1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
29 #define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
30 
31 #include "utils.h"
32 
33 namespace double_conversion {
34 
35 class DoubleToStringConverter {
36  public:
37   // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
38   // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
39   // function returns false.
40   static const int kMaxFixedDigitsBeforePoint = 60;
41   static const int kMaxFixedDigitsAfterPoint = 60;
42 
43   // When calling ToExponential with a requested_digits
44   // parameter > kMaxExponentialDigits then the function returns false.
45   static const int kMaxExponentialDigits = 120;
46 
47   // When calling ToPrecision with a requested_digits
48   // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
49   // then the function returns false.
50   static const int kMinPrecisionDigits = 1;
51   static const int kMaxPrecisionDigits = 120;
52 
53   enum Flags {
54     NO_FLAGS = 0,
55     EMIT_POSITIVE_EXPONENT_SIGN = 1,
56     EMIT_TRAILING_DECIMAL_POINT = 2,
57     EMIT_TRAILING_ZERO_AFTER_POINT = 4,
58     UNIQUE_ZERO = 8
59   };
60 
61   // Flags should be a bit-or combination of the possible Flags-enum.
62   //  - NO_FLAGS: no special flags.
63   //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
64   //    form, emits a '+' for positive exponents. Example: 1.2e+2.
65   //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
66   //    converted into decimal format then a trailing decimal point is appended.
67   //    Example: 2345.0 is converted to "2345.".
68   //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
69   //    emits a trailing '0'-character. This flag requires the
70   //    EXMIT_TRAILING_DECIMAL_POINT flag.
71   //    Example: 2345.0 is converted to "2345.0".
72   //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
73   //
74   // Infinity symbol and nan_symbol provide the string representation for these
75   // special values. If the string is NULL and the special value is encountered
76   // then the conversion functions return false.
77   //
78   // The exponent_character is used in exponential representations. It is
79   // usually 'e' or 'E'.
80   //
81   // When converting to the shortest representation the converter will
82   // represent input numbers in decimal format if they are in the interval
83   // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
84   //    (lower boundary included, greater boundary excluded).
85   // Example: with decimal_in_shortest_low = -6 and
86   //               decimal_in_shortest_high = 21:
87   //   ToShortest(0.000001)  -> "0.000001"
88   //   ToShortest(0.0000001) -> "1e-7"
89   //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
90   //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
91   //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
92   //
93   // When converting to precision mode the converter may add
94   // max_leading_padding_zeroes before returning the number in exponential
95   // format.
96   // Example with max_leading_padding_zeroes_in_precision_mode = 6.
97   //   ToPrecision(0.0000012345, 2) -> "0.0000012"
98   //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
99   // Similarily the converter may add up to
100   // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
101   // returning an exponential representation. A zero added by the
102   // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
103   // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
104   //   ToPrecision(230.0, 2) -> "230"
105   //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
106   //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
DoubleToStringConverter(int flags,const char * infinity_symbol,const char * nan_symbol,char exponent_character,int decimal_in_shortest_low,int decimal_in_shortest_high,int max_leading_padding_zeroes_in_precision_mode,int max_trailing_padding_zeroes_in_precision_mode)107   DoubleToStringConverter(int flags,
108                           const char* infinity_symbol,
109                           const char* nan_symbol,
110                           char exponent_character,
111                           int decimal_in_shortest_low,
112                           int decimal_in_shortest_high,
113                           int max_leading_padding_zeroes_in_precision_mode,
114                           int max_trailing_padding_zeroes_in_precision_mode)
115       : flags_(flags),
116         infinity_symbol_(infinity_symbol),
117         nan_symbol_(nan_symbol),
118         exponent_character_(exponent_character),
119         decimal_in_shortest_low_(decimal_in_shortest_low),
120         decimal_in_shortest_high_(decimal_in_shortest_high),
121         max_leading_padding_zeroes_in_precision_mode_(
122             max_leading_padding_zeroes_in_precision_mode),
123         max_trailing_padding_zeroes_in_precision_mode_(
124             max_trailing_padding_zeroes_in_precision_mode) {
125     // When 'trailing zero after the point' is set, then 'trailing point'
126     // must be set too.
127     ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
128         !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
129   }
130 
131   // Returns a converter following the EcmaScript specification.
132   static const DoubleToStringConverter& EcmaScriptConverter();
133 
134   // Computes the shortest string of digits that correctly represent the input
135   // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
136   // (see constructor) it then either returns a decimal representation, or an
137   // exponential representation.
