1 /*#define CHASE_CHAIN*/
2 /*
3  * Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
4  *	The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that: (1) source code distributions
8  * retain the above copyright notice and this paragraph in its entirety, (2)
9  * distributions including binary code include the above copyright notice and
10  * this paragraph in its entirety in the documentation or other materials
11  * provided with the distribution, and (3) all advertising materials mentioning
12  * features or use of this software display the following acknowledgement:
13  * ``This product includes software developed by the University of California,
14  * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
15  * the University nor the names of its contributors may be used to endorse
16  * or promote products derived from this software without specific prior
17  * written permission.
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
21  */
22 
23 #ifdef HAVE_CONFIG_H
24 #include <config.h>
25 #endif
26 
27 #include <pcap-types.h>
28 #ifdef _WIN32
29   #include <ws2tcpip.h>
30 #else
31   #include <sys/socket.h>
32 
33   #ifdef __NetBSD__
34     #include <sys/param.h>
35   #endif
36 
37   #include <netinet/in.h>
38   #include <arpa/inet.h>
39 #endif /* _WIN32 */
40 
41 #include <stdlib.h>
42 #include <string.h>
43 #include <memory.h>
44 #include <setjmp.h>
45 #include <stdarg.h>
46 
47 #ifdef MSDOS
48 #include "pcap-dos.h"
49 #endif
50 
51 #include "pcap-int.h"
52 
53 #include "extract.h"
54 
55 #include "ethertype.h"
56 #include "nlpid.h"
57 #include "llc.h"
58 #include "gencode.h"
59 #include "ieee80211.h"
60 #include "atmuni31.h"
61 #include "sunatmpos.h"
62 #include "ppp.h"
63 #include "pcap/sll.h"
64 #include "pcap/ipnet.h"
65 #include "arcnet.h"
66 
67 #include "grammar.h"
68 #include "scanner.h"
69 
70 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
71 #include <linux/types.h>
72 #include <linux/if_packet.h>
73 #include <linux/filter.h>
74 #endif
75 
76 #ifdef HAVE_NET_PFVAR_H
77 #include <sys/socket.h>
78 #include <net/if.h>
79 #include <net/pfvar.h>
80 #include <net/if_pflog.h>
81 #endif
82 
83 #ifndef offsetof
84 #define offsetof(s, e) ((size_t)&((s *)0)->e)
85 #endif
86 
87 #ifdef _WIN32
88   #ifdef INET6
89     #if defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF)
90 /* IPv6 address */
91 struct in6_addr
92   {
93     union
94       {
95 	uint8_t		u6_addr8[16];
96 	uint16_t	u6_addr16[8];
97 	uint32_t	u6_addr32[4];
98       } in6_u;
99 #define s6_addr			in6_u.u6_addr8
100 #define s6_addr16		in6_u.u6_addr16
101 #define s6_addr32		in6_u.u6_addr32
102 #define s6_addr64		in6_u.u6_addr64
103   };
104 
105 typedef unsigned short	sa_family_t;
106 
107 #define	__SOCKADDR_COMMON(sa_prefix) \
108   sa_family_t sa_prefix##family
109 
110 /* Ditto, for IPv6.  */
111 struct sockaddr_in6
112   {
113     __SOCKADDR_COMMON (sin6_);
114     uint16_t sin6_port;		/* Transport layer port # */
115     uint32_t sin6_flowinfo;	/* IPv6 flow information */
116     struct in6_addr sin6_addr;	/* IPv6 address */
117   };
118 
119       #ifndef EAI_ADDRFAMILY
120 struct addrinfo {
121 	int	ai_flags;	/* AI_PASSIVE, AI_CANONNAME */
122 	int	ai_family;	/* PF_xxx */
123 	int	ai_socktype;	/* SOCK_xxx */
124 	int	ai_protocol;	/* 0 or IPPROTO_xxx for IPv4 and IPv6 */
125 	size_t	ai_addrlen;	/* length of ai_addr */
126 	char	*ai_canonname;	/* canonical name for hostname */
127 	struct sockaddr *ai_addr;	/* binary address */
128 	struct addrinfo *ai_next;	/* next structure in linked list */
129 };
130       #endif /* EAI_ADDRFAMILY */
131     #endif /* defined(__MINGW32__) && defined(DEFINE_ADDITIONAL_IPV6_STUFF) */
132   #endif /* INET6 */
133 #else /* _WIN32 */
134   #include <netdb.h>	/* for "struct addrinfo" */
135 #endif /* _WIN32 */
136 #include <pcap/namedb.h>
137 
138 #include "nametoaddr.h"
139 
140 #define ETHERMTU	1500
141 
142 #ifndef ETHERTYPE_TEB
143 #define ETHERTYPE_TEB 0x6558
144 #endif
145 
146 #ifndef IPPROTO_HOPOPTS
147 #define IPPROTO_HOPOPTS 0
148 #endif
149 #ifndef IPPROTO_ROUTING
150 #define IPPROTO_ROUTING 43
151 #endif
152 #ifndef IPPROTO_FRAGMENT
153 #define IPPROTO_FRAGMENT 44
154 #endif
155 #ifndef IPPROTO_DSTOPTS
156 #define IPPROTO_DSTOPTS 60
157 #endif
158 #ifndef IPPROTO_SCTP
159 #define IPPROTO_SCTP 132
160 #endif
161 
162 #define GENEVE_PORT 6081
163 
164 #ifdef HAVE_OS_PROTO_H
165 #include "os-proto.h"
166 #endif
167 
168 #define JMP(c) ((c)|BPF_JMP|BPF_K)
169 
170 /*
171  * "Push" the current value of the link-layer header type and link-layer
172  * header offset onto a "stack", and set a new value.  (It's not a
173  * full-blown stack; we keep only the top two items.)
174  */
175 #define PUSH_LINKHDR(cs, new_linktype, new_is_variable, new_constant_part, new_reg) \
176 { \
177 	(cs)->prevlinktype = (cs)->linktype; \
178 	(cs)->off_prevlinkhdr = (cs)->off_linkhdr; \
179 	(cs)->linktype = (new_linktype); \
180 	(cs)->off_linkhdr.is_variable = (new_is_variable); \
181 	(cs)->off_linkhdr.constant_part = (new_constant_part); \
182 	(cs)->off_linkhdr.reg = (new_reg); \
183 	(cs)->is_geneve = 0; \
184 }
185 
186 /*
187  * Offset "not set" value.
188  */
189 #define OFFSET_NOT_SET	0xffffffffU
190 
191 /*
192  * Absolute offsets, which are offsets from the beginning of the raw
193  * packet data, are, in the general case, the sum of a variable value
194  * and a constant value; the variable value may be absent, in which
195  * case the offset is only the constant value, and the constant value
196  * may be zero, in which case the offset is only the variable value.
197  *
198  * bpf_abs_offset is a structure containing all that information:
199  *
200  *   is_variable is 1 if there's a variable part.
201  *
202  *   constant_part is the constant part of the value, possibly zero;
203  *
204  *   if is_variable is 1, reg is the register number for a register
205  *   containing the variable value if the register has been assigned,
206  *   and -1 otherwise.
207  */
208 typedef struct {
209 	int	is_variable;
210 	u_int	constant_part;
211 	int	reg;
212 } bpf_abs_offset;
213 
214 /*
215  * Value passed to gen_load_a() to indicate what the offset argument
216  * is relative to the beginning of.
217  */
218 enum e_offrel {
219 	OR_PACKET,		/* full packet data */
220 	OR_LINKHDR,		/* link-layer header */
221 	OR_PREVLINKHDR,		/* previous link-layer header */
222 	OR_LLC,			/* 802.2 LLC header */
223 	OR_PREVMPLSHDR,		/* previous MPLS header */
224 	OR_LINKTYPE,		/* link-layer type */
225 	OR_LINKPL,		/* link-layer payload */
226 	OR_LINKPL_NOSNAP,	/* link-layer payload, with no SNAP header at the link layer */
227 	OR_TRAN_IPV4,		/* transport-layer header, with IPv4 network layer */
228 	OR_TRAN_IPV6		/* transport-layer header, with IPv6 network layer */
229 };
230 
231 /*
232  * We divy out chunks of memory rather than call malloc each time so
233  * we don't have to worry about leaking memory.  It's probably
234  * not a big deal if all this memory was wasted but if this ever
235  * goes into a library that would probably not be a good idea.
236  *
237  * XXX - this *is* in a library....
238  */
239 #define NCHUNKS 16
240 #define CHUNK0SIZE 1024
241 struct chunk {
242 	size_t n_left;
243 	void *m;
244 };
245 
246 /* Code generator state */
247 
248 struct _compiler_state {
249 	jmp_buf top_ctx;
250 	pcap_t *bpf_pcap;
251 
252 	struct icode ic;
253 
254 	int snaplen;
255 
256 	int linktype;
257 	int prevlinktype;
258 	int outermostlinktype;
259 
260 	bpf_u_int32 netmask;
261 	int no_optimize;
262 
263 	/* Hack for handling VLAN and MPLS stacks. */
264 	u_int label_stack_depth;
265 	u_int vlan_stack_depth;
266 
267 	/* XXX */
268 	u_int pcap_fddipad;
269 
270 	/*
271 	 * As errors are handled by a longjmp, anything allocated must
272 	 * be freed in the longjmp handler, so it must be reachable
273 	 * from that handler.
274 	 *
275 	 * One thing that's allocated is the result of pcap_nametoaddrinfo();
276 	 * it must be freed with freeaddrinfo().  This variable points to
277 	 * any addrinfo structure that would need to be freed.
278 	 */
279 	struct addrinfo *ai;
280 
281 	/*
282 	 * Another thing that's allocated is the result of pcap_ether_aton();
283 	 * it must be freed with free().  This variable points to any
284 	 * address that would need to be freed.
285 	 */
286 	u_char *e;
287 
288 	/*
289 	 * Various code constructs need to know the layout of the packet.
290 	 * These values give the necessary offsets from the beginning
291 	 * of the packet data.
292 	 */
293 
294 	/*
295 	 * Absolute offset of the beginning of the link-layer header.
296 	 */
297 	bpf_abs_offset off_linkhdr;
298 
299 	/*
300 	 * If we're checking a link-layer header for a packet encapsulated
301 	 * in another protocol layer, this is the equivalent information
302 	 * for the previous layers' link-layer header from the beginning
303 	 * of the raw packet data.
304 	 */
305 	bpf_abs_offset off_prevlinkhdr;
306 
307 	/*
308 	 * This is the equivalent information for the outermost layers'
309 	 * link-layer header.
