,IndexTy const * Idxs,unsigned NumIdx)1209 static const Type* getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs,
1210                                           unsigned NumIdx) {
1211   const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1212   if (!PTy) return 0;   // Type isn't a pointer type!
1213   const Type *Agg = PTy->getElementType();
1214 
1215   // Handle the special case of the empty set index set, which is always valid.
1216   if (NumIdx == 0)
1217     return Agg;
1218 
1219   // If there is at least one index, the top level type must be sized, otherwise
1220   // it cannot be 'stepped over'.  We explicitly allow abstract types (those
1221   // that contain opaque types) under the assumption that it will be resolved to
1222   // a sane type later.
1223   if (!Agg->isSized() && !Agg->isAbstract())
1224     return 0;
1225 
1226   unsigned CurIdx = 1;
1227   for (; CurIdx != NumIdx; ++CurIdx) {
1228     const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1229     if (!CT || CT->isPointerTy()) return 0;
1230     IndexTy Index = Idxs[CurIdx];
1231     if (!CT->indexValid(Index)) return 0;
1232     Agg = CT->getTypeAtIndex(Index);
1233 
1234     // If the new type forwards to another type, then it is in the middle
1235     // of being refined to another type (and hence, may have dropped all
1236     // references to what it was using before).  So, use the new forwarded
1237     // type.
1238     if (const Type *Ty = Agg->getForwardedType())
1239       Agg = Ty;
1240   }
1241   return CurIdx == NumIdx ? Agg : 0;
1242 }
1243 
getIndexedType(const Type * Ptr,Value * const * Idxs,unsigned NumIdx)1244 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1245                                               Value* const *Idxs,
1246                                               unsigned NumIdx) {
1247   return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1248 }
1249 
getIndexedType(const Type * Ptr,uint64_t const * Idxs,unsigned NumIdx)1250 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1251                                               uint64_t const *Idxs,
1252                                               unsigned NumIdx) {
1253   return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1254 }
1255 
getIndexedType(const Type * Ptr,Value * Idx)1256 const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
1257   const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1258   if (!PTy) return 0;   // Type isn't a pointer type!
1259 
1260   // Check the pointer index.
1261   if (!PTy->indexValid(Idx)) return 0;
1262 
1263   return PTy->getElementType();
1264 }
1265 
1266 
1267 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1268 /// zeros.  If so, the result pointer and the first operand have the same
1269 /// value, just potentially different types.
hasAllZeroIndices() const1270 bool GetElementPtrInst::hasAllZeroIndices() const {
1271   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1272     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1273       if (!CI->isZero()) return false;
1274     } else {
1275       return false;
1276     }
1277   }
1278   return true;
1279 }
1280 
1281 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1282 /// constant integers.  If so, the result pointer and the first operand have
1283 /// a constant offset between them.
hasAllConstantIndices() const1284 bool GetElementPtrInst::hasAllConstantIndices() const {
1285   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1286     if (!isa<ConstantInt>(getOperand(i)))
1287       return false;
1288   }
1289   return true;
1290 }
1291 
setIsInBounds(bool B)1292 void GetElementPtrInst::setIsInBounds(bool B) {
1293   cast<GEPOperator>(this)->setIsInBounds(B);
1294 }
1295 
isInBounds() const1296 bool GetElementPtrInst::isInBounds() const {
1297   return cast<GEPOperator>(this)->isInBounds();
1298 }
1299 
1300 //===----------------------------------------------------------------------===//
1301 //                           ExtractElementInst Implementation
1302 //===----------------------------------------------------------------------===//
1303 
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,Instruction * InsertBef)1304 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1305                                        const Twine &Name,
1306                                        Instruction *InsertBef)
1307   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1308                 ExtractElement,
1309                 OperandTraits<ExtractElementInst>::op_begin(this),
1310                 2, InsertBef) {
1311   assert(isValidOperands(Val, Index) &&
1312          "Invalid extractelement instruction operands!");
1313   Op<0>() = Val;
1314   Op<1>() = Index;
1315   setName(Name);
1316 }
1317 
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,BasicBlock * InsertAE)1318 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1319                                        const Twine &Name,
1320                                        BasicBlock *InsertAE)
1321   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1322                 ExtractElement,
1323                 OperandTraits<ExtractElementInst>::op_begin(this),
1324                 2, InsertAE) {
1325   assert(isValidOperands(Val, Index) &&
1326          "Invalid extractelement instruction operands!");
1327 
1328   Op<0>() = Val;
1329   Op<1>() = Index;
1330   setName(Name);
1331 }
1332 
1333 
isValidOperands(const Value * Val,const Value * Index)1334 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1335   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1336     return false;
1337   return true;
1338 }
1339 
1340 
1341 //===----------------------------------------------------------------------===//
1342 //                           InsertElementInst Implementation
1343 //===----------------------------------------------------------------------===//
1344 
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,Instruction * InsertBef)1345 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1346                                      const Twine &Name,
1347                                      Instruction *InsertBef)
1348   : Instruction(Vec->getType(), InsertElement,
1349                 OperandTraits<InsertElementInst>::op_begin(this),
1350                 3, InsertBef) {
1351   assert(isValidOperands(Vec, Elt, Index) &&
1352          "Invalid insertelement instruction operands!");
1353   Op<0>() = Vec;
1354   Op<1>() = Elt;
1355   Op<2>() = Index;
1356   setName(Name);
1357 }
1358 
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,BasicBlock * InsertAE)1359 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1360                                      const Twine &Name,
1361                                      BasicBlock *InsertAE)
1362   : Instruction(Vec->getType(), InsertElement,
1363                 OperandTraits<InsertElementInst>::op_begin(this),
1364                 3, InsertAE) {
1365   assert(isValidOperands(Vec, Elt, Index) &&
1366          "Invalid insertelement instruction operands!");
1367 
1368   Op<0>() = Vec;
1369   Op<1>() = Elt;
1370   Op<2>() = Index;
1371   setName(Name);
1372 }
1373 
isValidOperands(const Value * Vec,const Value * Elt,const Value * Index)1374 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1375                                         const Value *Index) {
1376   if (!Vec->getType()->isVectorTy())
1377     return false;   // First operand of insertelement must be vector type.
1378 
1379   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1380     return false;// Second operand of insertelement must be vector element type.
1381 
1382   if (!Index->getType()->isIntegerTy(32))
1383     return false;  // Third operand of insertelement must be i32.
1384   return true;
1385 }
1386 
1387 
1388 //===----------------------------------------------------------------------===//
1389 //                      ShuffleVectorInst Implementation
1390 //===----------------------------------------------------------------------===//
1391 
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,Instruction * InsertBefore)1392 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1393                                      const Twine &Name,
1394                                      Instruction *InsertBefore)
1395 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1396                 cast<VectorType>(Mask->getType())->getNumElements()),
1397               ShuffleVector,
1398               OperandTraits<ShuffleVectorInst>::op_begin(this),
1399               OperandTraits<ShuffleVectorInst>::operands(this),
1400               InsertBefore) {
1401   assert(isValidOperands(V1, V2, Mask) &&
1402          "Invalid shuffle vector instruction operands!");
1403   Op<0>() = V1;
1404   Op<1>() = V2;
1405   Op<2>() = Mask;
1406   setName(Name);
1407 }
1408 
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,BasicBlock * InsertAtEnd)1409 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1410                                      const Twine &Name,
1411                                      BasicBlock *InsertAtEnd)
1412 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1413                 cast<VectorType>(Mask->getType())->getNumElements()),
1414               ShuffleVector,
1415               OperandTraits<ShuffleVectorInst>::op_begin(this),
1416               OperandTraits<ShuffleVectorInst>::operands(this),
1417               InsertAtEnd) {
1418   assert(isValidOperands(V1, V2, Mask) &&
1419          "Invalid shuffle vector instruction operands!");
1420 
1421   Op<0>() = V1;
1422   Op<1>() = V2;
1423   Op<2>() = Mask;
1424   setName(Name);
1425 }
1426 
isValidOperands(const Value * V1,const Value * V2,const Value * Mask)1427 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1428                                         const Value *Mask) {
1429   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1430     return false;
1431 
1432   const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1433   if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1434     return false;
1435 
1436   // Check to see if Mask is valid.
1437   if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1438     const VectorType *VTy = cast<VectorType>(V1->getType());
1439     for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1440       if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1441         if (CI->uge(VTy->getNumElements()*2))
1442           return false;
1443       } else if (!isa<UndefValue>(MV->getOperand(i))) {
1444         return false;
1445       }
1446     }
1447   }
1448   else if (!isa<UndefValue>(Mask) && !isa<ConstantAggregateZero>(Mask))
1449     return false;
1450 
1451   return true;
1452 }
1453 
1454 /// getMaskValue - Return the index from the shuffle mask for the specified
1455 /// output result.  This is either -1 if the element is undef or a number less
1456 /// than 2*numelements.
