1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ 29 #define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ 30 31 #include "utils.h" 32 33 namespace double_conversion { 34 35 class DoubleToStringConverter { 36 public: 37 // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint 38 // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the 39 // function returns false. 40 static const int kMaxFixedDigitsBeforePoint = 60; 41 static const int kMaxFixedDigitsAfterPoint = 60; 42 43 // When calling ToExponential with a requested_digits 44 // parameter > kMaxExponentialDigits then the function returns false. 45 static const int kMaxExponentialDigits = 120; 46 47 // When calling ToPrecision with a requested_digits 48 // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits 49 // then the function returns false. 50 static const int kMinPrecisionDigits = 1; 51 static const int kMaxPrecisionDigits = 120; 52 53 enum Flags { 54 NO_FLAGS = 0, 55 EMIT_POSITIVE_EXPONENT_SIGN = 1, 56 EMIT_TRAILING_DECIMAL_POINT = 2, 57 EMIT_TRAILING_ZERO_AFTER_POINT = 4, 58 UNIQUE_ZERO = 8 59 }; 60 61 // Flags should be a bit-or combination of the possible Flags-enum. 62 // - NO_FLAGS: no special flags. 63 // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent 64 // form, emits a '+' for positive exponents. Example: 1.2e+2. 65 // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is 66 // converted into decimal format then a trailing decimal point is appended. 67 // Example: 2345.0 is converted to "2345.". 68 // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point 69 // emits a trailing '0'-character. This flag requires the 70 // EXMIT_TRAILING_DECIMAL_POINT flag. 71 // Example: 2345.0 is converted to "2345.0". 72 // - UNIQUE_ZERO: "-0.0" is converted to "0.0". 73 // 74 // Infinity symbol and nan_symbol provide the string representation for these 75 // special values. If the string is NULL and the special value is encountered 76 // then the conversion functions return false. 77 // 78 // The exponent_character is used in exponential representations. It is 79 // usually 'e' or 'E'. 80 // 81 // When converting to the shortest representation the converter will 82 // represent input numbers in decimal format if they are in the interval 83 // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[ 84 // (lower boundary included, greater boundary excluded). 85 // Example: with decimal_in_shortest_low = -6 and 86 // decimal_in_shortest_high = 21: 87 // ToShortest(0.000001) -> "0.000001" 88 // ToShortest(0.0000001) -> "1e-7" 89 // ToShortest(111111111111111111111.0) -> "111111111111111110000" 90 // ToShortest(100000000000000000000.0) -> "100000000000000000000" 91 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" 92 // 93 // When converting to precision mode the converter may add 94 // max_leading_padding_zeroes before returning the number in exponential 95 // format. 96 // Example with max_leading_padding_zeroes_in_precision_mode = 6. 97 // ToPrecision(0.0000012345, 2) -> "0.0000012" 98 // ToPrecision(0.00000012345, 2) -> "1.2e-7" 99 // Similarily the converter may add up to 100 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid 101 // returning an exponential representation. A zero added by the 102 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. 103 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: 104 // ToPrecision(230.0, 2) -> "230" 105 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. 106 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. DoubleToStringConverter(int flags,const char * infinity_symbol,const char * nan_symbol,char exponent_character,int decimal_in_shortest_low,int decimal_in_shortest_high,int max_leading_padding_zeroes_in_precision_mode,int max_trailing_padding_zeroes_in_precision_mode)107 DoubleToStringConverter(int flags, 108 const char* infinity_symbol, 109 const char* nan_symbol, 110 char exponent_character, 111 int decimal_in_shortest_low, 112 int decimal_in_shortest_high, 113 int max_leading_padding_zeroes_in_precision_mode, 114 int max_trailing_padding_zeroes_in_precision_mode) 115 : flags_(flags), 116 infinity_symbol_(infinity_symbol), 117 nan_symbol_(nan_symbol), 118 exponent_character_(exponent_character), 119 decimal_in_shortest_low_(decimal_in_shortest_low), 120 decimal_in_shortest_high_(decimal_in_shortest_high), 121 max_leading_padding_zeroes_in_precision_mode_( 122 max_leading_padding_zeroes_in_precision_mode), 123 max_trailing_padding_zeroes_in_precision_mode_( 124 max_trailing_padding_zeroes_in_precision_mode) { 125 // When 'trailing zero after the point' is set, then 'trailing point' 126 // must be set too. 127 ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) || 128 !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0)); 129 } 130 131 // Returns a converter following the EcmaScript specification. 