310 	 */
311 	bpf_abs_offset off_outermostlinkhdr;
312 
313 	/*
314 	 * Absolute offset of the beginning of the link-layer payload.
315 	 */
316 	bpf_abs_offset off_linkpl;
317 
318 	/*
319 	 * "off_linktype" is the offset to information in the link-layer
320 	 * header giving the packet type. This is an absolute offset
321 	 * from the beginning of the packet.
322 	 *
323 	 * For Ethernet, it's the offset of the Ethernet type field; this
324 	 * means that it must have a value that skips VLAN tags.
325 	 *
326 	 * For link-layer types that always use 802.2 headers, it's the
327 	 * offset of the LLC header; this means that it must have a value
328 	 * that skips VLAN tags.
329 	 *
330 	 * For PPP, it's the offset of the PPP type field.
331 	 *
332 	 * For Cisco HDLC, it's the offset of the CHDLC type field.
333 	 *
334 	 * For BSD loopback, it's the offset of the AF_ value.
335 	 *
336 	 * For Linux cooked sockets, it's the offset of the type field.
337 	 *
338 	 * off_linktype.constant_part is set to OFFSET_NOT_SET for no
339 	 * encapsulation, in which case, IP is assumed.
340 	 */
341 	bpf_abs_offset off_linktype;
342 
343 	/*
344 	 * TRUE if the link layer includes an ATM pseudo-header.
345 	 */
346 	int is_atm;
347 
348 	/*
349 	 * TRUE if "geneve" appeared in the filter; it causes us to
350 	 * generate code that checks for a Geneve header and assume
351 	 * that later filters apply to the encapsulated payload.
352 	 */
353 	int is_geneve;
354 
355 	/*
356 	 * TRUE if we need variable length part of VLAN offset
357 	 */
358 	int is_vlan_vloffset;
359 
360 	/*
361 	 * These are offsets for the ATM pseudo-header.
362 	 */
363 	u_int off_vpi;
364 	u_int off_vci;
365 	u_int off_proto;
366 
367 	/*
368 	 * These are offsets for the MTP2 fields.
369 	 */
370 	u_int off_li;
371 	u_int off_li_hsl;
372 
373 	/*
374 	 * These are offsets for the MTP3 fields.
375 	 */
376 	u_int off_sio;
377 	u_int off_opc;
378 	u_int off_dpc;
379 	u_int off_sls;
380 
381 	/*
382 	 * This is the offset of the first byte after the ATM pseudo_header,
383 	 * or -1 if there is no ATM pseudo-header.
384 	 */
385 	u_int off_payload;
386 
387 	/*
388 	 * These are offsets to the beginning of the network-layer header.
389 	 * They are relative to the beginning of the link-layer payload
390 	 * (i.e., they don't include off_linkhdr.constant_part or
391 	 * off_linkpl.constant_part).
392 	 *
393 	 * If the link layer never uses 802.2 LLC:
394 	 *
395 	 *	"off_nl" and "off_nl_nosnap" are the same.
396 	 *
397 	 * If the link layer always uses 802.2 LLC:
398 	 *
399 	 *	"off_nl" is the offset if there's a SNAP header following
400 	 *	the 802.2 header;
401 	 *
402 	 *	"off_nl_nosnap" is the offset if there's no SNAP header.
403 	 *
404 	 * If the link layer is Ethernet:
405 	 *
406 	 *	"off_nl" is the offset if the packet is an Ethernet II packet
407 	 *	(we assume no 802.3+802.2+SNAP);
408 	 *
409 	 *	"off_nl_nosnap" is the offset if the packet is an 802.3 packet
410 	 *	with an 802.2 header following it.
411 	 */
412 	u_int off_nl;
413 	u_int off_nl_nosnap;
414 
415 	/*
416 	 * Here we handle simple allocation of the scratch registers.
417 	 * If too many registers are alloc'd, the allocator punts.
418 	 */
419 	int regused[BPF_MEMWORDS];
420 	int curreg;
421 
422 	/*
423 	 * Memory chunks.
424 	 */
425 	struct chunk chunks[NCHUNKS];
426 	int cur_chunk;
427 };
428 
429 /*
430  * For use by routines outside this file.
431  */
432 /* VARARGS */
433 void
bpf_set_error(compiler_state_t * cstate,const char * fmt,...)434 bpf_set_error(compiler_state_t *cstate, const char *fmt, ...)
435 {
436 	va_list ap;
437 
438 	va_start(ap, fmt);
439 	(void)pcap_vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
440 	    fmt, ap);
441 	va_end(ap);
442 }
443 
444 /*
445  * For use *ONLY* in routines in this file.
446  */
447 static void PCAP_NORETURN bpf_error(compiler_state_t *, const char *, ...)
448     PCAP_PRINTFLIKE(2, 3);
449 
450 /* VARARGS */
451 static void PCAP_NORETURN
bpf_error(compiler_state_t * cstate,const char * fmt,...)452 bpf_error(compiler_state_t *cstate, const char *fmt, ...)
453 {
454 	va_list ap;
455 
456 	va_start(ap, fmt);
457 	(void)pcap_vsnprintf(cstate->bpf_pcap->errbuf, PCAP_ERRBUF_SIZE,
458 	    fmt, ap);
459 	va_end(ap);
460 	longjmp(cstate->top_ctx, 1);
461 	/*NOTREACHED*/
462 }
463 
464 static int init_linktype(compiler_state_t *, pcap_t *);
465 
466 static void init_regs(compiler_state_t *);
467 static int alloc_reg(compiler_state_t *);
468 static void free_reg(compiler_state_t *, int);
469 
470 static void initchunks(compiler_state_t *cstate);
471 static void *newchunk_nolongjmp(compiler_state_t *cstate, size_t);
472 static void *newchunk(compiler_state_t *cstate, size_t);
473 static void freechunks(compiler_state_t *cstate);
474 static inline struct block *new_block(compiler_state_t *cstate, int);
475 static inline struct slist *new_stmt(compiler_state_t *cstate, int);
476 static struct block *gen_retblk(compiler_state_t *cstate, int);
477 static inline void syntax(compiler_state_t *cstate);
478 
479 static void backpatch(struct block *, struct block *);
480 static void merge(struct block *, struct block *);
481 static struct block *gen_cmp(compiler_state_t *, enum e_offrel, u_int,
482     u_int, bpf_int32);
483 static struct block *gen_cmp_gt(compiler_state_t *, enum e_offrel, u_int,
484     u_int, bpf_int32);
485 static struct block *gen_cmp_ge(compiler_state_t *, enum e_offrel, u_int,
486     u_int, bpf_int32);
487 static struct block *gen_cmp_lt(compiler_state_t *, enum e_offrel, u_int,
488     u_int, bpf_int32);
489 static struct block *gen_cmp_le(compiler_state_t *, enum e_offrel, u_int,
490     u_int, bpf_int32);
491 static struct block *gen_mcmp(compiler_state_t *, enum e_offrel, u_int,
492     u_int, bpf_int32, bpf_u_int32);
493 static struct block *gen_bcmp(compiler_state_t *, enum e_offrel, u_int,
494     u_int, const u_char *);
495 static struct block *gen_ncmp(compiler_state_t *, enum e_offrel, bpf_u_int32,
496     bpf_u_int32, bpf_u_int32, bpf_u_int32, int, bpf_int32);
497 static struct slist *gen_load_absoffsetrel(compiler_state_t *, bpf_abs_offset *,
498     u_int, u_int);
499 static struct slist *gen_load_a(compiler_state_t *, enum e_offrel, u_int,
500     u_int);
501 static struct slist *gen_loadx_iphdrlen(compiler_state_t *);
502 static struct block *gen_uncond(compiler_state_t *, int);
503 static inline struct block *gen_true(compiler_state_t *);
504 static inline struct block *gen_false(compiler_state_t *);
505 static struct block *gen_ether_linktype(compiler_state_t *, int);
506 static struct block *gen_ipnet_linktype(compiler_state_t *, int);
507 static struct block *gen_linux_sll_linktype(compiler_state_t *, int);
508 static struct slist *gen_load_prism_llprefixlen(compiler_state_t *);
509 static struct slist *gen_load_avs_llprefixlen(compiler_state_t *);
510 static struct slist *gen_load_radiotap_llprefixlen(compiler_state_t *);
511 static struct slist *gen_load_ppi_llprefixlen(compiler_state_t *);
512 static void insert_compute_vloffsets(compiler_state_t *, struct block *);
513 static struct slist *gen_abs_offset_varpart(compiler_state_t *,
514     bpf_abs_offset *);
515 static int ethertype_to_ppptype(int);
516 static struct block *gen_linktype(compiler_state_t *, int);
517 static struct block *gen_snap(compiler_state_t *, bpf_u_int32, bpf_u_int32);
518 static struct block *gen_llc_linktype(compiler_state_t *, int);
519 static struct block *gen_hostop(compiler_state_t *, bpf_u_int32, bpf_u_int32,
520     int, int, u_int, u_int);
521 #ifdef INET6
522 static struct block *gen_hostop6(compiler_state_t *, struct in6_addr *,
523     struct in6_addr *, int, int, u_int, u_int);
524 #endif
525 static struct block *gen_ahostop(compiler_state_t *, const u_char *, int);
526 static struct block *gen_ehostop(compiler_state_t *, const u_char *, int);
527 static struct block *gen_fhostop(compiler_state_t *, const u_char *, int);
528 static struct block *gen_thostop(compiler_state_t *, const u_char *, int);
529 static struct block *gen_wlanhostop(compiler_state_t *, const u_char *, int);
530 static struct block *gen_ipfchostop(compiler_state_t *, const u_char *, int);
531 static struct block *gen_dnhostop(compiler_state_t *, bpf_u_int32, int);
532 static struct block *gen_mpls_linktype(compiler_state_t *, int);
533 static struct block *gen_host(compiler_state_t *, bpf_u_int32, bpf_u_int32,
534     int, int, int);
535 #ifdef INET6
536 static struct block *gen_host6(compiler_state_t *, struct in6_addr *,
537     struct in6_addr *, int, int, int);
538 #endif
539 #ifndef INET6
540 static struct block *gen_gateway(compiler_state_t *, const u_char *,
541     struct addrinfo *, int, int);
542 #endif
543 static struct block *gen_ipfrag(compiler_state_t *);
544 static struct block *gen_portatom(compiler_state_t *, int, bpf_int32);
545 static struct block *gen_portrangeatom(compiler_state_t *, int, bpf_int32,
546     bpf_int32);