getMaskValue(unsigned i) const1457 int ShuffleVectorInst::getMaskValue(unsigned i) const {
1458   const Constant *Mask = cast<Constant>(getOperand(2));
1459   if (isa<UndefValue>(Mask)) return -1;
1460   if (isa<ConstantAggregateZero>(Mask)) return 0;
1461   const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
1462   assert(i < MaskCV->getNumOperands() && "Index out of range");
1463 
1464   if (isa<UndefValue>(MaskCV->getOperand(i)))
1465     return -1;
1466   return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
1467 }
1468 
1469 //===----------------------------------------------------------------------===//
1470 //                             InsertValueInst Class
1471 //===----------------------------------------------------------------------===//
1472 
init(Value * Agg,Value * Val,const unsigned * Idx,unsigned NumIdx,const Twine & Name)1473 void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
1474                            unsigned NumIdx, const Twine &Name) {
1475   assert(NumOperands == 2 && "NumOperands not initialized?");
1476   Op<0>() = Agg;
1477   Op<1>() = Val;
1478 
1479   Indices.append(Idx, Idx + NumIdx);
1480   setName(Name);
1481 }
1482 
init(Value * Agg,Value * Val,unsigned Idx,const Twine & Name)1483 void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx,
1484                            const Twine &Name) {
1485   assert(NumOperands == 2 && "NumOperands not initialized?");
1486   Op<0>() = Agg;
1487   Op<1>() = Val;
1488 
1489   Indices.push_back(Idx);
1490   setName(Name);
1491 }
1492 
InsertValueInst(const InsertValueInst & IVI)1493 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1494   : Instruction(IVI.getType(), InsertValue,
1495                 OperandTraits<InsertValueInst>::op_begin(this), 2),
1496     Indices(IVI.Indices) {
1497   Op<0>() = IVI.getOperand(0);
1498   Op<1>() = IVI.getOperand(1);
1499   SubclassOptionalData = IVI.SubclassOptionalData;
1500 }
1501 
InsertValueInst(Value * Agg,Value * Val,unsigned Idx,const Twine & Name,Instruction * InsertBefore)1502 InsertValueInst::InsertValueInst(Value *Agg,
1503                                  Value *Val,
1504                                  unsigned Idx,
1505                                  const Twine &Name,
1506                                  Instruction *InsertBefore)
1507   : Instruction(Agg->getType(), InsertValue,
1508                 OperandTraits<InsertValueInst>::op_begin(this),
1509                 2, InsertBefore) {
1510   init(Agg, Val, Idx, Name);
1511 }
1512 
InsertValueInst(Value * Agg,Value * Val,unsigned Idx,const Twine & Name,BasicBlock * InsertAtEnd)1513 InsertValueInst::InsertValueInst(Value *Agg,
1514                                  Value *Val,
1515                                  unsigned Idx,
1516                                  const Twine &Name,
1517                                  BasicBlock *InsertAtEnd)
1518   : Instruction(Agg->getType(), InsertValue,
1519                 OperandTraits<InsertValueInst>::op_begin(this),
1520                 2, InsertAtEnd) {
1521   init(Agg, Val, Idx, Name);
1522 }
1523 
1524 //===----------------------------------------------------------------------===//
1525 //                             ExtractValueInst Class
1526 //===----------------------------------------------------------------------===//
1527 
init(const unsigned * Idx,unsigned NumIdx,const Twine & Name)1528 void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx,
1529                             const Twine &Name) {
1530   assert(NumOperands == 1 && "NumOperands not initialized?");
1531 
1532   Indices.append(Idx, Idx + NumIdx);
1533   setName(Name);
1534 }
1535 
init(unsigned Idx,const Twine & Name)1536 void ExtractValueInst::init(unsigned Idx, const Twine &Name) {
1537   assert(NumOperands == 1 && "NumOperands not initialized?");
1538 
1539   Indices.push_back(Idx);
1540   setName(Name);
1541 }
1542 
ExtractValueInst(const ExtractValueInst & EVI)1543 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1544   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1545     Indices(EVI.Indices) {
1546   SubclassOptionalData = EVI.SubclassOptionalData;
1547 }
1548 
1549 // getIndexedType - Returns the type of the element that would be extracted
1550 // with an extractvalue instruction with the specified parameters.
1551 //
1552 // A null type is returned if the indices are invalid for the specified
1553 // pointer type.
1554 //
getIndexedType(const Type * Agg,const unsigned * Idxs,unsigned NumIdx)1555 const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1556                                              const unsigned *Idxs,
1557                                              unsigned NumIdx) {
1558   unsigned CurIdx = 0;
1559   for (; CurIdx != NumIdx; ++CurIdx) {
1560     const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1561     if (!CT || CT->isPointerTy() || CT->isVectorTy()) return 0;
1562     unsigned Index = Idxs[CurIdx];
1563     if (!CT->indexValid(Index)) return 0;
1564     Agg = CT->getTypeAtIndex(Index);
1565 
1566     // If the new type forwards to another type, then it is in the middle
1567     // of being refined to another type (and hence, may have dropped all
1568     // references to what it was using before).  So, use the new forwarded
1569     // type.
1570     if (const Type *Ty = Agg->getForwardedType())
1571       Agg = Ty;
1572   }
1573   return CurIdx == NumIdx ? Agg : 0;
1574 }
1575 
getIndexedType(const Type * Agg,unsigned Idx)1576 const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1577                                              unsigned Idx) {
1578   return getIndexedType(Agg, &Idx, 1);
1579 }
1580 
1581 //===----------------------------------------------------------------------===//
1582 //                             BinaryOperator Class
1583 //===----------------------------------------------------------------------===//
1584 
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,const Type * Ty,const Twine & Name,Instruction * InsertBefore)1585 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1586                                const Type *Ty, const Twine &Name,
1587                                Instruction *InsertBefore)
1588   : Instruction(Ty, iType,
1589                 OperandTraits<BinaryOperator>::op_begin(this),
1590                 OperandTraits<BinaryOperator>::operands(this),
1591                 InsertBefore) {
1592   Op<0>() = S1;
1593   Op<1>() = S2;
1594   init(iType);
1595   setName(Name);
1596 }
1597 
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)1598 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1599                                const Type *Ty, const Twine &Name,
1600                                BasicBlock *InsertAtEnd)
1601   : Instruction(Ty, iType,
1602                 OperandTraits<BinaryOperator>::op_begin(this),
1603                 OperandTraits<BinaryOperator>::operands(this),
1604                 InsertAtEnd) {
1605   Op<0>() = S1;
1606   Op<1>() = S2;
1607   init(iType);
1608   setName(Name);
1609 }
1610 
1611 
init(BinaryOps iType)1612 void BinaryOperator::init(BinaryOps iType) {
1613   Value *LHS = getOperand(0), *RHS = getOperand(1);
1614   LHS = LHS; RHS = RHS; // Silence warnings.
1615   assert(LHS->getType() == RHS->getType() &&
1616          "Binary operator operand types must match!");
1617 #ifndef NDEBUG
1618   switch (iType) {
1619   case Add: case Sub:
1620   case Mul:
1621     assert(getType() == LHS->getType() &&
1622            "Arithmetic operation should return same type as operands!");
1623     assert(getType()->isIntOrIntVectorTy() &&
1624            "Tried to create an integer operation on a non-integer type!");
1625     break;
1626   case FAdd: case FSub:
1627   case FMul:
1628     assert(getType() == LHS->getType() &&
1629            "Arithmetic operation should return same type as operands!");
1630     assert(getType()->isFPOrFPVectorTy() &&
1631            "Tried to create a floating-point operation on a "
1632            "non-floating-point type!");
1633     break;
1634   case UDiv:
1635   case SDiv:
1636     assert(getType() == LHS->getType() &&
1637            "Arithmetic operation should return same type as operands!");
1638     assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1639             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1640            "Incorrect operand type (not integer) for S/UDIV");
1641     break;
1642   case FDiv:
1643     assert(getType() == LHS->getType() &&
1644            "Arithmetic operation should return same type as operands!");
1645     assert(getType()->isFPOrFPVectorTy() &&
1646            "Incorrect operand type (not floating point) for FDIV");
1647     break;
1648   case URem:
1649   case SRem:
1650     assert(getType() == LHS->getType() &&
1651            "Arithmetic operation should return same type as operands!");
1652     assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1653             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1654            "Incorrect operand type (not integer) for S/UREM");
1655     break;
1656   case FRem:
1657     assert(getType() == LHS->getType() &&
1658            "Arithmetic operation should return same type as operands!");
1659     assert(getType()->isFPOrFPVectorTy() &&
1660            "Incorrect operand type (not floating point) for FREM");
1661     break;
1662   case Shl:
1663   case LShr:
1664   case AShr:
1665     assert(getType() == LHS->getType() &&
1666            "Shift operation should return same type as operands!");
1667     assert((getType()->isIntegerTy() ||
1668             (getType()->isVectorTy() &&
1669              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1670            "Tried to create a shift operation on a non-integral type!");
1671     break;
1672   case And: case Or:
1673   case Xor:
1674     assert(getType() == LHS->getType() &&
1675            "Logical operation should return same type as operands!");
1676     assert((getType()->isIntegerTy() ||
1677             (getType()->isVectorTy() &&
1678              cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1679            "Tried to create a logical operation on a non-integral type!");
1680     break;
1681   default:
1682     break;
1683   }
1684 #endif
1685 }
1686 
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)1687 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1688                                        const Twine &Name,
1689                                        Instruction *InsertBefore) {
1690   assert(S1->getType() == S2->getType() &&
1691          "Cannot create binary operator with two operands of differing type!");
1692   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1693 }
1694 
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)1695 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1696                                        const Twine &Name,
1697                                        BasicBlock *InsertAtEnd) {
1698   BinaryOperator *Res = Create(Op, S1, S2, Name);
1699   InsertAtEnd->getInstList().push_back(Res);
1700   return Res;
1701 }
1702 
CreateNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1703 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1704                                           Instruction *InsertBefore) {
1705   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1706   return new BinaryOperator(Instruction::Sub,
1707                             zero, Op,
1708                             Op->getType(), Name, InsertBefore);
1709 }
1710 
CreateNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1711 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1712                                           BasicBlock *InsertAtEnd) {
1713   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1714   return new BinaryOperator(Instruction::Sub,
1715                             zero, Op,
1716                             Op->getType(), Name, InsertAtEnd);
1717 }
1718 
CreateNSWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1719 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1720                                              Instruction *InsertBefore) {
1721   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1722   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1723 }
1724 
CreateNSWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1725 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1726                                              BasicBlock *InsertAtEnd) {
1727   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1728   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1729 }
1730 
CreateNUWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1731 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1732                                              Instruction *InsertBefore) {
1733   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1734   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1735 }
1736 
CreateNUWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1737 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1738                                              BasicBlock *InsertAtEnd) {
1739   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1740   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1741 }
1742 
CreateFNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)1743 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1744                                            Instruction *InsertBefore) {
1745   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1746   return new BinaryOperator(Instruction::FSub,
1747                             zero, Op,
1748                             Op->getType(), Name, InsertBefore);
1749 }
1750 
CreateFNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1751 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1752                                            BasicBlock *InsertAtEnd) {
1753   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1754   return new BinaryOperator(Instruction::FSub,
1755                             zero, Op,
1756                             Op->getType(), Name, InsertAtEnd);
1757 }
1758 
CreateNot(Value * Op,const Twine & Name,Instruction * InsertBefore)1759 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1760                                           Instruction *InsertBefore) {
1761   Constant *C;
1762   if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1763     C = Constant::getAllOnesValue(PTy->getElementType());
1764     C = ConstantVector::get(
1765                               std::vector<Constant*>(PTy->getNumElements(), C));
1766   } else {
1767     C = Constant::getAllOnesValue(Op->getType());
1768   }
1769 
1770   return new BinaryOperator(Instruction::Xor, Op, C,
1771                             Op->getType(), Name, InsertBefore);
1772 }
1773 
CreateNot(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)1774 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1775                                           BasicBlock *InsertAtEnd) {
1776   Constant *AllOnes;
1777   if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1778     // Create a vector of all ones values.
