1 /**
2  *  \brief HAVEGE: HArdware Volatile Entropy Gathering and Expansion
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6  *
7  *  This file is provided under the Apache License 2.0, or the
8  *  GNU General Public License v2.0 or later.
9  *
10  *  **********
11  *  Apache License 2.0:
12  *
13  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
14  *  not use this file except in compliance with the License.
15  *  You may obtain a copy of the License at
16  *
17  *  http://www.apache.org/licenses/LICENSE-2.0
18  *
19  *  Unless required by applicable law or agreed to in writing, software
20  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
21  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
22  *  See the License for the specific language governing permissions and
23  *  limitations under the License.
24  *
25  *  **********
26  *
27  *  **********
28  *  GNU General Public License v2.0 or later:
29  *
30  *  This program is free software; you can redistribute it and/or modify
31  *  it under the terms of the GNU General Public License as published by
32  *  the Free Software Foundation; either version 2 of the License, or
33  *  (at your option) any later version.
34  *
35  *  This program is distributed in the hope that it will be useful,
36  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
37  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
38  *  GNU General Public License for more details.
39  *
40  *  You should have received a copy of the GNU General Public License along
41  *  with this program; if not, write to the Free Software Foundation, Inc.,
42  *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
43  *
44  *  **********
45  */
46 /*
47  *  The HAVEGE RNG was designed by Andre Seznec in 2002.
48  *
49  *  http://www.irisa.fr/caps/projects/hipsor/publi.php
50  *
51  *  Contact: seznec(at)irisa_dot_fr - orocheco(at)irisa_dot_fr
52  */
53 
54 #if !defined(MBEDTLS_CONFIG_FILE)
55 #include "mbedtls/config.h"
56 #else
57 #include MBEDTLS_CONFIG_FILE
58 #endif
59 
60 #if defined(MBEDTLS_HAVEGE_C)
61 
62 #include "mbedtls/havege.h"
63 #include "mbedtls/timing.h"
64 #include "mbedtls/platform_util.h"
65 
66 #include <limits.h>
67 #include <string.h>
68 
69 /* If int isn't capable of storing 2^32 distinct values, the code of this
70  * module may cause a processor trap or a miscalculation. If int is more
71  * than 32 bits, the code may not calculate the intended values. */
72 #if INT_MIN + 1 != -0x7fffffff
73 #error "The HAVEGE module requires int to be exactly 32 bits, with INT_MIN = -2^31."
74 #endif
75 #if UINT_MAX != 0xffffffff
76 #error "The HAVEGE module requires unsigned to be exactly 32 bits."
77 #endif
78 
79 /* ------------------------------------------------------------------------
80  * On average, one iteration accesses two 8-word blocks in the havege WALK
81  * table, and generates 16 words in the RES array.
82  *
83  * The data read in the WALK table is updated and permuted after each use.
84  * The result of the hardware clock counter read is used  for this update.
85  *
86  * 25 conditional tests are present.  The conditional tests are grouped in
87  * two nested  groups of 12 conditional tests and 1 test that controls the
88  * permutation; on average, there should be 6 tests executed and 3 of them
89  * should be mispredicted.