547 static struct block *gen_portatom6(compiler_state_t *, int, bpf_int32);
548 static struct block *gen_portrangeatom6(compiler_state_t *, int, bpf_int32,
549     bpf_int32);
550 struct block *gen_portop(compiler_state_t *, int, int, int);
551 static struct block *gen_port(compiler_state_t *, int, int, int);
552 struct block *gen_portrangeop(compiler_state_t *, int, int, int, int);
553 static struct block *gen_portrange(compiler_state_t *, int, int, int, int);
554 struct block *gen_portop6(compiler_state_t *, int, int, int);
555 static struct block *gen_port6(compiler_state_t *, int, int, int);
556 struct block *gen_portrangeop6(compiler_state_t *, int, int, int, int);
557 static struct block *gen_portrange6(compiler_state_t *, int, int, int, int);
558 static int lookup_proto(compiler_state_t *, const char *, int);
559 static struct block *gen_protochain(compiler_state_t *, int, int, int);
560 static struct block *gen_proto(compiler_state_t *, int, int, int);
561 static struct slist *xfer_to_x(compiler_state_t *, struct arth *);
562 static struct slist *xfer_to_a(compiler_state_t *, struct arth *);
563 static struct block *gen_mac_multicast(compiler_state_t *, int);
564 static struct block *gen_len(compiler_state_t *, int, int);
565 static struct block *gen_check_802_11_data_frame(compiler_state_t *);
566 static struct block *gen_geneve_ll_check(compiler_state_t *cstate);
567 
568 static struct block *gen_ppi_dlt_check(compiler_state_t *);
569 static struct block *gen_atmfield_code_internal(compiler_state_t *, int,
570     bpf_int32, bpf_u_int32, int);
571 static struct block *gen_atmtype_llc(compiler_state_t *);
572 static struct block *gen_msg_abbrev(compiler_state_t *, int type);
573 
574 static void
initchunks(compiler_state_t * cstate)575 initchunks(compiler_state_t *cstate)
576 {
577 	int i;
578 
579 	for (i = 0; i < NCHUNKS; i++) {
580 		cstate->chunks[i].n_left = 0;
581 		cstate->chunks[i].m = NULL;
582 	}
583 	cstate->cur_chunk = 0;
584 }
585 
586 static void *
newchunk_nolongjmp(compiler_state_t * cstate,size_t n)587 newchunk_nolongjmp(compiler_state_t *cstate, size_t n)
588 {
589 	struct chunk *cp;
590 	int k;
591 	size_t size;
592 
593 #ifndef __NetBSD__
594 	/* XXX Round up to nearest long. */
595 	n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
596 #else
597 	/* XXX Round up to structure boundary. */
598 	n = ALIGN(n);
599 #endif
600 
601 	cp = &cstate->chunks[cstate->cur_chunk];
602 	if (n > cp->n_left) {
603 		++cp;
604 		k = ++cstate->cur_chunk;
605 		if (k >= NCHUNKS) {
606 			bpf_set_error(cstate, "out of memory");
607 			return (NULL);
608 		}
609 		size = CHUNK0SIZE << k;
610 		cp->m = (void *)malloc(size);
611 		if (cp->m == NULL) {
612 			bpf_set_error(cstate, "out of memory");
613 			return (NULL);
614 		}
615 		memset((char *)cp->m, 0, size);
616 		cp->n_left = size;
617 		if (n > size) {
618 			bpf_set_error(cstate, "out of memory");
619 			return (NULL);
620 		}
621 	}
622 	cp->n_left -= n;
623 	return (void *)((char *)cp->m + cp->n_left);
624 }
625 
626 static void *
newchunk(compiler_state_t * cstate,size_t n)627 newchunk(compiler_state_t *cstate, size_t n)
628 {
629 	void *p;
630 
631 	p = newchunk_nolongjmp(cstate, n);
632 	if (p == NULL) {
633 		longjmp(cstate->top_ctx, 1);
634 		/*NOTREACHED*/
635 	}
636 	return (p);
637 }
638 
639 static void
freechunks(compiler_state_t * cstate)640 freechunks(compiler_state_t *cstate)
641 {
642 	int i;
643 
644 	for (i = 0; i < NCHUNKS; ++i)
645 		if (cstate->chunks[i].m != NULL)
646 			free(cstate->chunks[i].m);
647 }
648 
649 /*
650  * A strdup whose allocations are freed after code generation is over.
651  * This is used by the lexical analyzer, so it can't longjmp; it just
652  * returns NULL on an allocation error, and the callers must check
653  * for it.
654  */
655 char *
sdup(compiler_state_t * cstate,const char * s)656 sdup(compiler_state_t *cstate, const char *s)
657 {
658 	size_t n = strlen(s) + 1;
659 	char *cp = newchunk_nolongjmp(cstate, n);
660 
661 	if (cp == NULL)
662 		return (NULL);
663 	pcap_strlcpy(cp, s, n);
664 	return (cp);
665 }
666 
667 static inline struct block *
new_block(compiler_state_t * cstate,int code)668 new_block(compiler_state_t *cstate, int code)
669 {
670 	struct block *p;
671 
672 	p = (struct block *)newchunk(cstate, sizeof(*p));
673 	p->s.code = code;
674 	p->head = p;
675 
676 	return p;
677 }
678 
679 static inline struct slist *
new_stmt(compiler_state_t * cstate,int code)680 new_stmt(compiler_state_t *cstate, int code)
681 {
682 	struct slist *p;
683 
684 	p = (struct slist *)newchunk(cstate, sizeof(*p));
685 	p->s.code = code;
686 
687 	return p;
688 }
689 
690 static struct block *
gen_retblk(compiler_state_t * cstate,int v)691 gen_retblk(compiler_state_t *cstate, int v)
692 {
693 	struct block *b = new_block(cstate, BPF_RET|BPF_K);
694 
695 	b->s.k = v;
696 	return b;
697 }
698 
699 static inline PCAP_NORETURN_DEF void
syntax(compiler_state_t * cstate)700 syntax(compiler_state_t *cstate)
701 {
702 	bpf_error(cstate, "syntax error in filter expression");
703 }
704 
705 int
pcap_compile(pcap_t * p,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)706 pcap_compile(pcap_t *p, struct bpf_program *program,
707 	     const char *buf, int optimize, bpf_u_int32 mask)
708 {
709 #ifdef _WIN32
710 	static int done = 0;
711 #endif
712 	compiler_state_t cstate;
713 	const char * volatile xbuf = buf;
714 	yyscan_t scanner = NULL;
715 	volatile YY_BUFFER_STATE in_buffer = NULL;
716 	u_int len;
717 	int  rc;
718 
719 	/*
720 	 * If this pcap_t hasn't been activated, it doesn't have a
721 	 * link-layer type, so we can't use it.
722 	 */
723 	if (!p->activated) {
724 		pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
725 		    "not-yet-activated pcap_t passed to pcap_compile");
726 		return (-1);
727 	}
728 
729 #ifdef _WIN32
730 	if (!done)
731 		pcap_wsockinit();
732 	done = 1;
733 #endif
734 
735 #ifdef ENABLE_REMOTE
736 	/*
737 	 * If the device on which we're capturing need to be notified
738 	 * that a new filter is being compiled, do so.
739 	 *
740 	 * This allows them to save a copy of it, in case, for example,
741 	 * they're implementing a form of remote packet capture, and
742 	 * want the remote machine to filter out the packets in which
743 	 * it's sending the packets it's captured.
744 	 *
745 	 * XXX - the fact that we happen to be compiling a filter
746 	 * doesn't necessarily mean we'll be installing it as the
747 	 * filter for this pcap_t; we might be running it from userland
748 	 * on captured packets to do packet classification.  We really
749 	 * need a better way of handling this, but this is all that
750 	 * the WinPcap remote capture code did.
751 	 */
752 	if (p->save_current_filter_op != NULL)
753 		(p->save_current_filter_op)(p, buf);
754 #endif
755 
756 	initchunks(&cstate);
757 	cstate.no_optimize = 0;
758 #ifdef INET6
759 	cstate.ai = NULL;
760 #endif
761 	cstate.e = NULL;
762 	cstate.ic.root = NULL;
763 	cstate.ic.cur_mark = 0;
764 	cstate.bpf_pcap = p;
765 	init_regs(&cstate);
766 
767 	cstate.netmask = mask;
768 
769 	cstate.snaplen = pcap_snapshot(p);
770 	if (cstate.snaplen == 0) {
771 		pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
772 			 "snaplen of 0 rejects all packets");
773 		rc = -1;
774 		goto quit;
775 	}
776 
777 	if (pcap_lex_init(&scanner) != 0)
778 		pcap_fmt_errmsg_for_errno(p->errbuf, PCAP_ERRBUF_SIZE,
779 		    errno, "can't initialize scanner");
780 	in_buffer = pcap__scan_string(xbuf ? xbuf : "", scanner);
781 
782 	/*
783 	 * Associate the compiler state with the lexical analyzer
784 	 * state.
785 	 */
786 	pcap_set_extra(&cstate, scanner);
787 
788 	if (init_linktype(&cstate, p) == -1) {
789 		rc = -1;
790 		goto quit;
791 	}
792 	if (pcap_parse(scanner, &cstate) != 0) {
793 #ifdef INET6
794 		if (cstate.ai != NULL)
795 			freeaddrinfo(cstate.ai);
796 #endif
797 		if (cstate.e != NULL)
798 			free(cstate.e);
799 		rc = -1;
800 		goto quit;
801 	}
802 
803 	if (cstate.ic.root == NULL) {
804 		/*
805 		 * Catch errors reported by gen_retblk().
806 		 */
807 		if (setjmp(cstate.top_ctx)) {
808 			rc = -1;
809 			goto quit;
810 		}
811 		cstate.ic.root = gen_retblk(&cstate, cstate.snaplen);
812 	}
813 
814 	if (optimize && !cstate.no_optimize) {
815 		if (bpf_optimize(&cstate.ic, p->errbuf) == -1) {
816 			/* Failure */
817 			rc = -1;
818 			goto quit;
819 		}
820 		if (cstate.ic.root == NULL ||
821 		    (cstate.ic.root->s.code == (BPF_RET|BPF_K) && cstate.ic.root->s.k == 0)) {
822 			(void)pcap_snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
823 			    "expression rejects all packets");
824 			rc = -1;
825 			goto quit;
826 		}
827 	}
828 	program->bf_insns = icode_to_fcode(&cstate.ic,
829 	    cstate.ic.root, &len, p->errbuf);
830 	if (program->bf_insns == NULL) {
831 		/* Failure */
832 		rc = -1;
833 		goto quit;
834 	}
835 	program->bf_len = len;
836 
837 	rc = 0;  /* We're all okay */
838 
839 quit:
840 	/*
841 	 * Clean up everything for the lexical analyzer.