1779     Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
1780     AllOnes = ConstantVector::get(
1781                             std::vector<Constant*>(PTy->getNumElements(), Elt));
1782   } else {
1783     AllOnes = Constant::getAllOnesValue(Op->getType());
1784   }
1785 
1786   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1787                             Op->getType(), Name, InsertAtEnd);
1788 }
1789 
1790 
1791 // isConstantAllOnes - Helper function for several functions below
isConstantAllOnes(const Value * V)1792 static inline bool isConstantAllOnes(const Value *V) {
1793   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1794     return CI->isAllOnesValue();
1795   if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1796     return CV->isAllOnesValue();
1797   return false;
1798 }
1799 
isNeg(const Value * V)1800 bool BinaryOperator::isNeg(const Value *V) {
1801   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1802     if (Bop->getOpcode() == Instruction::Sub)
1803       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1804         return C->isNegativeZeroValue();
1805   return false;
1806 }
1807 
isFNeg(const Value * V)1808 bool BinaryOperator::isFNeg(const Value *V) {
1809   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1810     if (Bop->getOpcode() == Instruction::FSub)
1811       if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1812         return C->isNegativeZeroValue();
1813   return false;
1814 }
1815 
isNot(const Value * V)1816 bool BinaryOperator::isNot(const Value *V) {
1817   if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1818     return (Bop->getOpcode() == Instruction::Xor &&
1819             (isConstantAllOnes(Bop->getOperand(1)) ||
1820              isConstantAllOnes(Bop->getOperand(0))));
1821   return false;
1822 }
1823 
getNegArgument(Value * BinOp)1824 Value *BinaryOperator::getNegArgument(Value *BinOp) {
1825   return cast<BinaryOperator>(BinOp)->getOperand(1);
1826 }
1827 
getNegArgument(const Value * BinOp)1828 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1829   return getNegArgument(const_cast<Value*>(BinOp));
1830 }
1831 
getFNegArgument(Value * BinOp)1832 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1833   return cast<BinaryOperator>(BinOp)->getOperand(1);
1834 }
1835 
getFNegArgument(const Value * BinOp)1836 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1837   return getFNegArgument(const_cast<Value*>(BinOp));
1838 }
1839 
getNotArgument(Value * BinOp)1840 Value *BinaryOperator::getNotArgument(Value *BinOp) {
1841   assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1842   BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1843   Value *Op0 = BO->getOperand(0);
1844   Value *Op1 = BO->getOperand(1);
1845   if (isConstantAllOnes(Op0)) return Op1;
1846 
1847   assert(isConstantAllOnes(Op1));
1848   return Op0;
1849 }
1850 
getNotArgument(const Value * BinOp)1851 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1852   return getNotArgument(const_cast<Value*>(BinOp));
1853 }
1854 
1855 
1856 // swapOperands - Exchange the two operands to this instruction.  This
1857 // instruction is safe to use on any binary instruction and does not
1858 // modify the semantics of the instruction.  If the instruction is
1859 // order dependent (SetLT f.e.) the opcode is changed.
1860 //
swapOperands()1861 bool BinaryOperator::swapOperands() {
1862   if (!isCommutative())
1863     return true; // Can't commute operands
1864   Op<0>().swap(Op<1>());
1865   return false;
1866 }
1867 
setHasNoUnsignedWrap(bool b)1868 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1869   cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1870 }
1871 
setHasNoSignedWrap(bool b)1872 void BinaryOperator::setHasNoSignedWrap(bool b) {
1873   cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1874 }
1875 
setIsExact(bool b)1876 void BinaryOperator::setIsExact(bool b) {
1877   cast<SDivOperator>(this)->setIsExact(b);
1878 }
1879 
hasNoUnsignedWrap() const1880 bool BinaryOperator::hasNoUnsignedWrap() const {
1881   return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
1882 }
1883 
hasNoSignedWrap() const1884 bool BinaryOperator::hasNoSignedWrap() const {
1885   return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
1886 }
1887 
isExact() const1888 bool BinaryOperator::isExact() const {
1889   return cast<SDivOperator>(this)->isExact();
1890 }
1891 
1892 //===----------------------------------------------------------------------===//
1893 //                                CastInst Class
1894 //===----------------------------------------------------------------------===//
1895 
1896 // Just determine if this cast only deals with integral->integral conversion.
isIntegerCast() const1897 bool CastInst::isIntegerCast() const {
1898   switch (getOpcode()) {
1899     default: return false;
1900     case Instruction::ZExt:
1901     case Instruction::SExt:
1902     case Instruction::Trunc:
1903       return true;
1904     case Instruction::BitCast:
1905       return getOperand(0)->getType()->isIntegerTy() &&
1906         getType()->isIntegerTy();
1907   }
1908 }
1909 
isLosslessCast() const1910 bool CastInst::isLosslessCast() const {
1911   // Only BitCast can be lossless, exit fast if we're not BitCast
1912   if (getOpcode() != Instruction::BitCast)
1913     return false;
1914 
1915   // Identity cast is always lossless
1916   const Type* SrcTy = getOperand(0)->getType();
1917   const Type* DstTy = getType();
1918   if (SrcTy == DstTy)
1919     return true;
1920 
1921   // Pointer to pointer is always lossless.
1922   if (SrcTy->isPointerTy())
1923     return DstTy->isPointerTy();
1924   return false;  // Other types have no identity values
1925 }
1926 
1927 /// This function determines if the CastInst does not require any bits to be
1928 /// changed in order to effect the cast. Essentially, it identifies cases where
1929 /// no code gen is necessary for the cast, hence the name no-op cast.  For
1930 /// example, the following are all no-op casts:
1931 /// # bitcast i32* %x to i8*
1932 /// # bitcast <2 x i32> %x to <4 x i16>
1933 /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
1934 /// @brief Determine if the described cast is a no-op.
isNoopCast(Instruction::CastOps Opcode,const Type * SrcTy,const Type * DestTy,const Type * IntPtrTy)1935 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
1936                           const Type *SrcTy,
1937                           const Type *DestTy,
1938                           const Type *IntPtrTy) {
1939   switch (Opcode) {
1940     default:
1941       assert(!"Invalid CastOp");
1942     case Instruction::Trunc:
1943     case Instruction::ZExt:
1944     case Instruction::SExt:
1945     case Instruction::FPTrunc:
1946     case Instruction::FPExt:
1947     case Instruction::UIToFP:
1948     case Instruction::SIToFP:
1949     case Instruction::FPToUI:
1950     case Instruction::FPToSI:
1951       return false; // These always modify bits
1952     case Instruction::BitCast:
1953       return true;  // BitCast never modifies bits.
1954     case Instruction::PtrToInt:
1955       return IntPtrTy->getScalarSizeInBits() ==
1956              DestTy->getScalarSizeInBits();
1957     case Instruction::IntToPtr:
1958       return IntPtrTy->getScalarSizeInBits() ==
1959              SrcTy->getScalarSizeInBits();
1960   }
1961 }
1962 
1963 /// @brief Determine if a cast is a no-op.
isNoopCast(const Type * IntPtrTy) const1964 bool CastInst::isNoopCast(const Type *IntPtrTy) const {
1965   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
1966 }
1967 
1968 /// This function determines if a pair of casts can be eliminated and what
1969 /// opcode should be used in the elimination. This assumes that there are two
1970 /// instructions like this:
1971 /// *  %F = firstOpcode SrcTy %x to MidTy
1972 /// *  %S = secondOpcode MidTy %F to DstTy
1973 /// The function returns a resultOpcode so these two casts can be replaced with:
1974 /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
1975 /// If no such cast is permited, the function returns 0.
isEliminableCastPair(Instruction::CastOps firstOp,Instruction::CastOps secondOp,const Type * SrcTy,const Type * MidTy,const Type * DstTy,const Type * IntPtrTy)1976 unsigned CastInst::isEliminableCastPair(
1977   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
1978   const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
1979 {
1980   // Define the 144 possibilities for these two cast instructions. The values
1981   // in this matrix determine what to do in a given situation and select the
1982   // case in the switch below.  The rows correspond to firstOp, the columns
1983   // correspond to secondOp.  In looking at the table below, keep in  mind
1984   // the following cast properties:
1985   //
1986   //          Size Compare       Source               Destination
1987   // Operator  Src ? Size   Type       Sign         Type       Sign
1988   // -------- ------------ -------------------   ---------------------
1989   // TRUNC         >       Integer      Any        Integral     Any
1990   // ZEXT          <       Integral   Unsigned     Integer      Any
1991   // SEXT          <       Integral    Signed      Integer      Any
1992   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
1993   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
1994   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
1995   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
1996   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
1997   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
1998   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
1999   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
2000   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
2001   //
2002   // NOTE: some transforms are safe, but we consider them to be non-profitable.
