1 /**********************************************************************
2  * Copyright (c) 2014 Pieter Wuille                                   *
3  * Distributed under the MIT software license, see the accompanying   *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6 
7 #ifndef _SECP256K1_SCALAR_IMPL_H_
8 #define _SECP256K1_SCALAR_IMPL_H_
9 
10 #include "group.h"
11 #include "scalar.h"
12 
13 #if defined HAVE_CONFIG_H
14 #include "libsecp256k1-config.h"
15 #endif
16 
17 #if defined(EXHAUSTIVE_TEST_ORDER)
18 #include "scalar_low_impl.h"
19 #elif defined(USE_SCALAR_4X64)
20 #include "scalar_4x64_impl.h"
21 #elif defined(USE_SCALAR_8X32)
22 #include "scalar_8x32_impl.h"
23 #else
24 #error "Please select scalar implementation"
25 #endif
26 
27 #ifndef USE_NUM_NONE
secp256k1_scalar_get_num(secp256k1_num * r,const secp256k1_scalar * a)28 static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) {
29     unsigned char c[32];
30     secp256k1_scalar_get_b32(c, a);
31     secp256k1_num_set_bin(r, c, 32);
32 }
33 
34 /** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
secp256k1_scalar_order_get_num(secp256k1_num * r)35 static void secp256k1_scalar_order_get_num(secp256k1_num *r) {
36 #if defined(EXHAUSTIVE_TEST_ORDER)
37     static const unsigned char order[32] = {
38         0,0,0,0,0,0,0,0,
39         0,0,0,0,0,0,0,0,
40         0,0,0,0,0,0,0,0,
41         0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER
42     };
43 #else
44     static const unsigned char order[32] = {
45         0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
46         0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
47         0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
48         0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
49     };
50 #endif
51     secp256k1_num_set_bin(r, order, 32);
52 }
53 #endif
54 
secp256k1_scalar_inverse(secp256k1_scalar * r,const secp256k1_scalar * x)55 static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
56 #if defined(EXHAUSTIVE_TEST_ORDER)
57     int i;
58     *r = 0;
59     for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++)
60         if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1)
61             *r = i;
62     /* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus
63      * have a composite group order; fix it in exhaustive_tests.c). */
64     VERIFY_CHECK(*r != 0);
65 }
66 #else
67     secp256k1_scalar *t;
68     int i;
69     /* First compute xN as x ^ (2^N - 1) for some values of N,
70      * and uM as x ^ M for some values of M. */
71     secp256k1_scalar x2, x3, x6, x8, x14, x28, x56, x112, x126;
72     secp256k1_scalar u2, u5, u9, u11, u13;
73 
74     secp256k1_scalar_sqr(&u2, x);
75     secp256k1_scalar_mul(&x2, &u2,  x);
76     secp256k1_scalar_mul(&u5, &u2, &x2);
77     secp256k1_scalar_mul(&x3, &u5,  &u2);
78     secp256k1_scalar_mul(&u9, &x3, &u2);
79     secp256k1_scalar_mul(&u11, &u9, &u2);
80     secp256k1_scalar_mul(&u13, &u11, &u2);
81 
82     secp256k1_scalar_sqr(&x6, &u13);
83     secp256k1_scalar_sqr(&x6, &x6);
84     secp256k1_scalar_mul(&x6, &x6, &u11);
85 
86     secp256k1_scalar_sqr(&x8, &x6);
87     secp256k1_scalar_sqr(&x8, &x8);
88     secp256k1_scalar_mul(&x8, &x8,  &x2);
89 
90     secp256k1_scalar_sqr(&x14, &x8);
91     for (i = 0; i < 5; i++) {
92         secp256k1_scalar_sqr(&x14, &x14);
93     }
94     secp256k1_scalar_mul(&x14, &x14, &x6);
95 
96     secp256k1_scalar_sqr(&x28, &x14);
97     for (i = 0; i < 13; i++) {
98         secp256k1_scalar_sqr(&x28, &x28);
99     }
100     secp256k1_scalar_mul(&x28, &x28, &x14);
101 
102     secp256k1_scalar_sqr(&x56, &x28);
103     for (i = 0; i < 27; i++) {
104         secp256k1_scalar_sqr(&x56, &x56);
105     }
106     secp256k1_scalar_mul(&x56, &x56, &x28);
107 
108     secp256k1_scalar_sqr(&x112, &x56);
109     for (i = 0; i < 55; i++) {
110         secp256k1_scalar_sqr(&x112, &x112);
111     }
112     secp256k1_scalar_mul(&x112, &x112, &x56);
113 
114     secp256k1_scalar_sqr(&x126, &x112);
115     for (i = 0; i < 13; i++) {
116         secp256k1_scalar_sqr(&x126, &x126);
117     }
118     secp256k1_scalar_mul(&x126, &x126, &x14);
119 
120     /* Then accumulate the final result (t starts at x126). */
121     t = &x126;
122     for (i = 0; i < 3; i++) {
123         secp256k1_scalar_sqr(t, t);