842 	 */
843 	if (in_buffer != NULL)
844 		pcap__delete_buffer(in_buffer, scanner);
845 	if (scanner != NULL)
846 		pcap_lex_destroy(scanner);
847 
848 	/*
849 	 * Clean up our own allocated memory.
850 	 */
851 	freechunks(&cstate);
852 
853 	return (rc);
854 }
855 
856 /*
857  * entry point for using the compiler with no pcap open
858  * pass in all the stuff that is needed explicitly instead.
859  */
860 int
pcap_compile_nopcap(int snaplen_arg,int linktype_arg,struct bpf_program * program,const char * buf,int optimize,bpf_u_int32 mask)861 pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
862 		    struct bpf_program *program,
863 	     const char *buf, int optimize, bpf_u_int32 mask)
864 {
865 	pcap_t *p;
866 	int ret;
867 
868 	p = pcap_open_dead(linktype_arg, snaplen_arg);
869 	if (p == NULL)
870 		return (-1);
871 	ret = pcap_compile(p, program, buf, optimize, mask);
872 	pcap_close(p);
873 	return (ret);
874 }
875 
876 /*
877  * Clean up a "struct bpf_program" by freeing all the memory allocated
878  * in it.
879  */
880 void
pcap_freecode(struct bpf_program * program)881 pcap_freecode(struct bpf_program *program)
882 {
883 	program->bf_len = 0;
884 	if (program->bf_insns != NULL) {
885 		free((char *)program->bf_insns);
886 		program->bf_insns = NULL;
887 	}
888 }
889 
890 /*
891  * Backpatch the blocks in 'list' to 'target'.  The 'sense' field indicates
892  * which of the jt and jf fields has been resolved and which is a pointer
893  * back to another unresolved block (or nil).  At least one of the fields
894  * in each block is already resolved.
895  */
896 static void
backpatch(struct block * list,struct block * target)897 backpatch(struct block *list, struct block *target)
898 {
899 	struct block *next;
900 
901 	while (list) {
902 		if (!list->sense) {
903 			next = JT(list);
904 			JT(list) = target;
905 		} else {
906 			next = JF(list);
907 			JF(list) = target;
908 		}
909 		list = next;
910 	}
911 }
912 
913 /*
914  * Merge the lists in b0 and b1, using the 'sense' field to indicate
915  * which of jt and jf is the link.
916  */
917 static void
merge(struct block * b0,struct block * b1)918 merge(struct block *b0, struct block *b1)
919 {
920 	register struct block **p = &b0;
921 
922 	/* Find end of list. */
923 	while (*p)
924 		p = !((*p)->sense) ? &JT(*p) : &JF(*p);
925 
926 	/* Concatenate the lists. */
927 	*p = b1;
928 }
929 
930 int
finish_parse(compiler_state_t * cstate,struct block * p)931 finish_parse(compiler_state_t *cstate, struct block *p)
932 {
933 	struct block *ppi_dlt_check;
934 
935 	/*
936 	 * Catch errors reported by us and routines below us, and return -1
937 	 * on an error.
938 	 */
939 	if (setjmp(cstate->top_ctx))
940 		return (-1);
941 
942 	/*
943 	 * Insert before the statements of the first (root) block any
944 	 * statements needed to load the lengths of any variable-length
945 	 * headers into registers.
946 	 *
947 	 * XXX - a fancier strategy would be to insert those before the
948 	 * statements of all blocks that use those lengths and that
949 	 * have no predecessors that use them, so that we only compute
950 	 * the lengths if we need them.  There might be even better
951 	 * approaches than that.
952 	 *
953 	 * However, those strategies would be more complicated, and
954 	 * as we don't generate code to compute a length if the
955 	 * program has no tests that use the length, and as most
956 	 * tests will probably use those lengths, we would just
957 	 * postpone computing the lengths so that it's not done
958 	 * for tests that fail early, and it's not clear that's
959 	 * worth the effort.
960 	 */
961 	insert_compute_vloffsets(cstate, p->head);
962 
963 	/*
964 	 * For DLT_PPI captures, generate a check of the per-packet
965 	 * DLT value to make sure it's DLT_IEEE802_11.
966 	 *
967 	 * XXX - TurboCap cards use DLT_PPI for Ethernet.
968 	 * Can we just define some DLT_ETHERNET_WITH_PHDR pseudo-header
969 	 * with appropriate Ethernet information and use that rather
970 	 * than using something such as DLT_PPI where you don't know
971 	 * the link-layer header type until runtime, which, in the
972 	 * general case, would force us to generate both Ethernet *and*
973 	 * 802.11 code (*and* anything else for which PPI is used)
974 	 * and choose between them early in the BPF program?
975 	 */
976 	ppi_dlt_check = gen_ppi_dlt_check(cstate);
977 	if (ppi_dlt_check != NULL)
978 		gen_and(ppi_dlt_check, p);
979 
980 	backpatch(p, gen_retblk(cstate, cstate->snaplen));
981 	p->sense = !p->sense;
982 	backpatch(p, gen_retblk(cstate, 0));
983 	cstate->ic.root = p->head;
984 	return (0);
985 }
986 
987 void
gen_and(struct block * b0,struct block * b1)988 gen_and(struct block *b0, struct block *b1)
989 {
990 	backpatch(b0, b1->head);
991 	b0->sense = !b0->sense;
992 	b1->sense = !b1->sense;
993 	merge(b1, b0);
994 	b1->sense = !b1->sense;
995 	b1->head = b0->head;
996 }
997 
998 void
gen_or(struct block * b0,struct block * b1)999 gen_or(struct block *b0, struct block *b1)
1000 {
1001 	b0->sense = !b0->sense;
1002 	backpatch(b0, b1->head);
1003 	b0->sense = !b0->sense;
1004 	merge(b1, b0);
1005 	b1->head = b0->head;
1006 }
1007 
1008 void
gen_not(struct block * b)1009 gen_not(struct block *b)
1010 {
1011 	b->sense = !b->sense;
1012 }
1013 
1014 static struct block *
gen_cmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_int32 v)1015 gen_cmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1016     u_int size, bpf_int32 v)
1017 {
1018 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JEQ, 0, v);
1019 }
1020 
1021 static struct block *
gen_cmp_gt(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_int32 v)1022 gen_cmp_gt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1023     u_int size, bpf_int32 v)
1024 {
1025 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 0, v);
1026 }
1027 
1028 static struct block *
gen_cmp_ge(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_int32 v)1029 gen_cmp_ge(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1030     u_int size, bpf_int32 v)
1031 {
1032 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 0, v);
1033 }
1034 
1035 static struct block *
gen_cmp_lt(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_int32 v)1036 gen_cmp_lt(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1037     u_int size, bpf_int32 v)
1038 {
1039 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGE, 1, v);
1040 }
1041 
1042 static struct block *
gen_cmp_le(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_int32 v)1043 gen_cmp_le(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1044     u_int size, bpf_int32 v)
1045 {
1046 	return gen_ncmp(cstate, offrel, offset, size, 0xffffffff, BPF_JGT, 1, v);
1047 }
1048 
1049 static struct block *
gen_mcmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,bpf_int32 v,bpf_u_int32 mask)1050 gen_mcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1051     u_int size, bpf_int32 v, bpf_u_int32 mask)
1052 {
1053 	return gen_ncmp(cstate, offrel, offset, size, mask, BPF_JEQ, 0, v);
1054 }
1055 
1056 static struct block *
gen_bcmp(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size,const u_char * v)1057 gen_bcmp(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1058     u_int size, const u_char *v)
1059 {
1060 	register struct block *b, *tmp;
1061 
1062 	/*
1063 	 * XXX - the actual *instructions* do unsigned comparisons on
1064 	 * most platforms, and the load instructions don't do sign
1065 	 * extension, so gen_cmp() should really take an unsigned
1066 	 * value argument.
1067 	 *
1068 	 * As the load instructons also don't do sign-extension, we
1069 	 * fetch the values from the byte array as unsigned.  We don't
1070 	 * want to use the signed versions of the extract calls.
1071 	 */
1072 	b = NULL;
1073 	while (size >= 4) {
1074 		register const u_char *p = &v[size - 4];
1075 
1076 		tmp = gen_cmp(cstate, offrel, offset + size - 4, BPF_W,
1077 		    (bpf_int32)EXTRACT_32BITS(p));
1078 		if (b != NULL)
1079 			gen_and(b, tmp);
1080 		b = tmp;
1081 		size -= 4;
1082 	}
1083 	while (size >= 2) {
1084 		register const u_char *p = &v[size - 2];
1085 
1086 		tmp = gen_cmp(cstate, offrel, offset + size - 2, BPF_H,
1087 		    (bpf_int32)EXTRACT_16BITS(p));
1088 		if (b != NULL)
1089 			gen_and(b, tmp);
1090 		b = tmp;
1091 		size -= 2;
1092 	}
1093 	if (size > 0) {
1094 		tmp = gen_cmp(cstate, offrel, offset, BPF_B, (bpf_int32)v[0]);
1095 		if (b != NULL)
1096 			gen_and(b, tmp);
1097 		b = tmp;
1098 	}
1099 	return b;
1100 }
1101 
1102 /*
1103  * AND the field of size "size" at offset "offset" relative to the header
1104  * specified by "offrel" with "mask", and compare it with the value "v"
1105  * with the test specified by "jtype"; if "reverse" is true, the test
1106  * should test the opposite of "jtype".