132 static const DoubleToStringConverter& EcmaScriptConverter(); 133 134 // Computes the shortest string of digits that correctly represent the input 135 // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high 136 // (see constructor) it then either returns a decimal representation, or an 137 // exponential representation. 138 // Example with decimal_in_shortest_low = -6, 139 // decimal_in_shortest_high = 21, 140 // EMIT_POSITIVE_EXPONENT_SIGN activated, and 141 // EMIT_TRAILING_DECIMAL_POINT deactived: 142 // ToShortest(0.000001) -> "0.000001" 143 // ToShortest(0.0000001) -> "1e-7" 144 // ToShortest(111111111111111111111.0) -> "111111111111111110000" 145 // ToShortest(100000000000000000000.0) -> "100000000000000000000" 146 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" 147 // 148 // Note: the conversion may round the output if the returned string 149 // is accurate enough to uniquely identify the input-number. 150 // For example the most precise representation of the double 9e59 equals 151 // "899999999999999918767229449717619953810131273674690656206848", but 152 // the converter will return the shorter (but still correct) "9e59". 153 // 154 // Returns true if the conversion succeeds. The conversion always succeeds 155 // except when the input value is special and no infinity_symbol or 156 // nan_symbol has been given to the constructor. ToShortest(double value,StringBuilder * result_builder)157 bool ToShortest(double value, StringBuilder* result_builder) const { 158 return ToShortestIeeeNumber(value, result_builder, SHORTEST); 159 } 160 161 // Same as ToShortest, but for single-precision floats. ToShortestSingle(float value,StringBuilder * result_builder)162 bool ToShortestSingle(float value, StringBuilder* result_builder) const { 163 return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE); 164 } 165 166 167 // Computes a decimal representation with a fixed number of digits after the 168 // decimal point. The last emitted digit is rounded. 169 // 170 // Examples: 171 // ToFixed(3.12, 1) -> "3.1" 172 // ToFixed(3.1415, 3) -> "3.142" 173 // ToFixed(1234.56789, 4) -> "1234.5679" 174 // ToFixed(1.23, 5) -> "1.23000" 175 // ToFixed(0.1, 4) -> "0.1000" 176 // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00" 177 // ToFixed(0.1, 30) -> "0.100000000000000005551115123126" 178 // ToFixed(0.1, 17) -> "0.10000000000000001" 179 // 180 // If requested_digits equals 0, then the tail of the result depends on 181 // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT. 182 // Examples, for requested_digits == 0, 183 // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be 184 // - false and false: then 123.45 -> 123 185 // 0.678 -> 1 186 // - true and false: then 123.45 -> 123. 187 // 0.678 -> 1. 188 // - true and true: then 123.45 -> 123.0 189 // 0.678 -> 1.0 190 // 191 // Returns true if the conversion succeeds. The conversion always succeeds 192 // except for the following cases: 193 // - the input value is special and no infinity_symbol or nan_symbol has 194 // been provided to the constructor, 195 // - 'value' > 10^kMaxFixedDigitsBeforePoint, or 196 // - 'requested_digits' > kMaxFixedDigitsAfterPoint. 197 // The last two conditions imply that the result will never contain more than 198 // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters 199 // (one additional character for the sign, and one for the decimal point). 200 bool ToFixed(double value, 201 int requested_digits, 202 StringBuilder* result_builder) const; 203 204 // Computes a representation in exponential format with requested_digits 205 // after the decimal point. The last emitted digit is rounded. 206 // If requested_digits equals -1, then the shortest exponential representation 207 // is computed. 208 // 209 // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and 210 // exponent_character set to 'e'. 211 // ToExponential(3.12, 1) -> "3.1e0" 212 // ToExponential(5.0, 3) -> "5.000e0" 213 // ToExponential(0.001, 2) -> "1.00e-3" 214 // ToExponential(3.1415, -1) -> "3.1415e0" 215 // ToExponential(3.1415, 4) -> "3.1415e0" 216 // ToExponential(3.1415, 3) -> "3.142e0" 217 // ToExponential(123456789000000, 3) -> "1.235e14" 218 // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30" 219 // ToExponential(1000000000000000019884624838656.0, 32) -> 220 // "1.00000000000000001988462483865600e30" 221 // ToExponential(1234, 0) -> "1e3" 222 // 223 // Returns true if the conversion succeeds. The conversion always succeeds 224 // except for the following cases: 225 // - the input value is special and no infinity_symbol or nan_symbol has 226 // been provided to the constructor, 227 // - 'requested_digits' > kMaxExponentialDigits. 