2003   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2004   // into "fptoui double to i64", but this loses information about the range
2005   // of the produced value (we no longer know the top-part is all zeros).
2006   // Further this conversion is often much more expensive for typical hardware,
2007   // and causes issues when building libgcc.  We disallow fptosi+sext for the
2008   // same reason.
2009   const unsigned numCastOps =
2010     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2011   static const uint8_t CastResults[numCastOps][numCastOps] = {
2012     // T        F  F  U  S  F  F  P  I  B   -+
2013     // R  Z  S  P  P  I  I  T  P  2  N  T    |
2014     // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
2015     // N  X  X  U  S  F  F  N  X  N  2  V    |
2016     // C  T  T  I  I  P  P  C  T  T  P  T   -+
2017     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
2018     {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
2019     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
2020     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
2021     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
2022     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
2023     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
2024     { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
2025     { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
2026     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
2027     { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
2028     {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
2029   };
2030 
2031   // If either of the casts are a bitcast from scalar to vector, disallow the
2032   // merging.
2033   if ((firstOp == Instruction::BitCast &&
2034        isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2035       (secondOp == Instruction::BitCast &&
2036        isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2037     return 0; // Disallowed
2038 
2039   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2040                             [secondOp-Instruction::CastOpsBegin];
2041   switch (ElimCase) {
2042     case 0:
2043       // categorically disallowed
2044       return 0;
2045     case 1:
2046       // allowed, use first cast's opcode
2047       return firstOp;
2048     case 2:
2049       // allowed, use second cast's opcode
2050       return secondOp;
2051     case 3:
2052       // no-op cast in second op implies firstOp as long as the DestTy
2053       // is integer and we are not converting between a vector and a
2054       // non vector type.
2055       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2056         return firstOp;
2057       return 0;
2058     case 4:
2059       // no-op cast in second op implies firstOp as long as the DestTy
2060       // is floating point.
2061       if (DstTy->isFloatingPointTy())
2062         return firstOp;
2063       return 0;
2064     case 5:
2065       // no-op cast in first op implies secondOp as long as the SrcTy
2066       // is an integer.
2067       if (SrcTy->isIntegerTy())
2068         return secondOp;
2069       return 0;
2070     case 6:
2071       // no-op cast in first op implies secondOp as long as the SrcTy
2072       // is a floating point.
2073       if (SrcTy->isFloatingPointTy())
2074         return secondOp;
2075       return 0;
2076     case 7: {
2077       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2078       if (!IntPtrTy)
2079         return 0;
2080       unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2081       unsigned MidSize = MidTy->getScalarSizeInBits();
2082       if (MidSize >= PtrSize)
2083         return Instruction::BitCast;
2084       return 0;
2085     }
2086     case 8: {
2087       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2088       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2089       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2090       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2091       unsigned DstSize = DstTy->getScalarSizeInBits();
2092       if (SrcSize == DstSize)
2093         return Instruction::BitCast;
2094       else if (SrcSize < DstSize)
2095         return firstOp;
2096       return secondOp;
2097     }
2098     case 9: // zext, sext -> zext, because sext can't sign extend after zext
2099       return Instruction::ZExt;
2100     case 10:
2101       // fpext followed by ftrunc is allowed if the bit size returned to is
2102       // the same as the original, in which case its just a bitcast
2103       if (SrcTy == DstTy)
2104         return Instruction::BitCast;
2105       return 0; // If the types are not the same we can't eliminate it.
2106     case 11:
2107       // bitcast followed by ptrtoint is allowed as long as the bitcast
2108       // is a pointer to pointer cast.
2109       if (SrcTy->isPointerTy() && MidTy->isPointerTy())
2110         return secondOp;
2111       return 0;
2112     case 12:
2113       // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
2114       if (MidTy->isPointerTy() && DstTy->isPointerTy())
2115         return firstOp;
2116       return 0;
2117     case 13: {
2118       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2119       if (!IntPtrTy)
2120         return 0;
2121       unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2122       unsigned SrcSize = SrcTy->getScalarSizeInBits();
2123       unsigned DstSize = DstTy->getScalarSizeInBits();
2124       if (SrcSize <= PtrSize && SrcSize == DstSize)
2125         return Instruction::BitCast;
2126       return 0;
2127     }
2128     case 99:
2129       // cast combination can't happen (error in input). This is for all cases
2130       // where the MidTy is not the same for the two cast instructions.
2131       assert(!"Invalid Cast Combination");
2132       return 0;
2133     default:
2134       assert(!"Error in CastResults table!!!");
2135       return 0;
2136   }
2137   return 0;
2138 }
2139 
Create(Instruction::CastOps op,Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2140 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2141   const Twine &Name, Instruction *InsertBefore) {
2142   // Construct and return the appropriate CastInst subclass
2143   switch (op) {
2144     case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
2145     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
2146     case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
2147     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
2148     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
2149     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
2150     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
2151     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
2152     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
2153     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2154     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2155     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
2156     default:
2157       assert(!"Invalid opcode provided");
2158   }
2159   return 0;
2160 }
2161 
Create(Instruction::CastOps op,Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2162 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2163   const Twine &Name, BasicBlock *InsertAtEnd) {
2164   // Construct and return the appropriate CastInst subclass
2165   switch (op) {
2166     case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
2167     case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
2168     case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
2169     case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
2170     case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
2171     case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
2172     case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
2173     case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
2174     case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
2175     case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2176     case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2177     case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
2178     default:
2179       assert(!"Invalid opcode provided");
2180   }
2181   return 0;
2182 }
2183 
CreateZExtOrBitCast(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2184 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2185                                         const Twine &Name,
2186                                         Instruction *InsertBefore) {
2187   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2188     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2189   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2190 }
2191 
CreateZExtOrBitCast(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2192 CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2193                                         const Twine &Name,
2194                                         BasicBlock *InsertAtEnd) {
2195   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2196     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2197   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2198 }
2199 
CreateSExtOrBitCast(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2200 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2201                                         const Twine &Name,
2202                                         Instruction *InsertBefore) {
2203   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2204     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2205   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2206 }
2207 
CreateSExtOrBitCast(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2208 CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2209                                         const Twine &Name,
2210                                         BasicBlock *InsertAtEnd) {
2211   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2212     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2213   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2214 }
2215 
CreateTruncOrBitCast(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2216 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2217                                          const Twine &Name,
2218                                          Instruction *InsertBefore) {
2219   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2220     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2221   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2222 }
2223 
CreateTruncOrBitCast(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2224 CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2225                                          const Twine &Name,
2226                                          BasicBlock *InsertAtEnd) {
2227   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2228     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2229   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2230 }
2231 
CreatePointerCast(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2232 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2233                                       const Twine &Name,
2234                                       BasicBlock *InsertAtEnd) {
2235   assert(S->getType()->isPointerTy() && "Invalid cast");
2236   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2237          "Invalid cast");
2238 
2239   if (Ty->isIntegerTy())
2240     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2241   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2242 }
2243 
2244 /// @brief Create a BitCast or a PtrToInt cast instruction
CreatePointerCast(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2245 CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2246                                       const Twine &Name,
2247                                       Instruction *InsertBefore) {
2248   assert(S->getType()->isPointerTy() && "Invalid cast");
2249   assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2250          "Invalid cast");
2251 
2252   if (Ty->isIntegerTy())
2253     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2254   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2255 }
2256 
CreateIntegerCast(Value * C,const Type * Ty,bool isSigned,const Twine & Name,Instruction * InsertBefore)2257 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2258                                       bool isSigned, const Twine &Name,
2259                                       Instruction *InsertBefore) {
2260   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2261          "Invalid integer cast");
2262   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2263   unsigned DstBits = Ty->getScalarSizeInBits();
2264   Instruction::CastOps opcode =
2265     (SrcBits == DstBits ? Instruction::BitCast :
2266      (SrcBits > DstBits ? Instruction::Trunc :
2267       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2268   return Create(opcode, C, Ty, Name, InsertBefore);
2269 }
2270 
CreateIntegerCast(Value * C,const Type * Ty,bool isSigned,const Twine & Name,BasicBlock * InsertAtEnd)2271 CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2272                                       bool isSigned, const Twine &Name,
2273                                       BasicBlock *InsertAtEnd) {
2274   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2275          "Invalid cast");
2276   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2277   unsigned DstBits = Ty->getScalarSizeInBits();
2278   Instruction::CastOps opcode =
2279     (SrcBits == DstBits ? Instruction::BitCast :
2280      (SrcBits > DstBits ? Instruction::Trunc :
2281       (isSigned ? Instruction::SExt : Instruction::ZExt)));
2282   return Create(opcode, C, Ty, Name, InsertAtEnd);
2283 }
2284 
CreateFPCast(Value * C,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2285 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2286                                  const Twine &Name,
2287                                  Instruction *InsertBefore) {
2288   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2289          "Invalid cast");
2290   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2291   unsigned DstBits = Ty->getScalarSizeInBits();
2292   Instruction::CastOps opcode =
2293     (SrcBits == DstBits ? Instruction::BitCast :
2294      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2295   return Create(opcode, C, Ty, Name, InsertBefore);
2296 }
2297 
CreateFPCast(Value * C,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2298 CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2299                                  const Twine &Name,
2300                                  BasicBlock *InsertAtEnd) {
2301   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2302          "Invalid cast");
2303   unsigned SrcBits = C->getType()->getScalarSizeInBits();
2304   unsigned DstBits = Ty->getScalarSizeInBits();
2305   Instruction::CastOps opcode =
2306     (SrcBits == DstBits ? Instruction::BitCast :
2307      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2308   return Create(opcode, C, Ty, Name, InsertAtEnd);
2309 }
2310 
2311 // Check whether it is valid to call getCastOpcode for these types.