138   // Example with decimal_in_shortest_low = -6,
139   //              decimal_in_shortest_high = 21,
140   //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
141   //              EMIT_TRAILING_DECIMAL_POINT deactived:
142   //   ToShortest(0.000001)  -> "0.000001"
143   //   ToShortest(0.0000001) -> "1e-7"
144   //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
145   //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
146   //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
147   //
148   // Note: the conversion may round the output if the returned string
149   // is accurate enough to uniquely identify the input-number.
150   // For example the most precise representation of the double 9e59 equals
151   // "899999999999999918767229449717619953810131273674690656206848", but
152   // the converter will return the shorter (but still correct) "9e59".
153   //
154   // Returns true if the conversion succeeds. The conversion always succeeds
155   // except when the input value is special and no infinity_symbol or
156   // nan_symbol has been given to the constructor.
ToShortest(double value,StringBuilder * result_builder)157   bool ToShortest(double value, StringBuilder* result_builder) const {
158     return ToShortestIeeeNumber(value, result_builder, SHORTEST);
159   }
160 
161   // Same as ToShortest, but for single-precision floats.
ToShortestSingle(float value,StringBuilder * result_builder)162   bool ToShortestSingle(float value, StringBuilder* result_builder) const {
163     return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
164   }
165 
166 
167   // Computes a decimal representation with a fixed number of digits after the
168   // decimal point. The last emitted digit is rounded.
169   //
170   // Examples:
171   //   ToFixed(3.12, 1) -> "3.1"
172   //   ToFixed(3.1415, 3) -> "3.142"
173   //   ToFixed(1234.56789, 4) -> "1234.5679"
174   //   ToFixed(1.23, 5) -> "1.23000"
175   //   ToFixed(0.1, 4) -> "0.1000"
176   //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
177   //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
178   //   ToFixed(0.1, 17) -> "0.10000000000000001"
179   //
180   // If requested_digits equals 0, then the tail of the result depends on
181   // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
182   // Examples, for requested_digits == 0,
183   //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
184   //    - false and false: then 123.45 -> 123
185   //                             0.678 -> 1
186   //    - true and false: then 123.45 -> 123.
187   //                            0.678 -> 1.
188   //    - true and true: then 123.45 -> 123.0
189   //                           0.678 -> 1.0
190   //
191   // Returns true if the conversion succeeds. The conversion always succeeds
192   // except for the following cases:
193   //   - the input value is special and no infinity_symbol or nan_symbol has
194   //     been provided to the constructor,
195   //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
196   //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
197   // The last two conditions imply that the result will never contain more than
198   // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
199   // (one additional character for the sign, and one for the decimal point).
200   bool ToFixed(double value,
201                int requested_digits,
202                StringBuilder* result_builder) const;
203 
204   // Computes a representation in exponential format with requested_digits
205   // after the decimal point. The last emitted digit is rounded.
206   // If requested_digits equals -1, then the shortest exponential representation
207   // is computed.
208   //
209   // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
210   //               exponent_character set to 'e'.
211   //   ToExponential(3.12, 1) -> "3.1e0"
212   //   ToExponential(5.0, 3) -> "5.000e0"
213   //   ToExponential(0.001, 2) -> "1.00e-3"
214   //   ToExponential(3.1415, -1) -> "3.1415e0"
215   //   ToExponential(3.1415, 4) -> "3.1415e0"
216   //   ToExponential(3.1415, 3) -> "3.142e0"
217   //   ToExponential(123456789000000, 3) -> "1.235e14"
218   //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
219   //   ToExponential(1000000000000000019884624838656.0, 32) ->
220   //                     "1.00000000000000001988462483865600e30"
221   //   ToExponential(1234, 0) -> "1e3"
222   //
223   // Returns true if the conversion succeeds. The conversion always succeeds
224   // except for the following cases:
225   //   - the input value is special and no infinity_symbol or nan_symbol has
226   //     been provided to the constructor,
227   //   - 'requested_digits' > kMaxExponentialDigits.
228   // The last condition implies that the result will never contain more than
229   // kMaxExponentialDigits + 8 characters (the sign, the digit before the
230   // decimal point, the decimal point, the exponent character, the
231   // exponent's sign, and at most 3 exponent digits).