124     }
125     secp256k1_scalar_mul(t, t, &u5); /* 101 */
126     for (i = 0; i < 4; i++) { /* 0 */
127         secp256k1_scalar_sqr(t, t);
128     }
129     secp256k1_scalar_mul(t, t, &x3); /* 111 */
130     for (i = 0; i < 4; i++) { /* 0 */
131         secp256k1_scalar_sqr(t, t);
132     }
133     secp256k1_scalar_mul(t, t, &u5); /* 101 */
134     for (i = 0; i < 5; i++) { /* 0 */
135         secp256k1_scalar_sqr(t, t);
136     }
137     secp256k1_scalar_mul(t, t, &u11); /* 1011 */
138     for (i = 0; i < 4; i++) {
139         secp256k1_scalar_sqr(t, t);
140     }
141     secp256k1_scalar_mul(t, t, &u11); /* 1011 */
142     for (i = 0; i < 4; i++) { /* 0 */
143         secp256k1_scalar_sqr(t, t);
144     }
145     secp256k1_scalar_mul(t, t, &x3); /* 111 */
146     for (i = 0; i < 5; i++) { /* 00 */
147         secp256k1_scalar_sqr(t, t);
148     }
149     secp256k1_scalar_mul(t, t, &x3); /* 111 */
150     for (i = 0; i < 6; i++) { /* 00 */
151         secp256k1_scalar_sqr(t, t);
152     }
153     secp256k1_scalar_mul(t, t, &u13); /* 1101 */
154     for (i = 0; i < 4; i++) { /* 0 */
155         secp256k1_scalar_sqr(t, t);
156     }
157     secp256k1_scalar_mul(t, t, &u5); /* 101 */
158     for (i = 0; i < 3; i++) {
159         secp256k1_scalar_sqr(t, t);
160     }
161     secp256k1_scalar_mul(t, t, &x3); /* 111 */
162     for (i = 0; i < 5; i++) { /* 0 */
163         secp256k1_scalar_sqr(t, t);
164     }
165     secp256k1_scalar_mul(t, t, &u9); /* 1001 */
166     for (i = 0; i < 6; i++) { /* 000 */
167         secp256k1_scalar_sqr(t, t);
168     }
169     secp256k1_scalar_mul(t, t, &u5); /* 101 */
170     for (i = 0; i < 10; i++) { /* 0000000 */
171         secp256k1_scalar_sqr(t, t);
172     }
173     secp256k1_scalar_mul(t, t, &x3); /* 111 */
174     for (i = 0; i < 4; i++) { /* 0 */
175         secp256k1_scalar_sqr(t, t);
176     }
177     secp256k1_scalar_mul(t, t, &x3); /* 111 */
178     for (i = 0; i < 9; i++) { /* 0 */
179         secp256k1_scalar_sqr(t, t);
180     }
181     secp256k1_scalar_mul(t, t, &x8); /* 11111111 */
182     for (i = 0; i < 5; i++) { /* 0 */
183         secp256k1_scalar_sqr(t, t);
184     }
185     secp256k1_scalar_mul(t, t, &u9); /* 1001 */
186     for (i = 0; i < 6; i++) { /* 00 */
187         secp256k1_scalar_sqr(t, t);
188     }
189     secp256k1_scalar_mul(t, t, &u11); /* 1011 */
190     for (i = 0; i < 4; i++) {
191         secp256k1_scalar_sqr(t, t);
192     }
193     secp256k1_scalar_mul(t, t, &u13); /* 1101 */
194     for (i = 0; i < 5; i++) {
195         secp256k1_scalar_sqr(t, t);
196     }
197     secp256k1_scalar_mul(t, t, &x2); /* 11 */
198     for (i = 0; i < 6; i++) { /* 00 */
199         secp256k1_scalar_sqr(t, t);
200     }
201     secp256k1_scalar_mul(t, t, &u13); /* 1101 */
202     for (i = 0; i < 10; i++) { /* 000000 */
203         secp256k1_scalar_sqr(t, t);
204     }
205     secp256k1_scalar_mul(t, t, &u13); /* 1101 */
206     for (i = 0; i < 4; i++) {
207         secp256k1_scalar_sqr(t, t);
208     }
209     secp256k1_scalar_mul(t, t, &u9); /* 1001 */
210     for (i = 0; i < 6; i++) { /* 00000 */
211         secp256k1_scalar_sqr(t, t);
212     }
213     secp256k1_scalar_mul(t, t, x); /* 1 */
214     for (i = 0; i < 8; i++) { /* 00 */
215         secp256k1_scalar_sqr(t, t);
216     }
217     secp256k1_scalar_mul(r, t, &x6); /* 111111 */
218 }
219 
220 SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
221     return !(a->d[0] & 1);
222 }
223 #endif
224 
secp256k1_scalar_inverse_var(secp256k1_scalar * r,const secp256k1_scalar * x)225 static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
226 #if defined(USE_SCALAR_INV_BUILTIN)
227     secp256k1_scalar_inverse(r, x);
228 #elif defined(USE_SCALAR_INV_NUM)
229     unsigned char b[32];
230     secp256k1_num n, m;
231     secp256k1_scalar t = *x;
232     secp256k1_scalar_get_b32(b, &t);
233     secp256k1_num_set_bin(&n, b, 32);
234     secp256k1_scalar_order_get_num(&m);
235     secp256k1_num_mod_inverse(&n, &n, &m);
236     secp256k1_num_get_bin(b, 32, &n);
237     secp256k1_scalar_set_b32(r, b, NULL);
238     /* Verify that the inverse was computed correctly, without GMP code. */
239     secp256k1_scalar_mul(&t, &t, r);
240     CHECK(secp256k1_scalar_is_one(&t));
241 #else
242 #error "Please select scalar inverse implementation"