90  * ------------------------------------------------------------------------
91  */
92 
93 #define SWAP(X,Y) { unsigned *T = (X); (X) = (Y); (Y) = T; }
94 
95 #define TST1_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;
96 #define TST2_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;
97 
98 #define TST1_LEAVE U1++; }
99 #define TST2_LEAVE U2++; }
100 
101 #define ONE_ITERATION                                   \
102                                                         \
103     PTEST = PT1 >> 20;                                  \
104                                                         \
105     TST1_ENTER  TST1_ENTER  TST1_ENTER  TST1_ENTER      \
106     TST1_ENTER  TST1_ENTER  TST1_ENTER  TST1_ENTER      \
107     TST1_ENTER  TST1_ENTER  TST1_ENTER  TST1_ENTER      \
108                                                         \
109     TST1_LEAVE  TST1_LEAVE  TST1_LEAVE  TST1_LEAVE      \
110     TST1_LEAVE  TST1_LEAVE  TST1_LEAVE  TST1_LEAVE      \
111     TST1_LEAVE  TST1_LEAVE  TST1_LEAVE  TST1_LEAVE      \
112                                                         \
113     PTX = (PT1 >> 18) & 7;                              \
114     PT1 &= 0x1FFF;                                      \
115     PT2 &= 0x1FFF;                                      \
116     CLK = (unsigned) mbedtls_timing_hardclock();        \
117                                                         \
118     i = 0;                                              \
119     A = &WALK[PT1    ]; RES[i++] ^= *A;                 \
120     B = &WALK[PT2    ]; RES[i++] ^= *B;                 \
121     C = &WALK[PT1 ^ 1]; RES[i++] ^= *C;                 \
122     D = &WALK[PT2 ^ 4]; RES[i++] ^= *D;                 \
123                                                         \
124     IN = (*A >> (1)) ^ (*A << (31)) ^ CLK;              \
125     *A = (*B >> (2)) ^ (*B << (30)) ^ CLK;              \
126     *B = IN ^ U1;                                       \
127     *C = (*C >> (3)) ^ (*C << (29)) ^ CLK;              \
128     *D = (*D >> (4)) ^ (*D << (28)) ^ CLK;              \
129                                                         \
130     A = &WALK[PT1 ^ 2]; RES[i++] ^= *A;                 \
mbedtls_gcm_init(mbedtls_gcm_context * ctx)131     B = &WALK[PT2 ^ 2]; RES[i++] ^= *B;                 \
132     C = &WALK[PT1 ^ 3]; RES[i++] ^= *C;                 \
133     D = &WALK[PT2 ^ 6]; RES[i++] ^= *D;                 \
134                                                         \
135     if( PTEST & 1 ) SWAP( A, C );                       \
136                                                         \
137     IN = (*A >> (5)) ^ (*A << (27)) ^ CLK;              \
138     *A = (*B >> (6)) ^ (*B << (26)) ^ CLK;              \
139     *B = IN; CLK = (unsigned) mbedtls_timing_hardclock(); \
140     *C = (*C >> (7)) ^ (*C << (25)) ^ CLK;              \
141     *D = (*D >> (8)) ^ (*D << (24)) ^ CLK;              \
142                                                         \
143     A = &WALK[PT1 ^ 4];                                 \
144     B = &WALK[PT2 ^ 1];                                 \
gcm_gen_table(mbedtls_gcm_context * ctx)145                                                         \
146     PTEST = PT2 >> 1;                                   \
147                                                         \
148     PT2 = (RES[(i - 8) ^ PTY] ^ WALK[PT2 ^ PTY ^ 7]);   \
149     PT2 = ((PT2 & 0x1FFF) & (~8)) ^ ((PT1 ^ 8) & 0x8);  \
150     PTY = (PT2 >> 10) & 7;                              \
151                                                         \
152     TST2_ENTER  TST2_ENTER  TST2_ENTER  TST2_ENTER      \
153     TST2_ENTER  TST2_ENTER  TST2_ENTER  TST2_ENTER      \
154     TST2_ENTER  TST2_ENTER  TST2_ENTER  TST2_ENTER      \
155                                                         \
156     TST2_LEAVE  TST2_LEAVE  TST2_LEAVE  TST2_LEAVE      \
157     TST2_LEAVE  TST2_LEAVE  TST2_LEAVE  TST2_LEAVE      \
158     TST2_LEAVE  TST2_LEAVE  TST2_LEAVE  TST2_LEAVE      \
159                                                         \
160     C = &WALK[PT1 ^ 5];                                 \