2312 // This routine must be kept in sync with getCastOpcode.
isCastable(const Type * SrcTy,const Type * DestTy)2313 bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
2314   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2315     return false;
2316 
2317   if (SrcTy == DestTy)
2318     return true;
2319 
2320   // Get the bit sizes, we'll need these
2321   unsigned SrcBits = SrcTy->getScalarSizeInBits();   // 0 for ptr
2322   unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2323 
2324   // Run through the possibilities ...
2325   if (DestTy->isIntegerTy()) {                   // Casting to integral
2326     if (SrcTy->isIntegerTy()) {                  // Casting from integral
2327         return true;
2328     } else if (SrcTy->isFloatingPointTy()) {     // Casting from floating pt
2329       return true;
2330     } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2331                                                // Casting from vector
2332       return DestBits == PTy->getBitWidth();
2333     } else {                                   // Casting from something else
2334       return SrcTy->isPointerTy();
2335     }
2336   } else if (DestTy->isFloatingPointTy()) {      // Casting to floating pt
2337     if (SrcTy->isIntegerTy()) {                  // Casting from integral
2338       return true;
2339     } else if (SrcTy->isFloatingPointTy()) {     // Casting from floating pt
2340       return true;
2341     } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2342                                                // Casting from vector
2343       return DestBits == PTy->getBitWidth();
2344     } else {                                   // Casting from something else
2345       return false;
2346     }
2347   } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2348                                                 // Casting to vector
2349     if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2350                                                 // Casting from vector
2351       return DestPTy->getBitWidth() == SrcPTy->getBitWidth();
2352     } else {                                    // Casting from something else
2353       return DestPTy->getBitWidth() == SrcBits;
2354     }
2355   } else if (DestTy->isPointerTy()) {        // Casting to pointer
2356     if (SrcTy->isPointerTy()) {              // Casting from pointer
2357       return true;
2358     } else if (SrcTy->isIntegerTy()) {            // Casting from integral
2359       return true;
2360     } else {                                    // Casting from something else
2361       return false;
2362     }
2363   } else {                                      // Casting to something else
2364     return false;
2365   }
2366 }
2367 
2368 // Provide a way to get a "cast" where the cast opcode is inferred from the
2369 // types and size of the operand. This, basically, is a parallel of the
2370 // logic in the castIsValid function below.  This axiom should hold:
2371 //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2372 // should not assert in castIsValid. In other words, this produces a "correct"
2373 // casting opcode for the arguments passed to it.
2374 // This routine must be kept in sync with isCastable.
2375 Instruction::CastOps
getCastOpcode(const Value * Src,bool SrcIsSigned,const Type * DestTy,bool DestIsSigned)2376 CastInst::getCastOpcode(
2377   const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
2378   // Get the bit sizes, we'll need these
2379   const Type *SrcTy = Src->getType();
2380   unsigned SrcBits = SrcTy->getScalarSizeInBits();   // 0 for ptr
2381   unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2382 
2383   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2384          "Only first class types are castable!");
2385 
2386   // Run through the possibilities ...
2387   if (DestTy->isIntegerTy()) {                      // Casting to integral
2388     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2389       if (DestBits < SrcBits)
2390         return Trunc;                               // int -> smaller int
2391       else if (DestBits > SrcBits) {                // its an extension
2392         if (SrcIsSigned)
2393           return SExt;                              // signed -> SEXT
2394         else
2395           return ZExt;                              // unsigned -> ZEXT
2396       } else {
2397         return BitCast;                             // Same size, No-op cast
2398       }
2399     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2400       if (DestIsSigned)
2401         return FPToSI;                              // FP -> sint
2402       else
2403         return FPToUI;                              // FP -> uint
2404     } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2405       assert(DestBits == PTy->getBitWidth() &&
2406                "Casting vector to integer of different width");
2407       PTy = NULL;
2408       return BitCast;                             // Same size, no-op cast
2409     } else {
2410       assert(SrcTy->isPointerTy() &&
2411              "Casting from a value that is not first-class type");
2412       return PtrToInt;                              // ptr -> int
2413     }
2414   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2415     if (SrcTy->isIntegerTy()) {                     // Casting from integral
2416       if (SrcIsSigned)
2417         return SIToFP;                              // sint -> FP
2418       else
2419         return UIToFP;                              // uint -> FP
2420     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2421       if (DestBits < SrcBits) {
2422         return FPTrunc;                             // FP -> smaller FP
2423       } else if (DestBits > SrcBits) {
2424         return FPExt;                               // FP -> larger FP
2425       } else  {
2426         return BitCast;                             // same size, no-op cast
2427       }
2428     } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2429       assert(DestBits == PTy->getBitWidth() &&
2430              "Casting vector to floating point of different width");
2431       PTy = NULL;
2432       return BitCast;                             // same size, no-op cast
2433     } else {
2434       llvm_unreachable("Casting pointer or non-first class to float");
2435     }
2436   } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2437     if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2438       assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
2439              "Casting vector to vector of different widths");
2440       SrcPTy = NULL;
2441       return BitCast;                             // vector -> vector
2442     } else if (DestPTy->getBitWidth() == SrcBits) {
2443       return BitCast;                               // float/int -> vector
2444     } else {
2445       assert(!"Illegal cast to vector (wrong type or size)");
2446     }
2447   } else if (DestTy->isPointerTy()) {
2448     if (SrcTy->isPointerTy()) {
2449       return BitCast;                               // ptr -> ptr
2450     } else if (SrcTy->isIntegerTy()) {
2451       return IntToPtr;                              // int -> ptr
2452     } else {
2453       assert(!"Casting pointer to other than pointer or int");
2454     }
2455   } else {
2456     assert(!"Casting to type that is not first-class");
2457   }
2458 
2459   // If we fall through to here we probably hit an assertion cast above
2460   // and assertions are not turned on. Anything we return is an error, so
2461   // BitCast is as good a choice as any.
2462   return BitCast;
2463 }
2464 
2465 //===----------------------------------------------------------------------===//
2466 //                    CastInst SubClass Constructors
2467 //===----------------------------------------------------------------------===//
2468 
2469 /// Check that the construction parameters for a CastInst are correct. This
2470 /// could be broken out into the separate constructors but it is useful to have
2471 /// it in one place and to eliminate the redundant code for getting the sizes
2472 /// of the types involved.
2473 bool
castIsValid(Instruction::CastOps op,Value * S,const Type * DstTy)2474 CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
2475 
2476   // Check for type sanity on the arguments
2477   const Type *SrcTy = S->getType();
2478   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2479       SrcTy->isAggregateType() || DstTy->isAggregateType())
2480     return false;
2481 
2482   // Get the size of the types in bits, we'll need this later
2483   unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2484   unsigned DstBitSize = DstTy->getScalarSizeInBits();
2485 
2486   // Switch on the opcode provided
2487   switch (op) {
2488   default: return false; // This is an input error
2489   case Instruction::Trunc:
2490     return SrcTy->isIntOrIntVectorTy() &&
2491            DstTy->isIntOrIntVectorTy()&& SrcBitSize > DstBitSize;
2492   case Instruction::ZExt:
2493     return SrcTy->isIntOrIntVectorTy() &&
2494            DstTy->isIntOrIntVectorTy()&& SrcBitSize < DstBitSize;
2495   case Instruction::SExt:
2496     return SrcTy->isIntOrIntVectorTy() &&
2497            DstTy->isIntOrIntVectorTy()&& SrcBitSize < DstBitSize;
2498   case Instruction::FPTrunc:
2499     return SrcTy->isFPOrFPVectorTy() &&
2500            DstTy->isFPOrFPVectorTy() &&
2501            SrcBitSize > DstBitSize;
2502   case Instruction::FPExt:
2503     return SrcTy->isFPOrFPVectorTy() &&
2504            DstTy->isFPOrFPVectorTy() &&
2505            SrcBitSize < DstBitSize;
2506   case Instruction::UIToFP:
2507   case Instruction::SIToFP:
2508     if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2509       if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2510         return SVTy->getElementType()->isIntOrIntVectorTy() &&
2511                DVTy->getElementType()->isFPOrFPVectorTy() &&
2512                SVTy->getNumElements() == DVTy->getNumElements();
2513       }
2514     }
2515     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy();
2516   case Instruction::FPToUI:
2517   case Instruction::FPToSI:
2518     if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2519       if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2520         return SVTy->getElementType()->isFPOrFPVectorTy() &&
2521                DVTy->getElementType()->isIntOrIntVectorTy() &&
2522                SVTy->getNumElements() == DVTy->getNumElements();
2523       }
2524     }
2525     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy();
2526   case Instruction::PtrToInt:
2527     return SrcTy->isPointerTy() && DstTy->isIntegerTy();
2528   case Instruction::IntToPtr:
2529     return SrcTy->isIntegerTy() && DstTy->isPointerTy();
2530   case Instruction::BitCast:
2531     // BitCast implies a no-op cast of type only. No bits change.
2532     // However, you can't cast pointers to anything but pointers.
2533     if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2534       return false;
2535 
2536     // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2537     // these cases, the cast is okay if the source and destination bit widths
2538     // are identical.