232   bool ToExponential(double value,
233                      int requested_digits,
234                      StringBuilder* result_builder) const;
235 
236   // Computes 'precision' leading digits of the given 'value' and returns them
237   // either in exponential or decimal format, depending on
238   // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
239   // constructor).
240   // The last computed digit is rounded.
241   //
242   // Example with max_leading_padding_zeroes_in_precision_mode = 6.
243   //   ToPrecision(0.0000012345, 2) -> "0.0000012"
244   //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
245   // Similarily the converter may add up to
246   // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
247   // returning an exponential representation. A zero added by the
248   // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
249   // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
250   //   ToPrecision(230.0, 2) -> "230"
251   //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
252   //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
253   // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
254   //    EMIT_TRAILING_ZERO_AFTER_POINT:
255   //   ToPrecision(123450.0, 6) -> "123450"
256   //   ToPrecision(123450.0, 5) -> "123450"
257   //   ToPrecision(123450.0, 4) -> "123500"
258   //   ToPrecision(123450.0, 3) -> "123000"
259   //   ToPrecision(123450.0, 2) -> "1.2e5"
260   //
261   // Returns true if the conversion succeeds. The conversion always succeeds
262   // except for the following cases:
263   //   - the input value is special and no infinity_symbol or nan_symbol has
264   //     been provided to the constructor,
265   //   - precision < kMinPericisionDigits
266   //   - precision > kMaxPrecisionDigits
267   // The last condition implies that the result will never contain more than
268   // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
269   // exponent character, the exponent's sign, and at most 3 exponent digits).
270   bool ToPrecision(double value,
271                    int precision,
272                    StringBuilder* result_builder) const;
273 
274   enum DtoaMode {
275     // Produce the shortest correct representation.
276     // For example the output of 0.299999999999999988897 is (the less accurate
277     // but correct) 0.3.
278     SHORTEST,
279     // Same as SHORTEST, but for single-precision floats.
280     SHORTEST_SINGLE,
281     // Produce a fixed number of digits after the decimal point.
282     // For instance fixed(0.1, 4) becomes 0.1000
283     // If the input number is big, the output will be big.
284     FIXED,
285     // Fixed number of digits (independent of the decimal point).
286     PRECISION
287   };
288 
289   // The maximal number of digits that are needed to emit a double in base 10.
290   // A higher precision can be achieved by using more digits, but the shortest
291   // accurate representation of any double will never use more digits than
292   // kBase10MaximalLength.
293   // Note that DoubleToAscii null-terminates its input. So the given buffer
294   // should be at least kBase10MaximalLength + 1 characters long.
295   static const int kBase10MaximalLength = 17;
296 
297   // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or
298   // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v'
299   // after it has been casted to a single-precision float. That is, in this
300   // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity.
301   //
302   // The result should be interpreted as buffer * 10^(point-length).
303   //
304   // The output depends on the given mode:
305   //  - SHORTEST: produce the least amount of digits for which the internal
306   //   identity requirement is still satisfied. If the digits are printed
307   //   (together with the correct exponent) then reading this number will give
308   //   'v' again. The buffer will choose the representation that is closest to
309   //   'v'. If there are two at the same distance, than the one farther away
310   //   from 0 is chosen (halfway cases - ending with 5 - are rounded up).
311   //   In this mode the 'requested_digits' parameter is ignored.
312   //  - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
313   //  - FIXED: produces digits necessary to print a given number with
314   //   'requested_digits' digits after the decimal point. The produced digits
315   //   might be too short in which case the caller has to fill the remainder
316   //   with '0's.
317   //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
318   //   Halfway cases are rounded towards +/-Infinity (away from 0). The call
319   //   toFixed(0.15, 2) thus returns buffer="2", point=0.
320   //   The returned buffer may contain digits that would be truncated from the
321   //   shortest representation of the input.
322   //  - PRECISION: produces 'requested_digits' where the first digit is not '0'.
323   //   Even though the length of produced digits usually equals
324   //   'requested_digits', the function is allowed to return fewer digits, in
325   //   which case the caller has to fill the missing digits with '0's.
326   //   Halfway cases are again rounded away from 0.
327   // DoubleToAscii expects the given buffer to be big enough to hold all
328   // digits and a terminating null-character. In SHORTEST-mode it expects a
329   // buffer of at least kBase10MaximalLength + 1. In all other modes the
330   // requested_digits parameter and the padding-zeroes limit the size of the
331   // output. Don't forget the decimal point, the exponent character and the
332   // terminating null-character when computing the maximal output size.