161     D = &WALK[PT2 ^ 5];                                 \
162                                                         \
163     RES[i++] ^= *A;                                     \
164     RES[i++] ^= *B;                                     \
165     RES[i++] ^= *C;                                     \
166     RES[i++] ^= *D;                                     \
167                                                         \
168     IN = (*A >> ( 9)) ^ (*A << (23)) ^ CLK;             \
169     *A = (*B >> (10)) ^ (*B << (22)) ^ CLK;             \
170     *B = IN ^ U2;                                       \
171     *C = (*C >> (11)) ^ (*C << (21)) ^ CLK;             \
172     *D = (*D >> (12)) ^ (*D << (20)) ^ CLK;             \
173                                                         \
174     A = &WALK[PT1 ^ 6]; RES[i++] ^= *A;                 \
175     B = &WALK[PT2 ^ 3]; RES[i++] ^= *B;                 \
176     C = &WALK[PT1 ^ 7]; RES[i++] ^= *C;                 \
177     D = &WALK[PT2 ^ 7]; RES[i++] ^= *D;                 \
178                                                         \
179     IN = (*A >> (13)) ^ (*A << (19)) ^ CLK;             \
180     *A = (*B >> (14)) ^ (*B << (18)) ^ CLK;             \
181     *B = IN;                                            \
182     *C = (*C >> (15)) ^ (*C << (17)) ^ CLK;             \
183     *D = (*D >> (16)) ^ (*D << (16)) ^ CLK;             \
184                                                         \
185     PT1 = ( RES[( i - 8 ) ^ PTX] ^                      \
186             WALK[PT1 ^ PTX ^ 7] ) & (~1);               \
187     PT1 ^= (PT2 ^ 0x10) & 0x10;                         \
188                                                         \
189     for( n++, i = 0; i < 16; i++ )                      \
190         POOL[n % MBEDTLS_HAVEGE_COLLECT_SIZE] ^= RES[i];
191 
192 /*
193  * Entropy gathering function
194  */
195 static void havege_fill( mbedtls_havege_state *hs )
196 {
197     unsigned i, n = 0;
198     unsigned  U1,  U2, *A, *B, *C, *D;
199     unsigned PT1, PT2, *WALK, *POOL, RES[16];
200     unsigned PTX, PTY, CLK, PTEST, IN;
201 
202     WALK = (unsigned *) hs->WALK;
203     POOL = (unsigned *) hs->pool;
204     PT1  = hs->PT1;
mbedtls_gcm_setkey(mbedtls_gcm_context * ctx,mbedtls_cipher_id_t cipher,const unsigned char * key,unsigned int keybits)205     PT2  = hs->PT2;
206 
207     PTX  = U1 = 0;
208     PTY  = U2 = 0;
209 
210     (void)PTX;
211 
212     memset( RES, 0, sizeof( RES ) );
213 
214     while( n < MBEDTLS_HAVEGE_COLLECT_SIZE * 4 )
215     {
216         ONE_ITERATION
217         ONE_ITERATION
218         ONE_ITERATION
219         ONE_ITERATION
220     }
221 
222     hs->PT1 = PT1;
223     hs->PT2 = PT2;
224 
225     hs->offset[0] = 0;
226     hs->offset[1] = MBEDTLS_HAVEGE_COLLECT_SIZE / 2;
227 }
228 
229 /*
230  * HAVEGE initialization
231  */
232 void mbedtls_havege_init( mbedtls_havege_state *hs )
233 {
234     memset( hs, 0, sizeof( mbedtls_havege_state ) );
235 
236     havege_fill( hs );
237 }
238 
239 void mbedtls_havege_free( mbedtls_havege_state *hs )
240 {
241     if( hs == NULL )
242         return;
243 
244     mbedtls_platform_zeroize( hs, sizeof( mbedtls_havege_state ) );
245 }
246 
247 /*
248  * HAVEGE rand function
249  */
250 int mbedtls_havege_random( void *p_rng, unsigned char *buf, size_t len )
251 {
252     int val;
253     size_t use_len;
254     mbedtls_havege_state *hs = (mbedtls_havege_state *) p_rng;
255     unsigned char *p = buf;
256 
257     while( len > 0 )
gcm_mult(mbedtls_gcm_context * ctx,const unsigned char x[16],unsigned char output[16])258     {
259         use_len = len;
260         if( use_len > sizeof(int) )
261             use_len = sizeof(int);
262 
263         if( hs->offset[1] >= MBEDTLS_HAVEGE_COLLECT_SIZE )
264             havege_fill( hs );
265 
266         val  = hs->pool[hs->offset[0]++];
267         val ^= hs->pool[hs->offset[1]++];
268 
269         memcpy( p, &val, use_len );
270 
271         len -= use_len;
272         p += use_len;
273     }
274 
275     return( 0 );
276 }
277 
278 #endif /* MBEDTLS_HAVEGE_C */
279