228 // The last condition implies that the result will never contain more than 229 // kMaxExponentialDigits + 8 characters (the sign, the digit before the 230 // decimal point, the decimal point, the exponent character, the 231 // exponent's sign, and at most 3 exponent digits). 232 bool ToExponential(double value, 233 int requested_digits, 234 StringBuilder* result_builder) const; 235 236 // Computes 'precision' leading digits of the given 'value' and returns them 237 // either in exponential or decimal format, depending on 238 // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the 239 // constructor). 240 // The last computed digit is rounded. 241 // 242 // Example with max_leading_padding_zeroes_in_precision_mode = 6. 243 // ToPrecision(0.0000012345, 2) -> "0.0000012" 244 // ToPrecision(0.00000012345, 2) -> "1.2e-7" 245 // Similarily the converter may add up to 246 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid 247 // returning an exponential representation. A zero added by the 248 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. 249 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: 250 // ToPrecision(230.0, 2) -> "230" 251 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. 252 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. 253 // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no 254 // EMIT_TRAILING_ZERO_AFTER_POINT: 255 // ToPrecision(123450.0, 6) -> "123450" 256 // ToPrecision(123450.0, 5) -> "123450" 257 // ToPrecision(123450.0, 4) -> "123500" 258 // ToPrecision(123450.0, 3) -> "123000" 259 // ToPrecision(123450.0, 2) -> "1.2e5" 260 // 261 // Returns true if the conversion succeeds. The conversion always succeeds 262 // except for the following cases: 263 // - the input value is special and no infinity_symbol or nan_symbol has 264 // been provided to the constructor, 265 // - precision < kMinPericisionDigits 266 // - precision > kMaxPrecisionDigits 267 // The last condition implies that the result will never contain more than 268 // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the 269 // exponent character, the exponent's sign, and at most 3 exponent digits). 270 bool ToPrecision(double value, 271 int precision, 272 StringBuilder* result_builder) const; 273 274 enum DtoaMode { 275 // Produce the shortest correct representation. 276 // For example the output of 0.299999999999999988897 is (the less accurate 277 // but correct) 0.3. 278 SHORTEST, 279 // Same as SHORTEST, but for single-precision floats. 280 SHORTEST_SINGLE, 281 // Produce a fixed number of digits after the decimal point. 282 // For instance fixed(0.1, 4) becomes 0.1000 283 // If the input number is big, the output will be big. 284 FIXED, 285 // Fixed number of digits (independent of the decimal point). 286 PRECISION 287 }; 288 289 // The maximal number of digits that are needed to emit a double in base 10. 290 // A higher precision can be achieved by using more digits, but the shortest 291 // accurate representation of any double will never use more digits than 292 // kBase10MaximalLength. 293 // Note that DoubleToAscii null-terminates its input. So the given buffer 294 // should be at least kBase10MaximalLength + 1 characters long. 295 static const int kBase10MaximalLength = 17; 296 297 // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or 298 // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v' 299 // after it has been casted to a single-precision float. That is, in this 300 // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity. 301 // 302 // The result should be interpreted as buffer * 10^(point-length). 303 // 304 // The output depends on the given mode: 305 // - SHORTEST: produce the least amount of digits for which the internal 306 // identity requirement is still satisfied. If the digits are printed 307 // (together with the correct exponent) then reading this number will give 308 // 'v' again. The buffer will choose the representation that is closest to 309 // 'v'. If there are two at the same distance, than the one farther away 310 // from 0 is chosen (halfway cases - ending with 5 - are rounded up). 311 // In this mode the 'requested_digits' parameter is ignored. 312 // - SHORTEST_SINGLE: same as SHORTEST but with single-precision. 313 // - FIXED: produces digits necessary to print a given number with 314 // 'requested_digits' digits after the decimal point. The produced digits 315 // might be too short in which case the caller has to fill the remainder 316 // with '0's. 317 // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2. 318 // Halfway cases are rounded towards +/-Infinity (away from 0). The call 319 // toFixed(0.15, 2) thus returns buffer="2", point=0. 320 // The returned buffer may contain digits that would be truncated from the 321 // shortest representation of the input. 