2539     return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2540   }
2541 }
2542 
TruncInst(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2543 TruncInst::TruncInst(
2544   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2545 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2546   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2547 }
2548 
TruncInst(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2549 TruncInst::TruncInst(
2550   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2551 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2552   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2553 }
2554 
ZExtInst(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2555 ZExtInst::ZExtInst(
2556   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2557 )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2558   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2559 }
2560 
ZExtInst(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2561 ZExtInst::ZExtInst(
2562   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2563 )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2564   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2565 }
SExtInst(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2566 SExtInst::SExtInst(
2567   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2568 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2569   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2570 }
2571 
SExtInst(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2572 SExtInst::SExtInst(
2573   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2574 )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2575   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2576 }
2577 
FPTruncInst(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2578 FPTruncInst::FPTruncInst(
2579   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2580 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2581   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2582 }
2583 
FPTruncInst(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2584 FPTruncInst::FPTruncInst(
2585   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2586 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2587   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2588 }
2589 
FPExtInst(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2590 FPExtInst::FPExtInst(
2591   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2592 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2593   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2594 }
2595 
FPExtInst(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2596 FPExtInst::FPExtInst(
2597   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2598 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2599   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2600 }
2601 
UIToFPInst(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2602 UIToFPInst::UIToFPInst(
2603   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2604 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2605   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2606 }
2607 
UIToFPInst(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2608 UIToFPInst::UIToFPInst(
2609   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2610 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2611   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2612 }
2613 
SIToFPInst(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2614 SIToFPInst::SIToFPInst(
2615   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2616 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2617   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2618 }
2619 
SIToFPInst(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2620 SIToFPInst::SIToFPInst(
2621   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2622 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2623   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2624 }
2625 
FPToUIInst(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2626 FPToUIInst::FPToUIInst(
2627   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2628 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2629   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2630 }
2631 
FPToUIInst(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2632 FPToUIInst::FPToUIInst(
2633   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2634 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2635   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2636 }
2637 
FPToSIInst(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2638 FPToSIInst::FPToSIInst(
2639   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2640 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2641   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2642 }
2643 
FPToSIInst(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2644 FPToSIInst::FPToSIInst(
2645   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2646 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2647   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2648 }
2649 
PtrToIntInst(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2650 PtrToIntInst::PtrToIntInst(
2651   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2652 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2653   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2654 }
2655 
PtrToIntInst(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2656 PtrToIntInst::PtrToIntInst(
2657   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2658 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2659   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2660 }
2661 
IntToPtrInst(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2662 IntToPtrInst::IntToPtrInst(
2663   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2664 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2665   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2666 }
2667 
IntToPtrInst(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2668 IntToPtrInst::IntToPtrInst(
2669   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2670 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2671   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2672 }
2673 
BitCastInst(Value * S,const Type * Ty,const Twine & Name,Instruction * InsertBefore)2674 BitCastInst::BitCastInst(
2675   Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2676 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2677   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2678 }
2679 
BitCastInst(Value * S,const Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2680 BitCastInst::BitCastInst(
2681   Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2682 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2683   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2684 }
2685 
2686 //===----------------------------------------------------------------------===//
2687 //                               CmpInst Classes
2688 //===----------------------------------------------------------------------===//
2689 
Anchor() const2690 void CmpInst::Anchor() const {}
2691 
CmpInst(const Type * ty,OtherOps op,unsigned short predicate,Value * LHS,Value * RHS,const Twine & Name,Instruction * InsertBefore)2692 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2693                  Value *LHS, Value *RHS, const Twine &Name,
2694                  Instruction *InsertBefore)
2695   : Instruction(ty, op,
2696                 OperandTraits<CmpInst>::op_begin(this),
2697                 OperandTraits<CmpInst>::operands(this),
2698                 InsertBefore) {
2699     Op<0>() = LHS;
2700     Op<1>() = RHS;
2701   setPredicate((Predicate)predicate);
2702   setName(Name);
2703 }
2704 
CmpInst(const Type * ty,OtherOps op,unsigned short predicate,Value * LHS,Value * RHS,const Twine & Name,BasicBlock * InsertAtEnd)2705 CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2706                  Value *LHS, Value *RHS, const Twine &Name,
2707                  BasicBlock *InsertAtEnd)
2708   : Instruction(ty, op,
2709                 OperandTraits<CmpInst>::op_begin(this),
2710                 OperandTraits<CmpInst>::operands(this),
2711                 InsertAtEnd) {
2712   Op<0>() = LHS;
2713   Op<1>() = RHS;
2714   setPredicate((Predicate)predicate);
2715   setName(Name);
2716 }
2717 
2718 CmpInst *
Create(OtherOps Op,unsigned short predicate,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)2719 CmpInst::Create(OtherOps Op, unsigned short predicate,
2720                 Value *S1, Value *S2,
2721                 const Twine &Name, Instruction *InsertBefore) {
2722   if (Op == Instruction::ICmp) {
2723     if (InsertBefore)
2724       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2725                           S1, S2, Name);
2726     else
2727       return new ICmpInst(CmpInst::Predicate(predicate),
2728                           S1, S2, Name);
2729   }
2730 
2731   if (InsertBefore)
2732     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2733                         S1, S2, Name);
2734   else
2735     return new FCmpInst(CmpInst::Predicate(predicate),
2736                         S1, S2, Name);
2737 }
2738 
2739 CmpInst *
Create(OtherOps Op,unsigned short predicate,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)2740 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2741                 const Twine &Name, BasicBlock *InsertAtEnd) {
2742   if (Op == Instruction::ICmp) {
2743     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2744                         S1, S2, Name);
2745   }
2746   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2747                       S1, S2, Name);
2748 }
2749 
swapOperands()2750 void CmpInst::swapOperands() {
2751   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2752     IC->swapOperands();
2753   else
2754     cast<FCmpInst>(this)->swapOperands();
2755 }
2756 
isCommutative()2757 bool CmpInst::isCommutative() {
2758   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2759     return IC->isCommutative();
2760   return cast<FCmpInst>(this)->isCommutative();
2761 }
2762 
isEquality()2763 bool CmpInst::isEquality() {
2764   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2765     return IC->isEquality();
2766   return cast<FCmpInst>(this)->isEquality();
2767 }
2768 
2769 
getInversePredicate(Predicate pred)2770 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2771   switch (pred) {
2772     default: assert(!"Unknown cmp predicate!");
2773     case ICMP_EQ: return ICMP_NE;
2774     case ICMP_NE: return ICMP_EQ;
2775     case ICMP_UGT: return ICMP_ULE;
2776     case ICMP_ULT: return ICMP_UGE;
2777     case ICMP_UGE: return ICMP_ULT;
2778     case ICMP_ULE: return ICMP_UGT;
2779     case ICMP_SGT: return ICMP_SLE;
2780     case ICMP_SLT: return ICMP_SGE;
2781     case ICMP_SGE: return ICMP_SLT;
2782     case ICMP_SLE: return ICMP_SGT;
2783 
2784     case FCMP_OEQ: return FCMP_UNE;
2785     case FCMP_ONE: return FCMP_UEQ;
2786     case FCMP_OGT: return FCMP_ULE;
2787     case FCMP_OLT: return FCMP_UGE;
2788     case FCMP_OGE: return FCMP_ULT;
2789     case FCMP_OLE: return FCMP_UGT;
2790     case FCMP_UEQ: return FCMP_ONE;
2791     case FCMP_UNE: return FCMP_OEQ;
2792     case FCMP_UGT: return FCMP_OLE;
2793     case FCMP_ULT: return FCMP_OGE;
2794     case FCMP_UGE: return FCMP_OLT;
2795     case FCMP_ULE: return FCMP_OGT;
2796     case FCMP_ORD: return FCMP_UNO;
2797     case FCMP_UNO: return FCMP_ORD;
2798     case FCMP_TRUE: return FCMP_FALSE;
2799     case FCMP_FALSE: return FCMP_TRUE;
2800   }
2801 }
2802 
getSignedPredicate(Predicate pred)2803 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2804   switch (pred) {
2805     default: assert(! "Unknown icmp predicate!");
2806     case ICMP_EQ: case ICMP_NE:
2807     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2808        return pred;
2809     case ICMP_UGT: return ICMP_SGT;
2810     case ICMP_ULT: return ICMP_SLT;
2811     case ICMP_UGE: return ICMP_SGE;
2812     case ICMP_ULE: return ICMP_SLE;
2813   }
2814 }
2815 
getUnsignedPredicate(Predicate pred)2816 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2817   switch (pred) {
2818     default: assert(! "Unknown icmp predicate!");
2819     case ICMP_EQ: case ICMP_NE:
2820     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2821        return pred;
2822     case ICMP_SGT: return ICMP_UGT;
2823     case ICMP_SLT: return ICMP_ULT;
2824     case ICMP_SGE: return ICMP_UGE;
2825     case ICMP_SLE: return ICMP_ULE;
2826   }
2827 }
2828 
2829 /// Initialize a set of values that all satisfy the condition with C.
2830 ///
2831 ConstantRange
makeConstantRange(Predicate pred,const APInt & C)2832 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2833   APInt Lower(C);
2834   APInt Upper(C);
2835   uint32_t BitWidth = C.getBitWidth();
2836   switch (pred) {
2837   default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2838   case ICmpInst::ICMP_EQ: Upper++; break;
2839   case ICmpInst::ICMP_NE: Lower++; break;
2840   case ICmpInst::ICMP_ULT:
2841     Lower = APInt::getMinValue(BitWidth);
2842     // Check for an empty-set condition.
2843     if (Lower == Upper)
2844       return ConstantRange(BitWidth, /*isFullSet=*/false);
2845     break;
2846   case ICmpInst::ICMP_SLT:
2847     Lower = APInt::getSignedMinValue(BitWidth);
2848     // Check for an empty-set condition.
2849     if (Lower == Upper)
2850       return ConstantRange(BitWidth, /*isFullSet=*/false);
2851     break;
2852   case ICmpInst::ICMP_UGT:
2853     Lower++; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2854     // Check for an empty-set condition.
2855     if (Lower == Upper)
2856       return ConstantRange(BitWidth, /*isFullSet=*/false);
2857     break;
2858   case ICmpInst::ICMP_SGT:
2859     Lower++; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2860     // Check for an empty-set condition.
2861     if (Lower == Upper)
2862       return ConstantRange(BitWidth, /*isFullSet=*/false);
2863     break;
2864   case ICmpInst::ICMP_ULE:
2865     Lower = APInt::getMinValue(BitWidth); Upper++;
2866     // Check for a full-set condition.