1107  */
1108 static struct block *
gen_ncmp(compiler_state_t * cstate,enum e_offrel offrel,bpf_u_int32 offset,bpf_u_int32 size,bpf_u_int32 mask,bpf_u_int32 jtype,int reverse,bpf_int32 v)1109 gen_ncmp(compiler_state_t *cstate, enum e_offrel offrel, bpf_u_int32 offset,
1110     bpf_u_int32 size, bpf_u_int32 mask, bpf_u_int32 jtype, int reverse,
1111     bpf_int32 v)
1112 {
1113 	struct slist *s, *s2;
1114 	struct block *b;
1115 
1116 	s = gen_load_a(cstate, offrel, offset, size);
1117 
1118 	if (mask != 0xffffffff) {
1119 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1120 		s2->s.k = mask;
1121 		sappend(s, s2);
1122 	}
1123 
1124 	b = new_block(cstate, JMP(jtype));
1125 	b->stmts = s;
1126 	b->s.k = v;
1127 	if (reverse && (jtype == BPF_JGT || jtype == BPF_JGE))
1128 		gen_not(b);
1129 	return b;
1130 }
1131 
1132 static int
init_linktype(compiler_state_t * cstate,pcap_t * p)1133 init_linktype(compiler_state_t *cstate, pcap_t *p)
1134 {
1135 	cstate->pcap_fddipad = p->fddipad;
1136 
1137 	/*
1138 	 * We start out with only one link-layer header.
1139 	 */
1140 	cstate->outermostlinktype = pcap_datalink(p);
1141 	cstate->off_outermostlinkhdr.constant_part = 0;
1142 	cstate->off_outermostlinkhdr.is_variable = 0;
1143 	cstate->off_outermostlinkhdr.reg = -1;
1144 
1145 	cstate->prevlinktype = cstate->outermostlinktype;
1146 	cstate->off_prevlinkhdr.constant_part = 0;
1147 	cstate->off_prevlinkhdr.is_variable = 0;
1148 	cstate->off_prevlinkhdr.reg = -1;
1149 
1150 	cstate->linktype = cstate->outermostlinktype;
1151 	cstate->off_linkhdr.constant_part = 0;
1152 	cstate->off_linkhdr.is_variable = 0;
1153 	cstate->off_linkhdr.reg = -1;
1154 
1155 	/*
1156 	 * XXX
1157 	 */
1158 	cstate->off_linkpl.constant_part = 0;
1159 	cstate->off_linkpl.is_variable = 0;
1160 	cstate->off_linkpl.reg = -1;
1161 
1162 	cstate->off_linktype.constant_part = 0;
1163 	cstate->off_linktype.is_variable = 0;
1164 	cstate->off_linktype.reg = -1;
1165 
1166 	/*
1167 	 * Assume it's not raw ATM with a pseudo-header, for now.
1168 	 */
1169 	cstate->is_atm = 0;
1170 	cstate->off_vpi = OFFSET_NOT_SET;
1171 	cstate->off_vci = OFFSET_NOT_SET;
1172 	cstate->off_proto = OFFSET_NOT_SET;
1173 	cstate->off_payload = OFFSET_NOT_SET;
1174 
1175 	/*
1176 	 * And not Geneve.
1177 	 */
1178 	cstate->is_geneve = 0;
1179 
1180 	/*
1181 	 * No variable length VLAN offset by default
1182 	 */
1183 	cstate->is_vlan_vloffset = 0;
1184 
1185 	/*
1186 	 * And assume we're not doing SS7.
1187 	 */
1188 	cstate->off_li = OFFSET_NOT_SET;
1189 	cstate->off_li_hsl = OFFSET_NOT_SET;
1190 	cstate->off_sio = OFFSET_NOT_SET;
1191 	cstate->off_opc = OFFSET_NOT_SET;
1192 	cstate->off_dpc = OFFSET_NOT_SET;
1193 	cstate->off_sls = OFFSET_NOT_SET;
1194 
1195 	cstate->label_stack_depth = 0;
1196 	cstate->vlan_stack_depth = 0;
1197 
1198 	switch (cstate->linktype) {
1199 
1200 	case DLT_ARCNET:
1201 		cstate->off_linktype.constant_part = 2;
1202 		cstate->off_linkpl.constant_part = 6;
1203 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1204 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1205 		break;
1206 
1207 	case DLT_ARCNET_LINUX:
1208 		cstate->off_linktype.constant_part = 4;
1209 		cstate->off_linkpl.constant_part = 8;
1210 		cstate->off_nl = 0;		/* XXX in reality, variable! */
1211 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1212 		break;
1213 
1214 	case DLT_EN10MB:
1215 		cstate->off_linktype.constant_part = 12;
1216 		cstate->off_linkpl.constant_part = 14;	/* Ethernet header length */
1217 		cstate->off_nl = 0;		/* Ethernet II */
1218 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1219 		break;
1220 
1221 	case DLT_SLIP:
1222 		/*
1223 		 * SLIP doesn't have a link level type.  The 16 byte
1224 		 * header is hacked into our SLIP driver.
1225 		 */
1226 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1227 		cstate->off_linkpl.constant_part = 16;
1228 		cstate->off_nl = 0;
1229 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1230 		break;
1231 
1232 	case DLT_SLIP_BSDOS:
1233 		/* XXX this may be the same as the DLT_PPP_BSDOS case */
1234 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1235 		/* XXX end */
1236 		cstate->off_linkpl.constant_part = 24;
1237 		cstate->off_nl = 0;
1238 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1239 		break;
1240 
1241 	case DLT_NULL:
1242 	case DLT_LOOP:
1243 		cstate->off_linktype.constant_part = 0;
1244 		cstate->off_linkpl.constant_part = 4;
1245 		cstate->off_nl = 0;
1246 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1247 		break;
1248 
1249 	case DLT_ENC:
1250 		cstate->off_linktype.constant_part = 0;
1251 		cstate->off_linkpl.constant_part = 12;
1252 		cstate->off_nl = 0;
1253 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1254 		break;
1255 
1256 	case DLT_PPP:
1257 	case DLT_PPP_PPPD:
1258 	case DLT_C_HDLC:		/* BSD/OS Cisco HDLC */
1259 	case DLT_PPP_SERIAL:		/* NetBSD sync/async serial PPP */
1260 		cstate->off_linktype.constant_part = 2;	/* skip HDLC-like framing */
1261 		cstate->off_linkpl.constant_part = 4;	/* skip HDLC-like framing and protocol field */
1262 		cstate->off_nl = 0;
1263 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1264 		break;
1265 
1266 	case DLT_PPP_ETHER:
1267 		/*
1268 		 * This does no include the Ethernet header, and
1269 		 * only covers session state.
1270 		 */
1271 		cstate->off_linktype.constant_part = 6;
1272 		cstate->off_linkpl.constant_part = 8;
1273 		cstate->off_nl = 0;
1274 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1275 		break;
1276 
1277 	case DLT_PPP_BSDOS:
1278 		cstate->off_linktype.constant_part = 5;
1279 		cstate->off_linkpl.constant_part = 24;
1280 		cstate->off_nl = 0;
1281 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1282 		break;
1283 
1284 	case DLT_FDDI:
1285 		/*
1286 		 * FDDI doesn't really have a link-level type field.
1287 		 * We set "off_linktype" to the offset of the LLC header.
1288 		 *
1289 		 * To check for Ethernet types, we assume that SSAP = SNAP
1290 		 * is being used and pick out the encapsulated Ethernet type.
1291 		 * XXX - should we generate code to check for SNAP?
1292 		 */
1293 		cstate->off_linktype.constant_part = 13;
1294 		cstate->off_linktype.constant_part += cstate->pcap_fddipad;
1295 		cstate->off_linkpl.constant_part = 13;	/* FDDI MAC header length */
1296 		cstate->off_linkpl.constant_part += cstate->pcap_fddipad;
1297 		cstate->off_nl = 8;		/* 802.2+SNAP */
1298 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1299 		break;
1300 
1301 	case DLT_IEEE802:
1302 		/*
1303 		 * Token Ring doesn't really have a link-level type field.
1304 		 * We set "off_linktype" to the offset of the LLC header.
1305 		 *
1306 		 * To check for Ethernet types, we assume that SSAP = SNAP
1307 		 * is being used and pick out the encapsulated Ethernet type.
1308 		 * XXX - should we generate code to check for SNAP?
1309 		 *
1310 		 * XXX - the header is actually variable-length.
1311 		 * Some various Linux patched versions gave 38
1312 		 * as "off_linktype" and 40 as "off_nl"; however,
1313 		 * if a token ring packet has *no* routing
1314 		 * information, i.e. is not source-routed, the correct
1315 		 * values are 20 and 22, as they are in the vanilla code.
1316 		 *
1317 		 * A packet is source-routed iff the uppermost bit
1318 		 * of the first byte of the source address, at an
1319 		 * offset of 8, has the uppermost bit set.  If the
1320 		 * packet is source-routed, the total number of bytes
1321 		 * of routing information is 2 plus bits 0x1F00 of
1322 		 * the 16-bit value at an offset of 14 (shifted right
1323 		 * 8 - figure out which byte that is).
1324 		 */
1325 		cstate->off_linktype.constant_part = 14;
1326 		cstate->off_linkpl.constant_part = 14;	/* Token Ring MAC header length */
1327 		cstate->off_nl = 8;		/* 802.2+SNAP */
1328 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1329 		break;
1330 
1331 	case DLT_PRISM_HEADER:
1332 	case DLT_IEEE802_11_RADIO_AVS:
1333 	case DLT_IEEE802_11_RADIO:
1334 		cstate->off_linkhdr.is_variable = 1;
1335 		/* Fall through, 802.11 doesn't have a variable link
1336 		 * prefix but is otherwise the same. */
1337 		/* FALLTHROUGH */
1338 
1339 	case DLT_IEEE802_11:
1340 		/*
1341 		 * 802.11 doesn't really have a link-level type field.
1342 		 * We set "off_linktype.constant_part" to the offset of
1343 		 * the LLC header.
1344 		 *
1345 		 * To check for Ethernet types, we assume that SSAP = SNAP
1346 		 * is being used and pick out the encapsulated Ethernet type.
1347 		 * XXX - should we generate code to check for SNAP?
1348 		 *
1349 		 * We also handle variable-length radio headers here.
1350 		 * The Prism header is in theory variable-length, but in
1351 		 * practice it's always 144 bytes long.  However, some
1352 		 * drivers on Linux use ARPHRD_IEEE80211_PRISM, but
1353 		 * sometimes or always supply an AVS header, so we
1354 		 * have to check whether the radio header is a Prism
1355 		 * header or an AVS header, so, in practice, it's
1356 		 * variable-length.
1357 		 */
1358 		cstate->off_linktype.constant_part = 24;
1359 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1360 		cstate->off_linkpl.is_variable = 1;
1361 		cstate->off_nl = 8;		/* 802.2+SNAP */
1362 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1363 		break;
1364 
1365 	case DLT_PPI:
1366 		/*
1367 		 * At the moment we treat PPI the same way that we treat
1368 		 * normal Radiotap encoded packets. The difference is in
1369 		 * the function that generates the code at the beginning
1370 		 * to compute the header length.  Since this code generator
1371 		 * of PPI supports bare 802.11 encapsulation only (i.e.