322 // - PRECISION: produces 'requested_digits' where the first digit is not '0'. 323 // Even though the length of produced digits usually equals 324 // 'requested_digits', the function is allowed to return fewer digits, in 325 // which case the caller has to fill the missing digits with '0's. 326 // Halfway cases are again rounded away from 0. 327 // DoubleToAscii expects the given buffer to be big enough to hold all 328 // digits and a terminating null-character. In SHORTEST-mode it expects a 329 // buffer of at least kBase10MaximalLength + 1. In all other modes the 330 // requested_digits parameter and the padding-zeroes limit the size of the 331 // output. Don't forget the decimal point, the exponent character and the 332 // terminating null-character when computing the maximal output size. 333 // The given length is only used in debug mode to ensure the buffer is big 334 // enough. 335 static void DoubleToAscii(double v, 336 DtoaMode mode, 337 int requested_digits, 338 char* buffer, 339 int buffer_length, 340 bool* sign, 341 int* length, 342 int* point); 343 344 private: 345 // Implementation for ToShortest and ToShortestSingle. 346 bool ToShortestIeeeNumber(double value, 347 StringBuilder* result_builder, 348 DtoaMode mode) const; 349 350 // If the value is a special value (NaN or Infinity) constructs the 351 // corresponding string using the configured infinity/nan-symbol. 352 // If either of them is NULL or the value is not special then the 353 // function returns false. 354 bool HandleSpecialValues(double value, StringBuilder* result_builder) const; 355 // Constructs an exponential representation (i.e. 1.234e56). 356 // The given exponent assumes a decimal point after the first decimal digit. 357 void CreateExponentialRepresentation(const char* decimal_digits, 358 int length, 359 int exponent, 360 StringBuilder* result_builder) const; 361 // Creates a decimal representation (i.e 1234.5678). 362 void CreateDecimalRepresentation(const char* decimal_digits, 363 int length, 364 int decimal_point, 365 int digits_after_point, 366 StringBuilder* result_builder) const; 367 368 const int flags_; 369 const char* const infinity_symbol_; 370 const char* const nan_symbol_; 371 const char exponent_character_; 372 const int decimal_in_shortest_low_; 373 const int decimal_in_shortest_high_; 374 const int max_leading_padding_zeroes_in_precision_mode_; 375 const int max_trailing_padding_zeroes_in_precision_mode_; 376 377 DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter); 378 }; 379 380 381 class StringToDoubleConverter { 382 public: 383 // Enumeration for allowing octals and ignoring junk when converting 384 // strings to numbers. 385 enum Flags { 386 NO_FLAGS = 0, 387 ALLOW_HEX = 1, 388 ALLOW_OCTALS = 2, 389 ALLOW_TRAILING_JUNK = 4, 390 ALLOW_LEADING_SPACES = 8, 391 ALLOW_TRAILING_SPACES = 16, 392 ALLOW_SPACES_AFTER_SIGN = 32 393 }; 394 395 // Flags should be a bit-or combination of the possible Flags-enum. 396 // - NO_FLAGS: no special flags. 397 // - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers. 398 // Ex: StringToDouble("0x1234") -> 4660.0 399 // In StringToDouble("0x1234.56") the characters ".56" are trailing 400 // junk. The result of the call is hence dependent on 401 // the ALLOW_TRAILING_JUNK flag and/or the junk value. 402 // With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK, 403 // the string will not be parsed as "0" followed by junk. 404 // 405 // - ALLOW_OCTALS: recognizes the prefix "0" for octals: 406 // If a sequence of octal digits starts with '0', then the number is 407 // read as octal integer. Octal numbers may only be integers. 408 // Ex: StringToDouble("01234") -> 668.0 409 // StringToDouble("012349") -> 12349.0 // Not a sequence of octal 410 // // digits. 411 // In StringToDouble("01234.56") the characters ".56" are trailing 412 // junk. The result of the call is hence dependent on 413 // the ALLOW_TRAILING_JUNK flag and/or the junk value. 414 // In StringToDouble("01234e56") the characters "e56" are trailing 415 // junk, too. 416 // - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of 417 // a double literal. 418 // - ALLOW_LEADING_SPACES: skip over leading spaces. 419 // - ALLOW_TRAILING_SPACES: ignore trailing spaces. 420 // - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign. 421 // Ex: StringToDouble("- 123.2") -> -123.2. 422 // StringToDouble("+ 123.2") -> 123.2 423 // 424 // empty_string_value is returned when an empty string is given as input. 425 // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string 426 // containing only spaces is converted to the 'empty_string_value', too. 427 // 428 // junk_string_value is returned when 429 // a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not 430 // part of a double-literal) is found. 