2867     if (Lower == Upper)
2868       return ConstantRange(BitWidth, /*isFullSet=*/true);
2869     break;
2870   case ICmpInst::ICMP_SLE:
2871     Lower = APInt::getSignedMinValue(BitWidth); Upper++;
2872     // Check for a full-set condition.
2873     if (Lower == Upper)
2874       return ConstantRange(BitWidth, /*isFullSet=*/true);
2875     break;
2876   case ICmpInst::ICMP_UGE:
2877     Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2878     // Check for a full-set condition.
2879     if (Lower == Upper)
2880       return ConstantRange(BitWidth, /*isFullSet=*/true);
2881     break;
2882   case ICmpInst::ICMP_SGE:
2883     Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2884     // Check for a full-set condition.
2885     if (Lower == Upper)
2886       return ConstantRange(BitWidth, /*isFullSet=*/true);
2887     break;
2888   }
2889   return ConstantRange(Lower, Upper);
2890 }
2891 
getSwappedPredicate(Predicate pred)2892 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
2893   switch (pred) {
2894     default: assert(!"Unknown cmp predicate!");
2895     case ICMP_EQ: case ICMP_NE:
2896       return pred;
2897     case ICMP_SGT: return ICMP_SLT;
2898     case ICMP_SLT: return ICMP_SGT;
2899     case ICMP_SGE: return ICMP_SLE;
2900     case ICMP_SLE: return ICMP_SGE;
2901     case ICMP_UGT: return ICMP_ULT;
2902     case ICMP_ULT: return ICMP_UGT;
2903     case ICMP_UGE: return ICMP_ULE;
2904     case ICMP_ULE: return ICMP_UGE;
2905 
2906     case FCMP_FALSE: case FCMP_TRUE:
2907     case FCMP_OEQ: case FCMP_ONE:
2908     case FCMP_UEQ: case FCMP_UNE:
2909     case FCMP_ORD: case FCMP_UNO:
2910       return pred;
2911     case FCMP_OGT: return FCMP_OLT;
2912     case FCMP_OLT: return FCMP_OGT;
2913     case FCMP_OGE: return FCMP_OLE;
2914     case FCMP_OLE: return FCMP_OGE;
2915     case FCMP_UGT: return FCMP_ULT;
2916     case FCMP_ULT: return FCMP_UGT;
2917     case FCMP_UGE: return FCMP_ULE;
2918     case FCMP_ULE: return FCMP_UGE;
2919   }
2920 }
2921 
isUnsigned(unsigned short predicate)2922 bool CmpInst::isUnsigned(unsigned short predicate) {
2923   switch (predicate) {
2924     default: return false;
2925     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
2926     case ICmpInst::ICMP_UGE: return true;
2927   }
2928 }
2929 
isSigned(unsigned short predicate)2930 bool CmpInst::isSigned(unsigned short predicate) {
2931   switch (predicate) {
2932     default: return false;
2933     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
2934     case ICmpInst::ICMP_SGE: return true;
2935   }
2936 }
2937 
isOrdered(unsigned short predicate)2938 bool CmpInst::isOrdered(unsigned short predicate) {
2939   switch (predicate) {
2940     default: return false;
2941     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
2942     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
2943     case FCmpInst::FCMP_ORD: return true;
2944   }
2945 }
2946 
isUnordered(unsigned short predicate)2947 bool CmpInst::isUnordered(unsigned short predicate) {
2948   switch (predicate) {
2949     default: return false;
2950     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
2951     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
2952     case FCmpInst::FCMP_UNO: return true;
2953   }
2954 }
2955 
isTrueWhenEqual(unsigned short predicate)2956 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
2957   switch(predicate) {
2958     default: return false;
2959     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
2960     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
2961   }
2962 }
2963 
isFalseWhenEqual(unsigned short predicate)2964 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
2965   switch(predicate) {
2966   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
2967   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
2968   default: return false;
2969   }
2970 }
2971 
2972 
2973 //===----------------------------------------------------------------------===//
2974 //                        SwitchInst Implementation
2975 //===----------------------------------------------------------------------===//
2976 
init(Value * Value,BasicBlock * Default,unsigned NumCases)2977 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
2978   assert(Value && Default);
2979   ReservedSpace = 2+NumCases*2;
2980   NumOperands = 2;
2981   OperandList = allocHungoffUses(ReservedSpace);
2982 
2983   OperandList[0] = Value;
2984   OperandList[1] = Default;
2985 }
2986 
2987 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2988 /// switch on and a default destination.  The number of additional cases can
2989 /// be specified here to make memory allocation more efficient.  This
2990 /// constructor can also autoinsert before another instruction.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,Instruction * InsertBefore)2991 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2992                        Instruction *InsertBefore)
2993   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2994                    0, 0, InsertBefore) {
2995   init(Value, Default, NumCases);
2996 }
2997 
2998 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2999 /// switch on and a default destination.  The number of additional cases can
3000 /// be specified here to make memory allocation more efficient.  This
3001 /// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,BasicBlock * InsertAtEnd)3002 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3003                        BasicBlock *InsertAtEnd)
3004   : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3005                    0, 0, InsertAtEnd) {
3006   init(Value, Default, NumCases);
3007 }
3008 
SwitchInst(const SwitchInst & SI)3009 SwitchInst::SwitchInst(const SwitchInst &SI)
3010   : TerminatorInst(Type::getVoidTy(SI.getContext()), Instruction::Switch,
3011                    allocHungoffUses(SI.getNumOperands()), SI.getNumOperands()) {
3012   Use *OL = OperandList, *InOL = SI.OperandList;
3013   for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
3014     OL[i] = InOL[i];
3015     OL[i+1] = InOL[i+1];
3016   }
3017   SubclassOptionalData = SI.SubclassOptionalData;
3018 }
3019 
~SwitchInst()3020 SwitchInst::~SwitchInst() {
3021   dropHungoffUses(OperandList);
3022 }
3023 
3024 
3025 /// addCase - Add an entry to the switch instruction...
3026 ///
addCase(ConstantInt * OnVal,BasicBlock * Dest)3027 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3028   unsigned OpNo = NumOperands;
3029   if (OpNo+2 > ReservedSpace)
3030     resizeOperands(0);  // Get more space!
3031   // Initialize some new operands.
3032   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3033   NumOperands = OpNo+2;
3034   OperandList[OpNo] = OnVal;
3035   OperandList[OpNo+1] = Dest;
3036 }
3037 
3038 /// removeCase - This method removes the specified successor from the switch
3039 /// instruction.  Note that this cannot be used to remove the default
3040 /// destination (successor #0).
3041 ///
removeCase(unsigned idx)3042 void SwitchInst::removeCase(unsigned idx) {
3043   assert(idx != 0 && "Cannot remove the default case!");
3044   assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
3045 
3046   unsigned NumOps = getNumOperands();
3047   Use *OL = OperandList;
3048 
3049   // Move everything after this operand down.
3050   //
3051   // FIXME: we could just swap with the end of the list, then erase.  However,
3052   // client might not expect this to happen.  The code as it is thrashes the
3053   // use/def lists, which is kinda lame.
3054   for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
3055     OL[i-2] = OL[i];
3056     OL[i-2+1] = OL[i+1];
3057   }
3058 
3059   // Nuke the last value.
3060   OL[NumOps-2].set(0);
3061   OL[NumOps-2+1].set(0);
3062   NumOperands = NumOps-2;
3063 }
3064 
3065 /// resizeOperands - resize operands - This adjusts the length of the operands
3066 /// list according to the following behavior:
3067 ///   1. If NumOps == 0, grow the operand list in response to a push_back style
3068 ///      of operation.  This grows the number of ops by 3 times.
3069 ///   2. If NumOps > NumOperands, reserve space for NumOps operands.
3070 ///   3. If NumOps == NumOperands, trim the reserved space.
3071 ///
resizeOperands(unsigned NumOps)3072 void SwitchInst::resizeOperands(unsigned NumOps) {
3073   unsigned e = getNumOperands();
3074   if (NumOps == 0) {
3075     NumOps = e*3;
3076   } else if (NumOps*2 > NumOperands) {
3077     // No resize needed.
3078     if (ReservedSpace >= NumOps) return;
3079   } else if (NumOps == NumOperands) {
3080     if (ReservedSpace == NumOps) return;
3081   } else {
3082     return;
3083   }
3084 
3085   ReservedSpace = NumOps;
3086   Use *NewOps = allocHungoffUses(NumOps);
3087   Use *OldOps = OperandList;
3088   for (unsigned i = 0; i != e; ++i) {
3089       NewOps[i] = OldOps[i];
3090   }
3091   OperandList = NewOps;
3092   if (OldOps) Use::zap(OldOps, OldOps + e, true);
3093 }
3094 
3095 
getSuccessorV(unsigned idx) const3096 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3097   return getSuccessor(idx);
3098 }
getNumSuccessorsV() const3099 unsigned SwitchInst::getNumSuccessorsV() const {
3100   return getNumSuccessors();
3101 }
setSuccessorV(unsigned idx,BasicBlock * B)3102 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3103   setSuccessor(idx, B);
3104 }
3105 
3106 //===----------------------------------------------------------------------===//
3107 //                        SwitchInst Implementation
3108 //===----------------------------------------------------------------------===//
3109 
init(Value * Address,unsigned NumDests)3110 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3111   assert(Address && Address->getType()->isPointerTy() &&
3112          "Address of indirectbr must be a pointer");
3113   ReservedSpace = 1+NumDests;
3114   NumOperands = 1;
3115   OperandList = allocHungoffUses(ReservedSpace);
3116 
3117   OperandList[0] = Address;
3118 }
3119 
3120 
3121 /// resizeOperands - resize operands - This adjusts the length of the operands
3122 /// list according to the following behavior:
3123 ///   1. If NumOps == 0, grow the operand list in response to a push_back style
3124 ///      of operation.  This grows the number of ops by 2 times.