333   // The given length is only used in debug mode to ensure the buffer is big
334   // enough.
335   static void DoubleToAscii(double v,
336                             DtoaMode mode,
337                             int requested_digits,
338                             char* buffer,
339                             int buffer_length,
340                             bool* sign,
341                             int* length,
342                             int* point);
343 
344  private:
345   // Implementation for ToShortest and ToShortestSingle.
346   bool ToShortestIeeeNumber(double value,
347                             StringBuilder* result_builder,
348                             DtoaMode mode) const;
349 
350   // If the value is a special value (NaN or Infinity) constructs the
351   // corresponding string using the configured infinity/nan-symbol.
352   // If either of them is NULL or the value is not special then the
353   // function returns false.
354   bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
355   // Constructs an exponential representation (i.e. 1.234e56).
356   // The given exponent assumes a decimal point after the first decimal digit.
357   void CreateExponentialRepresentation(const char* decimal_digits,
358                                        int length,
359                                        int exponent,
360                                        StringBuilder* result_builder) const;
361   // Creates a decimal representation (i.e 1234.5678).
362   void CreateDecimalRepresentation(const char* decimal_digits,
363                                    int length,
364                                    int decimal_point,
365                                    int digits_after_point,
366                                    StringBuilder* result_builder) const;
367 
368   const int flags_;
369   const char* const infinity_symbol_;
370   const char* const nan_symbol_;
371   const char exponent_character_;
372   const int decimal_in_shortest_low_;
373   const int decimal_in_shortest_high_;
374   const int max_leading_padding_zeroes_in_precision_mode_;
375   const int max_trailing_padding_zeroes_in_precision_mode_;
376 
377   DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
378 };
379 
380 
381 class StringToDoubleConverter {
382  public:
383   // Enumeration for allowing octals and ignoring junk when converting
384   // strings to numbers.
385   enum Flags {
386     NO_FLAGS = 0,
387     ALLOW_HEX = 1,
388     ALLOW_OCTALS = 2,
389     ALLOW_TRAILING_JUNK = 4,
390     ALLOW_LEADING_SPACES = 8,
391     ALLOW_TRAILING_SPACES = 16,
392     ALLOW_SPACES_AFTER_SIGN = 32
393   };
394 
395   // Flags should be a bit-or combination of the possible Flags-enum.
396   //  - NO_FLAGS: no special flags.
397   //  - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
398   //      Ex: StringToDouble("0x1234") -> 4660.0
399   //          In StringToDouble("0x1234.56") the characters ".56" are trailing
400   //          junk. The result of the call is hence dependent on
401   //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
402   //      With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
403   //      the string will not be parsed as "0" followed by junk.
404   //
405   //  - ALLOW_OCTALS: recognizes the prefix "0" for octals:
406   //      If a sequence of octal digits starts with '0', then the number is
407   //      read as octal integer. Octal numbers may only be integers.
408   //      Ex: StringToDouble("01234") -> 668.0
409   //          StringToDouble("012349") -> 12349.0  // Not a sequence of octal
410   //                                               // digits.
411   //          In StringToDouble("01234.56") the characters ".56" are trailing
412   //          junk. The result of the call is hence dependent on
413   //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
414   //          In StringToDouble("01234e56") the characters "e56" are trailing
415   //          junk, too.
416   //  - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
417   //      a double literal.
418   //  - ALLOW_LEADING_SPACES: skip over leading spaces.
419   //  - ALLOW_TRAILING_SPACES: ignore trailing spaces.
420   //  - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign.
421   //       Ex: StringToDouble("-   123.2") -> -123.2.
422   //           StringToDouble("+   123.2") -> 123.2
423   //
424   // empty_string_value is returned when an empty string is given as input.
425   // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
426   // containing only spaces is converted to the 'empty_string_value', too.
427   //
428   // junk_string_value is returned when
429   //  a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
430   //     part of a double-literal) is found.
431   //  b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
432   //     double literal.
433   //
434   // infinity_symbol and nan_symbol are strings that are used to detect
435   // inputs that represent infinity and NaN. They can be null, in which case
436   // they are ignored.
437   // The conversion routine first reads any possible signs. Then it compares the
438   // following character of the input-string with the first character of
439   // the infinity, and nan-symbol. If either matches, the function assumes, that
440   // a match has been found, and expects the following input characters to match
441   // the remaining characters of the special-value symbol.