431 // b) ALLOW_TRAILING_JUNK is set, but the string does not start with a 432 // double literal. 433 // 434 // infinity_symbol and nan_symbol are strings that are used to detect 435 // inputs that represent infinity and NaN. They can be null, in which case 436 // they are ignored. 437 // The conversion routine first reads any possible signs. Then it compares the 438 // following character of the input-string with the first character of 439 // the infinity, and nan-symbol. If either matches, the function assumes, that 440 // a match has been found, and expects the following input characters to match 441 // the remaining characters of the special-value symbol. 442 // This means that the following restrictions apply to special-value symbols: 443 // - they must not start with signs ('+', or '-'), 444 // - they must not have the same first character. 445 // - they must not start with digits. 446 // 447 // Examples: 448 // flags = ALLOW_HEX | ALLOW_TRAILING_JUNK, 449 // empty_string_value = 0.0, 450 // junk_string_value = NaN, 451 // infinity_symbol = "infinity", 452 // nan_symbol = "nan": 453 // StringToDouble("0x1234") -> 4660.0. 454 // StringToDouble("0x1234K") -> 4660.0. 455 // StringToDouble("") -> 0.0 // empty_string_value. 456 // StringToDouble(" ") -> NaN // junk_string_value. 457 // StringToDouble(" 1") -> NaN // junk_string_value. 458 // StringToDouble("0x") -> NaN // junk_string_value. 459 // StringToDouble("-123.45") -> -123.45. 460 // StringToDouble("--123.45") -> NaN // junk_string_value. 461 // StringToDouble("123e45") -> 123e45. 462 // StringToDouble("123E45") -> 123e45. 463 // StringToDouble("123e+45") -> 123e45. 464 // StringToDouble("123E-45") -> 123e-45. 465 // StringToDouble("123e") -> 123.0 // trailing junk ignored. 466 // StringToDouble("123e-") -> 123.0 // trailing junk ignored. 467 // StringToDouble("+NaN") -> NaN // NaN string literal. 468 // StringToDouble("-infinity") -> -inf. // infinity literal. 469 // StringToDouble("Infinity") -> NaN // junk_string_value. 470 // 471 // flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES, 472 // empty_string_value = 0.0, 473 // junk_string_value = NaN, 474 // infinity_symbol = NULL, 475 // nan_symbol = NULL: 476 // StringToDouble("0x1234") -> NaN // junk_string_value. 477 // StringToDouble("01234") -> 668.0. 478 // StringToDouble("") -> 0.0 // empty_string_value. 479 // StringToDouble(" ") -> 0.0 // empty_string_value. 480 // StringToDouble(" 1") -> 1.0 481 // StringToDouble("0x") -> NaN // junk_string_value. 482 // StringToDouble("0123e45") -> NaN // junk_string_value. 483 // StringToDouble("01239E45") -> 1239e45. 484 // StringToDouble("-infinity") -> NaN // junk_string_value. 485 // StringToDouble("NaN") -> NaN // junk_string_value. StringToDoubleConverter(int flags,double empty_string_value,double junk_string_value,const char * infinity_symbol,const char * nan_symbol)486 StringToDoubleConverter(int flags, 487 double empty_string_value, 488 double junk_string_value, 489 const char* infinity_symbol, 490 const char* nan_symbol) 491 : flags_(flags), 492 empty_string_value_(empty_string_value), 493 junk_string_value_(junk_string_value), 494 infinity_symbol_(infinity_symbol), 495 nan_symbol_(nan_symbol) { 496 } 497 498 // Performs the conversion. 499 // The output parameter 'processed_characters_count' is set to the number 500 // of characters that have been processed to read the number. 501 // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included 502 // in the 'processed_characters_count'. Trailing junk is never included. StringToDouble(const char * buffer,int length,int * processed_characters_count)503 double StringToDouble(const char* buffer, 504 int length, 505 int* processed_characters_count) const { 506 return StringToIeee(buffer, length, processed_characters_count, true); 507 } 508 509 // Same as StringToDouble but reads a float. 510 // Note that this is not equivalent to static_cast<float>(StringToDouble(...)) 511 // due to potential double-rounding. StringToFloat(const char * buffer,int length,int * processed_characters_count)512 float StringToFloat(const char* buffer, 513 int length, 514 int* processed_characters_count) const { 515 return static_cast<float>(StringToIeee(buffer, length, 516 processed_characters_count, false)); 517 } 518 519 private: 520 const int flags_; 521 const double empty_string_value_; 522 const double junk_string_value_; 523 const char* const infinity_symbol_; 524 const char* const nan_symbol_; 525 526 double StringToIeee(const char* buffer, 527 int length, 528 int* processed_characters_count, 529 bool read_as_double) const; 530 531 DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter); 532 }; 533 534 } // namespace double_conversion 535 536 #endif // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ 537