1372 		 * the encapsulated DLT should be DLT_IEEE802_11) we
1373 		 * generate code to check for this too.
1374 		 */
1375 		cstate->off_linktype.constant_part = 24;
1376 		cstate->off_linkpl.constant_part = 0;	/* link-layer header is variable-length */
1377 		cstate->off_linkpl.is_variable = 1;
1378 		cstate->off_linkhdr.is_variable = 1;
1379 		cstate->off_nl = 8;		/* 802.2+SNAP */
1380 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1381 		break;
1382 
1383 	case DLT_ATM_RFC1483:
1384 	case DLT_ATM_CLIP:	/* Linux ATM defines this */
1385 		/*
1386 		 * assume routed, non-ISO PDUs
1387 		 * (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
1388 		 *
1389 		 * XXX - what about ISO PDUs, e.g. CLNP, ISIS, ESIS,
1390 		 * or PPP with the PPP NLPID (e.g., PPPoA)?  The
1391 		 * latter would presumably be treated the way PPPoE
1392 		 * should be, so you can do "pppoe and udp port 2049"
1393 		 * or "pppoa and tcp port 80" and have it check for
1394 		 * PPPo{A,E} and a PPP protocol of IP and....
1395 		 */
1396 		cstate->off_linktype.constant_part = 0;
1397 		cstate->off_linkpl.constant_part = 0;	/* packet begins with LLC header */
1398 		cstate->off_nl = 8;		/* 802.2+SNAP */
1399 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1400 		break;
1401 
1402 	case DLT_SUNATM:
1403 		/*
1404 		 * Full Frontal ATM; you get AALn PDUs with an ATM
1405 		 * pseudo-header.
1406 		 */
1407 		cstate->is_atm = 1;
1408 		cstate->off_vpi = SUNATM_VPI_POS;
1409 		cstate->off_vci = SUNATM_VCI_POS;
1410 		cstate->off_proto = PROTO_POS;
1411 		cstate->off_payload = SUNATM_PKT_BEGIN_POS;
1412 		cstate->off_linktype.constant_part = cstate->off_payload;
1413 		cstate->off_linkpl.constant_part = cstate->off_payload;	/* if LLC-encapsulated */
1414 		cstate->off_nl = 8;		/* 802.2+SNAP */
1415 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1416 		break;
1417 
1418 	case DLT_RAW:
1419 	case DLT_IPV4:
1420 	case DLT_IPV6:
1421 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1422 		cstate->off_linkpl.constant_part = 0;
1423 		cstate->off_nl = 0;
1424 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1425 		break;
1426 
1427 	case DLT_LINUX_SLL:	/* fake header for Linux cooked socket v1 */
1428 		cstate->off_linktype.constant_part = 14;
1429 		cstate->off_linkpl.constant_part = 16;
1430 		cstate->off_nl = 0;
1431 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1432 		break;
1433 
1434 	case DLT_LINUX_SLL2:	/* fake header for Linux cooked socket v2 */
1435 		cstate->off_linktype.constant_part = 0;
1436 		cstate->off_linkpl.constant_part = 20;
1437 		cstate->off_nl = 0;
1438 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1439 		break;
1440 
1441 	case DLT_LTALK:
1442 		/*
1443 		 * LocalTalk does have a 1-byte type field in the LLAP header,
1444 		 * but really it just indicates whether there is a "short" or
1445 		 * "long" DDP packet following.
1446 		 */
1447 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1448 		cstate->off_linkpl.constant_part = 0;
1449 		cstate->off_nl = 0;
1450 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1451 		break;
1452 
1453 	case DLT_IP_OVER_FC:
1454 		/*
1455 		 * RFC 2625 IP-over-Fibre-Channel doesn't really have a
1456 		 * link-level type field.  We set "off_linktype" to the
1457 		 * offset of the LLC header.
1458 		 *
1459 		 * To check for Ethernet types, we assume that SSAP = SNAP
1460 		 * is being used and pick out the encapsulated Ethernet type.
1461 		 * XXX - should we generate code to check for SNAP? RFC
1462 		 * 2625 says SNAP should be used.
1463 		 */
1464 		cstate->off_linktype.constant_part = 16;
1465 		cstate->off_linkpl.constant_part = 16;
1466 		cstate->off_nl = 8;		/* 802.2+SNAP */
1467 		cstate->off_nl_nosnap = 3;	/* 802.2 */
1468 		break;
1469 
1470 	case DLT_FRELAY:
1471 		/*
1472 		 * XXX - we should set this to handle SNAP-encapsulated
1473 		 * frames (NLPID of 0x80).
1474 		 */
1475 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1476 		cstate->off_linkpl.constant_part = 0;
1477 		cstate->off_nl = 0;
1478 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1479 		break;
1480 
1481                 /*
1482                  * the only BPF-interesting FRF.16 frames are non-control frames;
1483                  * Frame Relay has a variable length link-layer
1484                  * so lets start with offset 4 for now and increments later on (FIXME);
1485                  */
1486 	case DLT_MFR:
1487 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1488 		cstate->off_linkpl.constant_part = 0;
1489 		cstate->off_nl = 4;
1490 		cstate->off_nl_nosnap = 0;	/* XXX - for now -> no 802.2 LLC */
1491 		break;
1492 
1493 	case DLT_APPLE_IP_OVER_IEEE1394:
1494 		cstate->off_linktype.constant_part = 16;
1495 		cstate->off_linkpl.constant_part = 18;
1496 		cstate->off_nl = 0;
1497 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1498 		break;
1499 
1500 	case DLT_SYMANTEC_FIREWALL:
1501 		cstate->off_linktype.constant_part = 6;
1502 		cstate->off_linkpl.constant_part = 44;
1503 		cstate->off_nl = 0;		/* Ethernet II */
1504 		cstate->off_nl_nosnap = 0;	/* XXX - what does it do with 802.3 packets? */
1505 		break;
1506 
1507 #ifdef HAVE_NET_PFVAR_H
1508 	case DLT_PFLOG:
1509 		cstate->off_linktype.constant_part = 0;
1510 		cstate->off_linkpl.constant_part = PFLOG_HDRLEN;
1511 		cstate->off_nl = 0;
1512 		cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
1513 		break;
1514 #endif
1515 
1516         case DLT_JUNIPER_MFR:
1517         case DLT_JUNIPER_MLFR:
1518         case DLT_JUNIPER_MLPPP:
1519         case DLT_JUNIPER_PPP:
1520         case DLT_JUNIPER_CHDLC:
1521         case DLT_JUNIPER_FRELAY:
1522 		cstate->off_linktype.constant_part = 4;
1523 		cstate->off_linkpl.constant_part = 4;
1524 		cstate->off_nl = 0;
1525 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1526                 break;
1527 
1528 	case DLT_JUNIPER_ATM1:
1529 		cstate->off_linktype.constant_part = 4;		/* in reality variable between 4-8 */
1530 		cstate->off_linkpl.constant_part = 4;	/* in reality variable between 4-8 */
1531 		cstate->off_nl = 0;
1532 		cstate->off_nl_nosnap = 10;
1533 		break;
1534 
1535 	case DLT_JUNIPER_ATM2:
1536 		cstate->off_linktype.constant_part = 8;		/* in reality variable between 8-12 */
1537 		cstate->off_linkpl.constant_part = 8;	/* in reality variable between 8-12 */
1538 		cstate->off_nl = 0;
1539 		cstate->off_nl_nosnap = 10;
1540 		break;
1541 
1542 		/* frames captured on a Juniper PPPoE service PIC
1543 		 * contain raw ethernet frames */
1544 	case DLT_JUNIPER_PPPOE:
1545         case DLT_JUNIPER_ETHER:
1546 		cstate->off_linkpl.constant_part = 14;
1547 		cstate->off_linktype.constant_part = 16;
1548 		cstate->off_nl = 18;		/* Ethernet II */
1549 		cstate->off_nl_nosnap = 21;	/* 802.3+802.2 */
1550 		break;
1551 
1552 	case DLT_JUNIPER_PPPOE_ATM:
1553 		cstate->off_linktype.constant_part = 4;
1554 		cstate->off_linkpl.constant_part = 6;
1555 		cstate->off_nl = 0;
1556 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1557 		break;
1558 
1559 	case DLT_JUNIPER_GGSN:
1560 		cstate->off_linktype.constant_part = 6;
1561 		cstate->off_linkpl.constant_part = 12;
1562 		cstate->off_nl = 0;
1563 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1564 		break;
1565 
1566 	case DLT_JUNIPER_ES:
1567 		cstate->off_linktype.constant_part = 6;
1568 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1569 		cstate->off_nl = OFFSET_NOT_SET;	/* not really a network layer but raw IP addresses */
1570 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1571 		break;
1572 
1573 	case DLT_JUNIPER_MONITOR:
1574 		cstate->off_linktype.constant_part = 12;
1575 		cstate->off_linkpl.constant_part = 12;
1576 		cstate->off_nl = 0;			/* raw IP/IP6 header */
1577 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1578 		break;
1579 
1580 	case DLT_BACNET_MS_TP:
1581 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1582 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1583 		cstate->off_nl = OFFSET_NOT_SET;
1584 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1585 		break;
1586 
1587 	case DLT_JUNIPER_SERVICES:
1588 		cstate->off_linktype.constant_part = 12;
1589 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1590 		cstate->off_nl = OFFSET_NOT_SET;	/* L3 proto location dep. on cookie type */
1591 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1592 		break;
1593 
1594 	case DLT_JUNIPER_VP:
1595 		cstate->off_linktype.constant_part = 18;
1596 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1597 		cstate->off_nl = OFFSET_NOT_SET;
1598 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1599 		break;
1600 
1601 	case DLT_JUNIPER_ST:
1602 		cstate->off_linktype.constant_part = 18;
1603 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1604 		cstate->off_nl = OFFSET_NOT_SET;
1605 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1606 		break;
1607 
1608 	case DLT_JUNIPER_ISM:
1609 		cstate->off_linktype.constant_part = 8;
1610 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1611 		cstate->off_nl = OFFSET_NOT_SET;
1612 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1613 		break;
1614 
1615 	case DLT_JUNIPER_VS:
1616 	case DLT_JUNIPER_SRX_E2E:
1617 	case DLT_JUNIPER_FIBRECHANNEL:
1618 	case DLT_JUNIPER_ATM_CEMIC:
1619 		cstate->off_linktype.constant_part = 8;
1620 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1621 		cstate->off_nl = OFFSET_NOT_SET;
1622 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1623 		break;
1624 
1625 	case DLT_MTP2:
1626 		cstate->off_li = 2;
1627 		cstate->off_li_hsl = 4;
1628 		cstate->off_sio = 3;
1629 		cstate->off_opc = 4;
1630 		cstate->off_dpc = 4;
1631 		cstate->off_sls = 7;
1632 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1633 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1634 		cstate->off_nl = OFFSET_NOT_SET;
1635 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1636 		break;
1637 
1638 	case DLT_MTP2_WITH_PHDR:
1639 		cstate->off_li = 6;
1640 		cstate->off_li_hsl = 8;
1641 		cstate->off_sio = 7;
1642 		cstate->off_opc = 8;
1643 		cstate->off_dpc = 8;
1644 		cstate->off_sls = 11;
1645 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1646 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1647 		cstate->off_nl = OFFSET_NOT_SET;
1648 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1649 		break;
1650 
1651 	case DLT_ERF:
1652 		cstate->off_li = 22;
1653 		cstate->off_li_hsl = 24;
1654 		cstate->off_sio = 23;
1655 		cstate->off_opc = 24;
1656 		cstate->off_dpc = 24;
1657 		cstate->off_sls = 27;
1658 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1659 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1660 		cstate->off_nl = OFFSET_NOT_SET;
1661 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1662 		break;
1663 
1664 	case DLT_PFSYNC:
1665 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1666 		cstate->off_linkpl.constant_part = 4;
1667 		cstate->off_nl = 0;
1668 		cstate->off_nl_nosnap = 0;
1669 		break;
1670 
1671 	case DLT_AX25_KISS:
1672 		/*
1673 		 * Currently, only raw "link[N:M]" filtering is supported.