243 #endif
244 }
245 
246 #ifdef USE_ENDOMORPHISM
247 #if defined(EXHAUSTIVE_TEST_ORDER)
248 /**
249  * Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the
250  * full case we don't bother making k1 and k2 be small, we just want them to be
251  * nontrivial to get full test coverage for the exhaustive tests. We therefore
252  * (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda.
253  */
secp256k1_scalar_split_lambda(secp256k1_scalar * r1,secp256k1_scalar * r2,const secp256k1_scalar * a)254 static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
255     *r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER;
256     *r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
257 }
258 #else
259 /**
260  * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
261  * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
262  *            0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
263  *
264  * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
265  * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
266  * and k2 have a small size.
267  * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
268  *
269  * - a1 =      {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
270  * - b1 =     -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
271  * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
272  * - b2 =      {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
273  *
274  * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
275  * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
276  * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
277  *
278  * g1, g2 are precomputed constants used to replace division with a rounded multiplication
279  * when decomposing the scalar for an endomorphism-based point multiplication.
280  *
281  * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
282  * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
283  *
284  * The derivation is described in the paper "Efficient Software Implementation of Public-Key
285  * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
286  * Section 4.3 (here we use a somewhat higher-precision estimate):
287  * d = a1*b2 - b1*a2
288  * g1 = round((2^272)*b2/d)
289  * g2 = round((2^272)*b1/d)
290  *
291  * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
292  * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
293  *
294  * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
295  */
296 
secp256k1_scalar_split_lambda(secp256k1_scalar * r1,secp256k1_scalar * r2,const secp256k1_scalar * a)297 static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
298     secp256k1_scalar c1, c2;
299     static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST(
300         0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL,
301         0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL
302     );
303     static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
304         0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
305         0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
306     );
307     static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
308         0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
309         0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
310     );
311     static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
312         0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL,
313         0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL
314     );
315     static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
316         0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL,
317         0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL
318     );
319     VERIFY_CHECK(r1 != a);
320     VERIFY_CHECK(r2 != a);
321     /* these _var calls are constant time since the shift amount is constant */
322     secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272);
323     secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272);
324     secp256k1_scalar_mul(&c1, &c1, &minus_b1);
325     secp256k1_scalar_mul(&c2, &c2, &minus_b2);
326     secp256k1_scalar_add(r2, &c1, &c2);
327     secp256k1_scalar_mul(r1, r2, &minus_lambda);
328     secp256k1_scalar_add(r1, r1, a);
329 }
330 #endif
331 #endif
332 
333 #endif
334