3125 ///   2. If NumOps > NumOperands, reserve space for NumOps operands.
3126 ///   3. If NumOps == NumOperands, trim the reserved space.
3127 ///
resizeOperands(unsigned NumOps)3128 void IndirectBrInst::resizeOperands(unsigned NumOps) {
3129   unsigned e = getNumOperands();
3130   if (NumOps == 0) {
3131     NumOps = e*2;
3132   } else if (NumOps*2 > NumOperands) {
3133     // No resize needed.
3134     if (ReservedSpace >= NumOps) return;
3135   } else if (NumOps == NumOperands) {
3136     if (ReservedSpace == NumOps) return;
3137   } else {
3138     return;
3139   }
3140 
3141   ReservedSpace = NumOps;
3142   Use *NewOps = allocHungoffUses(NumOps);
3143   Use *OldOps = OperandList;
3144   for (unsigned i = 0; i != e; ++i)
3145     NewOps[i] = OldOps[i];
3146   OperandList = NewOps;
3147   if (OldOps) Use::zap(OldOps, OldOps + e, true);
3148 }
3149 
IndirectBrInst(Value * Address,unsigned NumCases,Instruction * InsertBefore)3150 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3151                                Instruction *InsertBefore)
3152 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3153                  0, 0, InsertBefore) {
3154   init(Address, NumCases);
3155 }
3156 
IndirectBrInst(Value * Address,unsigned NumCases,BasicBlock * InsertAtEnd)3157 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3158                                BasicBlock *InsertAtEnd)
3159 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3160                  0, 0, InsertAtEnd) {
3161   init(Address, NumCases);
3162 }
3163 
IndirectBrInst(const IndirectBrInst & IBI)3164 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3165   : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3166                    allocHungoffUses(IBI.getNumOperands()),
3167                    IBI.getNumOperands()) {
3168   Use *OL = OperandList, *InOL = IBI.OperandList;
3169   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3170     OL[i] = InOL[i];
3171   SubclassOptionalData = IBI.SubclassOptionalData;
3172 }
3173 
~IndirectBrInst()3174 IndirectBrInst::~IndirectBrInst() {
3175   dropHungoffUses(OperandList);
3176 }
3177 
3178 /// addDestination - Add a destination.
3179 ///
addDestination(BasicBlock * DestBB)3180 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3181   unsigned OpNo = NumOperands;
3182   if (OpNo+1 > ReservedSpace)
3183     resizeOperands(0);  // Get more space!
3184   // Initialize some new operands.
3185   assert(OpNo < ReservedSpace && "Growing didn't work!");
3186   NumOperands = OpNo+1;
3187   OperandList[OpNo] = DestBB;
3188 }
3189 
3190 /// removeDestination - This method removes the specified successor from the
3191 /// indirectbr instruction.
removeDestination(unsigned idx)3192 void IndirectBrInst::removeDestination(unsigned idx) {
3193   assert(idx < getNumOperands()-1 && "Successor index out of range!");
3194 
3195   unsigned NumOps = getNumOperands();
3196   Use *OL = OperandList;
3197 
3198   // Replace this value with the last one.
3199   OL[idx+1] = OL[NumOps-1];
3200 
3201   // Nuke the last value.
3202   OL[NumOps-1].set(0);
3203   NumOperands = NumOps-1;
3204 }
3205 
getSuccessorV(unsigned idx) const3206 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3207   return getSuccessor(idx);
3208 }
getNumSuccessorsV() const3209 unsigned IndirectBrInst::getNumSuccessorsV() const {
3210   return getNumSuccessors();
3211 }
setSuccessorV(unsigned idx,BasicBlock * B)3212 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3213   setSuccessor(idx, B);
3214 }
3215 
3216 //===----------------------------------------------------------------------===//
3217 //                           clone_impl() implementations
3218 //===----------------------------------------------------------------------===//
3219 
3220 // Define these methods here so vtables don't get emitted into every translation
3221 // unit that uses these classes.
3222 
clone_impl() const3223 GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3224   return new (getNumOperands()) GetElementPtrInst(*this);
3225 }
3226 
clone_impl() const3227 BinaryOperator *BinaryOperator::clone_impl() const {
3228   return Create(getOpcode(), Op<0>(), Op<1>());
3229 }
3230 
clone_impl() const3231 FCmpInst* FCmpInst::clone_impl() const {
3232   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3233 }
3234 
clone_impl() const3235 ICmpInst* ICmpInst::clone_impl() const {
3236   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3237 }
3238 
clone_impl() const3239 ExtractValueInst *ExtractValueInst::clone_impl() const {
3240   return new ExtractValueInst(*this);
3241 }
3242 
clone_impl() const3243 InsertValueInst *InsertValueInst::clone_impl() const {
3244   return new InsertValueInst(*this);
3245 }
3246 
clone_impl() const3247 AllocaInst *AllocaInst::clone_impl() const {
3248   return new AllocaInst(getAllocatedType(),
3249                         (Value*)getOperand(0),
3250                         getAlignment());
3251 }
3252 
clone_impl() const3253 LoadInst *LoadInst::clone_impl() const {
3254   return new LoadInst(getOperand(0),
3255                       Twine(), isVolatile(),
3256                       getAlignment());
3257 }
3258 
clone_impl() const3259 StoreInst *StoreInst::clone_impl() const {
3260   return new StoreInst(getOperand(0), getOperand(1),
3261                        isVolatile(), getAlignment());
3262 }
3263 
clone_impl() const3264 TruncInst *TruncInst::clone_impl() const {
3265   return new TruncInst(getOperand(0), getType());
3266 }
3267 
clone_impl() const3268 ZExtInst *ZExtInst::clone_impl() const {
3269   return new ZExtInst(getOperand(0), getType());
3270 }
3271 
clone_impl() const3272 SExtInst *SExtInst::clone_impl() const {
3273   return new SExtInst(getOperand(0), getType());
3274 }
3275 
clone_impl() const3276 FPTruncInst *FPTruncInst::clone_impl() const {
3277   return new FPTruncInst(getOperand(0), getType());
3278 }
3279 
clone_impl() const3280 FPExtInst *FPExtInst::clone_impl() const {
3281   return new FPExtInst(getOperand(0), getType());
3282 }
3283 
clone_impl() const3284 UIToFPInst *UIToFPInst::clone_impl() const {
3285   return new UIToFPInst(getOperand(0), getType());
3286 }
3287 
clone_impl() const3288 SIToFPInst *SIToFPInst::clone_impl() const {
3289   return new SIToFPInst(getOperand(0), getType());
3290 }
3291 
clone_impl() const3292 FPToUIInst *FPToUIInst::clone_impl() const {
3293   return new FPToUIInst(getOperand(0), getType());
3294 }
3295 
clone_impl() const3296 FPToSIInst *FPToSIInst::clone_impl() const {
3297   return new FPToSIInst(getOperand(0), getType());
3298 }
3299 
clone_impl() const3300 PtrToIntInst *PtrToIntInst::clone_impl() const {
3301   return new PtrToIntInst(getOperand(0), getType());
3302 }
3303 
clone_impl() const3304 IntToPtrInst *IntToPtrInst::clone_impl() const {
3305   return new IntToPtrInst(getOperand(0), getType());
3306 }
3307 
clone_impl() const3308 BitCastInst *BitCastInst::clone_impl() const {
3309   return new BitCastInst(getOperand(0), getType());
3310 }
3311 
clone_impl() const3312 CallInst *CallInst::clone_impl() const {
3313   return  new(getNumOperands()) CallInst(*this);
3314 }
3315 
clone_impl() const3316 SelectInst *SelectInst::clone_impl() const {
3317   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3318 }
3319 
clone_impl() const3320 VAArgInst *VAArgInst::clone_impl() const {
3321   return new VAArgInst(getOperand(0), getType());
3322 }
3323 
clone_impl() const3324 ExtractElementInst *ExtractElementInst::clone_impl() const {
3325   return ExtractElementInst::Create(getOperand(0), getOperand(1));
3326 }
3327 
clone_impl() const3328 InsertElementInst *InsertElementInst::clone_impl() const {
3329   return InsertElementInst::Create(getOperand(0),
3330                                    getOperand(1),
3331                                    getOperand(2));
3332 }
3333 
clone_impl() const3334 ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3335   return new ShuffleVectorInst(getOperand(0),
3336                            getOperand(1),
3337                            getOperand(2));
3338 }
3339 
clone_impl() const3340 PHINode *PHINode::clone_impl() const {
3341   return new PHINode(*this);
3342 }
3343 
clone_impl() const3344 ReturnInst *ReturnInst::clone_impl() const {
3345   return new(getNumOperands()) ReturnInst(*this);
3346 }
3347 
clone_impl() const3348 BranchInst *BranchInst::clone_impl() const {
3349   unsigned Ops(getNumOperands());
3350   return new(Ops, Ops == 1) BranchInst(*this);
3351 }
3352 
clone_impl() const3353 SwitchInst *SwitchInst::clone_impl() const {
3354   return new SwitchInst(*this);
3355 }
3356 
clone_impl() const3357 IndirectBrInst *IndirectBrInst::clone_impl() const {
3358   return new IndirectBrInst(*this);
3359 }
3360 
3361 
clone_impl() const3362 InvokeInst *InvokeInst::clone_impl() const {
3363   return new(getNumOperands()) InvokeInst(*this);
3364 }
3365 
clone_impl() const3366 UnwindInst *UnwindInst::clone_impl() const {
3367   LLVMContext &Context = getContext();
3368   return new UnwindInst(Context);
3369 }
3370 
clone_impl() const3371 UnreachableInst *UnreachableInst::clone_impl() const {
3372   LLVMContext &Context = getContext();
3373   return new UnreachableInst(Context);
3374 }
3375