1674 		 */
1675 		cstate->off_linktype.constant_part = OFFSET_NOT_SET;	/* variable, min 15, max 71 steps of 7 */
1676 		cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1677 		cstate->off_nl = OFFSET_NOT_SET;	/* variable, min 16, max 71 steps of 7 */
1678 		cstate->off_nl_nosnap = OFFSET_NOT_SET;	/* no 802.2 LLC */
1679 		break;
1680 
1681 	case DLT_IPNET:
1682 		cstate->off_linktype.constant_part = 1;
1683 		cstate->off_linkpl.constant_part = 24;	/* ipnet header length */
1684 		cstate->off_nl = 0;
1685 		cstate->off_nl_nosnap = OFFSET_NOT_SET;
1686 		break;
1687 
1688 	case DLT_NETANALYZER:
1689 		cstate->off_linkhdr.constant_part = 4;	/* Ethernet header is past 4-byte pseudo-header */
1690 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1691 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+Ethernet header length */
1692 		cstate->off_nl = 0;		/* Ethernet II */
1693 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1694 		break;
1695 
1696 	case DLT_NETANALYZER_TRANSPARENT:
1697 		cstate->off_linkhdr.constant_part = 12;	/* MAC header is past 4-byte pseudo-header, preamble, and SFD */
1698 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
1699 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* pseudo-header+preamble+SFD+Ethernet header length */
1700 		cstate->off_nl = 0;		/* Ethernet II */
1701 		cstate->off_nl_nosnap = 3;	/* 802.3+802.2 */
1702 		break;
1703 
1704 	default:
1705 		/*
1706 		 * For values in the range in which we've assigned new
1707 		 * DLT_ values, only raw "link[N:M]" filtering is supported.
1708 		 */
1709 		if (cstate->linktype >= DLT_MATCHING_MIN &&
1710 		    cstate->linktype <= DLT_MATCHING_MAX) {
1711 			cstate->off_linktype.constant_part = OFFSET_NOT_SET;
1712 			cstate->off_linkpl.constant_part = OFFSET_NOT_SET;
1713 			cstate->off_nl = OFFSET_NOT_SET;
1714 			cstate->off_nl_nosnap = OFFSET_NOT_SET;
1715 		} else {
1716 			bpf_set_error(cstate, "unknown data link type %d", cstate->linktype);
1717 			return (-1);
1718 		}
1719 		break;
1720 	}
1721 
1722 	cstate->off_outermostlinkhdr = cstate->off_prevlinkhdr = cstate->off_linkhdr;
1723 	return (0);
1724 }
1725 
1726 /*
1727  * Load a value relative to the specified absolute offset.
1728  */
1729 static struct slist *
gen_load_absoffsetrel(compiler_state_t * cstate,bpf_abs_offset * abs_offset,u_int offset,u_int size)1730 gen_load_absoffsetrel(compiler_state_t *cstate, bpf_abs_offset *abs_offset,
1731     u_int offset, u_int size)
1732 {
1733 	struct slist *s, *s2;
1734 
1735 	s = gen_abs_offset_varpart(cstate, abs_offset);
1736 
1737 	/*
1738 	 * If "s" is non-null, it has code to arrange that the X register
1739 	 * contains the variable part of the absolute offset, so we
1740 	 * generate a load relative to that, with an offset of
1741 	 * abs_offset->constant_part + offset.
1742 	 *
1743 	 * Otherwise, we can do an absolute load with an offset of
1744 	 * abs_offset->constant_part + offset.
1745 	 */
1746 	if (s != NULL) {
1747 		/*
1748 		 * "s" points to a list of statements that puts the
1749 		 * variable part of the absolute offset into the X register.
1750 		 * Do an indirect load, to use the X register as an offset.
1751 		 */
1752 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1753 		s2->s.k = abs_offset->constant_part + offset;
1754 		sappend(s, s2);
1755 	} else {
1756 		/*
1757 		 * There is no variable part of the absolute offset, so
1758 		 * just do an absolute load.
1759 		 */
1760 		s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1761 		s->s.k = abs_offset->constant_part + offset;
1762 	}
1763 	return s;
1764 }
1765 
1766 /*
1767  * Load a value relative to the beginning of the specified header.
1768  */
1769 static struct slist *
gen_load_a(compiler_state_t * cstate,enum e_offrel offrel,u_int offset,u_int size)1770 gen_load_a(compiler_state_t *cstate, enum e_offrel offrel, u_int offset,
1771     u_int size)
1772 {
1773 	struct slist *s, *s2;
1774 
1775 	/*
1776 	 * Squelch warnings from compilers that *don't* assume that
1777 	 * offrel always has a valid enum value and therefore don't
1778 	 * assume that we'll always go through one of the case arms.
1779 	 *
1780 	 * If we have a default case, compilers that *do* assume that
1781 	 * will then complain about the default case code being
1782 	 * unreachable.
1783 	 *
1784 	 * Damned if you do, damned if you don't.
1785 	 */
1786 	s = NULL;
1787 
1788 	switch (offrel) {
1789 
1790 	case OR_PACKET:
1791                 s = new_stmt(cstate, BPF_LD|BPF_ABS|size);
1792                 s->s.k = offset;
1793 		break;
1794 
1795 	case OR_LINKHDR:
1796 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkhdr, offset, size);
1797 		break;
1798 
1799 	case OR_PREVLINKHDR:
1800 		s = gen_load_absoffsetrel(cstate, &cstate->off_prevlinkhdr, offset, size);
1801 		break;
1802 
1803 	case OR_LLC:
1804 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, offset, size);
1805 		break;
1806 
1807 	case OR_PREVMPLSHDR:
1808 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl - 4 + offset, size);
1809 		break;
1810 
1811 	case OR_LINKPL:
1812 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + offset, size);
1813 		break;
1814 
1815 	case OR_LINKPL_NOSNAP:
1816 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl_nosnap + offset, size);
1817 		break;
1818 
1819 	case OR_LINKTYPE:
1820 		s = gen_load_absoffsetrel(cstate, &cstate->off_linktype, offset, size);
1821 		break;
1822 
1823 	case OR_TRAN_IPV4:
1824 		/*
1825 		 * Load the X register with the length of the IPv4 header
1826 		 * (plus the offset of the link-layer header, if it's
1827 		 * preceded by a variable-length header such as a radio
1828 		 * header), in bytes.
1829 		 */
1830 		s = gen_loadx_iphdrlen(cstate);
1831 
1832 		/*
1833 		 * Load the item at {offset of the link-layer payload} +
1834 		 * {offset, relative to the start of the link-layer
1835 		 * paylod, of the IPv4 header} + {length of the IPv4 header} +
1836 		 * {specified offset}.
1837 		 *
1838 		 * If the offset of the link-layer payload is variable,
1839 		 * the variable part of that offset is included in the
1840 		 * value in the X register, and we include the constant
1841 		 * part in the offset of the load.
1842 		 */
1843 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|size);
1844 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + offset;
1845 		sappend(s, s2);
1846 		break;
1847 
1848 	case OR_TRAN_IPV6:
1849 		s = gen_load_absoffsetrel(cstate, &cstate->off_linkpl, cstate->off_nl + 40 + offset, size);
1850 		break;
1851 	}
1852 	return s;
1853 }
1854 
1855 /*
1856  * Generate code to load into the X register the sum of the length of
1857  * the IPv4 header and the variable part of the offset of the link-layer
1858  * payload.
1859  */
1860 static struct slist *
gen_loadx_iphdrlen(compiler_state_t * cstate)1861 gen_loadx_iphdrlen(compiler_state_t *cstate)
1862 {
1863 	struct slist *s, *s2;
1864 
1865 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
1866 	if (s != NULL) {
1867 		/*
1868 		 * The offset of the link-layer payload has a variable
1869 		 * part.  "s" points to a list of statements that put
1870 		 * the variable part of that offset into the X register.
1871 		 *
1872 		 * The 4*([k]&0xf) addressing mode can't be used, as we
1873 		 * don't have a constant offset, so we have to load the
1874 		 * value in question into the A register and add to it
1875 		 * the value from the X register.
1876 		 */
1877 		s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
1878 		s2->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1879 		sappend(s, s2);
1880 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
1881 		s2->s.k = 0xf;
1882 		sappend(s, s2);
1883 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
1884 		s2->s.k = 2;
1885 		sappend(s, s2);
1886 
1887 		/*
1888 		 * The A register now contains the length of the IP header.
1889 		 * We need to add to it the variable part of the offset of
1890 		 * the link-layer payload, which is still in the X
1891 		 * register, and move the result into the X register.