442   // This means that the following restrictions apply to special-value symbols:
443   //  - they must not start with signs ('+', or '-'),
444   //  - they must not have the same first character.
445   //  - they must not start with digits.
446   //
447   // Examples:
448   //  flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
449   //  empty_string_value = 0.0,
450   //  junk_string_value = NaN,
451   //  infinity_symbol = "infinity",
452   //  nan_symbol = "nan":
453   //    StringToDouble("0x1234") -> 4660.0.
454   //    StringToDouble("0x1234K") -> 4660.0.
455   //    StringToDouble("") -> 0.0  // empty_string_value.
456   //    StringToDouble(" ") -> NaN  // junk_string_value.
457   //    StringToDouble(" 1") -> NaN  // junk_string_value.
458   //    StringToDouble("0x") -> NaN  // junk_string_value.
459   //    StringToDouble("-123.45") -> -123.45.
460   //    StringToDouble("--123.45") -> NaN  // junk_string_value.
461   //    StringToDouble("123e45") -> 123e45.
462   //    StringToDouble("123E45") -> 123e45.
463   //    StringToDouble("123e+45") -> 123e45.
464   //    StringToDouble("123E-45") -> 123e-45.
465   //    StringToDouble("123e") -> 123.0  // trailing junk ignored.
466   //    StringToDouble("123e-") -> 123.0  // trailing junk ignored.
467   //    StringToDouble("+NaN") -> NaN  // NaN string literal.
468   //    StringToDouble("-infinity") -> -inf.  // infinity literal.
469   //    StringToDouble("Infinity") -> NaN  // junk_string_value.
470   //
471   //  flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
472   //  empty_string_value = 0.0,
473   //  junk_string_value = NaN,
474   //  infinity_symbol = NULL,
475   //  nan_symbol = NULL:
476   //    StringToDouble("0x1234") -> NaN  // junk_string_value.
477   //    StringToDouble("01234") -> 668.0.
478   //    StringToDouble("") -> 0.0  // empty_string_value.
479   //    StringToDouble(" ") -> 0.0  // empty_string_value.
480   //    StringToDouble(" 1") -> 1.0
481   //    StringToDouble("0x") -> NaN  // junk_string_value.
482   //    StringToDouble("0123e45") -> NaN  // junk_string_value.
483   //    StringToDouble("01239E45") -> 1239e45.
484   //    StringToDouble("-infinity") -> NaN  // junk_string_value.
485   //    StringToDouble("NaN") -> NaN  // junk_string_value.
StringToDoubleConverter(int flags,double empty_string_value,double junk_string_value,const char * infinity_symbol,const char * nan_symbol)486   StringToDoubleConverter(int flags,
487                           double empty_string_value,
488                           double junk_string_value,
489                           const char* infinity_symbol,
490                           const char* nan_symbol)
491       : flags_(flags),
492         empty_string_value_(empty_string_value),
493         junk_string_value_(junk_string_value),
494         infinity_symbol_(infinity_symbol),
495         nan_symbol_(nan_symbol) {
496   }
497 
498   // Performs the conversion.
499   // The output parameter 'processed_characters_count' is set to the number
500   // of characters that have been processed to read the number.
501   // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
502   // in the 'processed_characters_count'. Trailing junk is never included.
StringToDouble(const char * buffer,int length,int * processed_characters_count)503   double StringToDouble(const char* buffer,
504                         int length,
505                         int* processed_characters_count) const {
506     return StringToIeee(buffer, length, processed_characters_count, true);
507   }
508 
509   // Same as StringToDouble but reads a float.
510   // Note that this is not equivalent to static_cast<float>(StringToDouble(...))
511   // due to potential double-rounding.
StringToFloat(const char * buffer,int length,int * processed_characters_count)512   float StringToFloat(const char* buffer,
513                       int length,
514                       int* processed_characters_count) const {
515     return static_cast<float>(StringToIeee(buffer, length,
516                                            processed_characters_count, false));
517   }
518 
519  private:
520   const int flags_;
521   const double empty_string_value_;
522   const double junk_string_value_;
523   const char* const infinity_symbol_;
524   const char* const nan_symbol_;
525 
526   double StringToIeee(const char* buffer,
527                       int length,
528                       int* processed_characters_count,
529                       bool read_as_double) const;
530 
531   DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
532 };
533 
534 }  // namespace double_conversion
535 
536 #endif  // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
537