1892 		 */
1893 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
1894 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
1895 	} else {
1896 		/*
1897 		 * The offset of the link-layer payload is a constant,
1898 		 * so no code was generated to load the (non-existent)
1899 		 * variable part of that offset.
1900 		 *
1901 		 * This means we can use the 4*([k]&0xf) addressing
1902 		 * mode.  Load the length of the IPv4 header, which
1903 		 * is at an offset of cstate->off_nl from the beginning of
1904 		 * the link-layer payload, and thus at an offset of
1905 		 * cstate->off_linkpl.constant_part + cstate->off_nl from the beginning
1906 		 * of the raw packet data, using that addressing mode.
1907 		 */
1908 		s = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
1909 		s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
1910 	}
1911 	return s;
1912 }
1913 
1914 
1915 static struct block *
gen_uncond(compiler_state_t * cstate,int rsense)1916 gen_uncond(compiler_state_t *cstate, int rsense)
1917 {
1918 	struct block *b;
1919 	struct slist *s;
1920 
1921 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
1922 	s->s.k = !rsense;
1923 	b = new_block(cstate, JMP(BPF_JEQ));
1924 	b->stmts = s;
1925 
1926 	return b;
1927 }
1928 
1929 static inline struct block *
gen_true(compiler_state_t * cstate)1930 gen_true(compiler_state_t *cstate)
1931 {
1932 	return gen_uncond(cstate, 1);
1933 }
1934 
1935 static inline struct block *
gen_false(compiler_state_t * cstate)1936 gen_false(compiler_state_t *cstate)
1937 {
1938 	return gen_uncond(cstate, 0);
1939 }
1940 
1941 /*
1942  * Byte-swap a 32-bit number.
1943  * ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
1944  * big-endian platforms.)
1945  */
1946 #define	SWAPLONG(y) \
1947 ((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1948 
1949 /*
1950  * Generate code to match a particular packet type.
1951  *
1952  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
1953  * value, if <= ETHERMTU.  We use that to determine whether to
1954  * match the type/length field or to check the type/length field for
1955  * a value <= ETHERMTU to see whether it's a type field and then do
1956  * the appropriate test.
1957  */
1958 static struct block *
gen_ether_linktype(compiler_state_t * cstate,int proto)1959 gen_ether_linktype(compiler_state_t *cstate, int proto)
1960 {
1961 	struct block *b0, *b1;
1962 
1963 	switch (proto) {
1964 
1965 	case LLCSAP_ISONS:
1966 	case LLCSAP_IP:
1967 	case LLCSAP_NETBEUI:
1968 		/*
1969 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
1970 		 * so we check the DSAP and SSAP.
1971 		 *
1972 		 * LLCSAP_IP checks for IP-over-802.2, rather
1973 		 * than IP-over-Ethernet or IP-over-SNAP.
1974 		 *
1975 		 * XXX - should we check both the DSAP and the
1976 		 * SSAP, like this, or should we check just the
1977 		 * DSAP, as we do for other types <= ETHERMTU
1978 		 * (i.e., other SAP values)?
1979 		 */
1980 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
1981 		gen_not(b0);
1982 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
1983 			     ((proto << 8) | proto));
1984 		gen_and(b0, b1);
1985 		return b1;
1986 
1987 	case LLCSAP_IPX:
1988 		/*
1989 		 * Check for;
1990 		 *
1991 		 *	Ethernet_II frames, which are Ethernet
1992 		 *	frames with a frame type of ETHERTYPE_IPX;
1993 		 *
1994 		 *	Ethernet_802.3 frames, which are 802.3
1995 		 *	frames (i.e., the type/length field is
1996 		 *	a length field, <= ETHERMTU, rather than
1997 		 *	a type field) with the first two bytes
1998 		 *	after the Ethernet/802.3 header being
1999 		 *	0xFFFF;
2000 		 *
2001 		 *	Ethernet_802.2 frames, which are 802.3
2002 		 *	frames with an 802.2 LLC header and
2003 		 *	with the IPX LSAP as the DSAP in the LLC
2004 		 *	header;
2005 		 *
2006 		 *	Ethernet_SNAP frames, which are 802.3
2007 		 *	frames with an LLC header and a SNAP
2008 		 *	header and with an OUI of 0x000000
2009 		 *	(encapsulated Ethernet) and a protocol
2010 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2011 		 *
2012 		 * XXX - should we generate the same code both
2013 		 * for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
2014 		 */
2015 
2016 		/*
2017 		 * This generates code to check both for the
2018 		 * IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
2019 		 */
2020 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2021 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
2022 		gen_or(b0, b1);
2023 
2024 		/*
2025 		 * Now we add code to check for SNAP frames with
2026 		 * ETHERTYPE_IPX, i.e. Ethernet_SNAP.
2027 		 */
2028 		b0 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2029 		gen_or(b0, b1);
2030 
2031 		/*
2032 		 * Now we generate code to check for 802.3
2033 		 * frames in general.
2034 		 */
2035 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2036 		gen_not(b0);
2037 
2038 		/*
2039 		 * Now add the check for 802.3 frames before the
2040 		 * check for Ethernet_802.2 and Ethernet_802.3,
2041 		 * as those checks should only be done on 802.3
2042 		 * frames, not on Ethernet frames.
2043 		 */
2044 		gen_and(b0, b1);
2045 
2046 		/*
2047 		 * Now add the check for Ethernet_II frames, and
2048 		 * do that before checking for the other frame
2049 		 * types.
2050 		 */
2051 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
2052 		gen_or(b0, b1);
2053 		return b1;
2054 
2055 	case ETHERTYPE_ATALK:
2056 	case ETHERTYPE_AARP:
2057 		/*
2058 		 * EtherTalk (AppleTalk protocols on Ethernet link
2059 		 * layer) may use 802.2 encapsulation.
2060 		 */
2061 
2062 		/*
2063 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2064 		 * we check for an Ethernet type field less than
2065 		 * 1500, which means it's an 802.3 length field.
2066 		 */
2067 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2068 		gen_not(b0);
2069 
2070 		/*
2071 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2072 		 * SNAP packets with an organization code of
2073 		 * 0x080007 (Apple, for Appletalk) and a protocol
2074 		 * type of ETHERTYPE_ATALK (Appletalk).
2075 		 *
2076 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2077 		 * SNAP packets with an organization code of
2078 		 * 0x000000 (encapsulated Ethernet) and a protocol
2079 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2080 		 */
2081 		if (proto == ETHERTYPE_ATALK)
2082 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2083 		else	/* proto == ETHERTYPE_AARP */
2084 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2085 		gen_and(b0, b1);
2086 
2087 		/*
2088 		 * Check for Ethernet encapsulation (Ethertalk
2089 		 * phase 1?); we just check for the Ethernet
2090 		 * protocol type.
2091 		 */
2092 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2093 
2094 		gen_or(b0, b1);
2095 		return b1;
2096 
2097 	default:
2098 		if (proto <= ETHERMTU) {
2099 			/*
2100 			 * This is an LLC SAP value, so the frames
2101 			 * that match would be 802.2 frames.
2102 			 * Check that the frame is an 802.2 frame
2103 			 * (i.e., that the length/type field is
2104 			 * a length field, <= ETHERMTU) and
2105 			 * then check the DSAP.
2106 			 */
2107 			b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
2108 			gen_not(b0);
2109 			b1 = gen_cmp(cstate, OR_LINKTYPE, 2, BPF_B, (bpf_int32)proto);
2110 			gen_and(b0, b1);
2111 			return b1;
2112 		} else {
2113 			/*
2114 			 * This is an Ethernet type, so compare
2115 			 * the length/type field with it (if
2116 			 * the frame is an 802.2 frame, the length
2117 			 * field will be <= ETHERMTU, and, as
2118 			 * "proto" is > ETHERMTU, this test
2119 			 * will fail and the frame won't match,
2120 			 * which is what we want).
2121 			 */
2122 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
2123 			    (bpf_int32)proto);
2124 		}
2125 	}
2126 }
2127 
2128 static struct block *
gen_loopback_linktype(compiler_state_t * cstate,int proto)2129 gen_loopback_linktype(compiler_state_t *cstate, int proto)
2130 {
2131 	/*
2132 	 * For DLT_NULL, the link-layer header is a 32-bit word
2133 	 * containing an AF_ value in *host* byte order, and for
2134 	 * DLT_ENC, the link-layer header begins with a 32-bit
2135 	 * word containing an AF_ value in host byte order.
2136 	 *
2137 	 * In addition, if we're reading a saved capture file,
2138 	 * the host byte order in the capture may not be the
2139 	 * same as the host byte order on this machine.
2140 	 *
2141 	 * For DLT_LOOP, the link-layer header is a 32-bit
2142 	 * word containing an AF_ value in *network* byte order.
2143 	 */
2144 	if (cstate->linktype == DLT_NULL || cstate->linktype == DLT_ENC) {
2145 		/*
2146 		 * The AF_ value is in host byte order, but the BPF
2147 		 * interpreter will convert it to network byte order.
2148 		 *
2149 		 * If this is a save file, and it's from a machine
2150 		 * with the opposite byte order to ours, we byte-swap
2151 		 * the AF_ value.
2152 		 *
2153 		 * Then we run it through "htonl()", and generate
2154 		 * code to compare against the result.
2155 		 */
2156 		if (cstate->bpf_pcap->rfile != NULL && cstate->bpf_pcap->swapped)
2157 			proto = SWAPLONG(proto);
2158 		proto = htonl(proto);
2159 	}
2160 	return (gen_cmp(cstate, OR_LINKHDR, 0, BPF_W, (bpf_int32)proto));
2161 }
2162 
2163 /*
2164  * "proto" is an Ethernet type value and for IPNET, if it is not IPv4
2165  * or IPv6 then we have an error.
2166  */
2167 static struct block *
gen_ipnet_linktype(compiler_state_t * cstate,int proto)2168 gen_ipnet_linktype(compiler_state_t *cstate, int proto)
2169 {
2170 	switch (proto) {
2171 
2172 	case ETHERTYPE_IP:
2173 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B, (bpf_int32)IPH_AF_INET);
2174 		/*NOTREACHED*/
2175 
2176 	case ETHERTYPE_IPV6:
2177 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
2178 		    (bpf_int32)IPH_AF_INET6);
2179 		/*NOTREACHED*/
2180 
2181 	default:
2182 		break;
2183 	}
2184 
2185 	return gen_false(cstate);
2186 }
2187 
2188 /*
2189  * Generate code to match a particular packet type.
2190  *
2191  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
2192  * value, if <= ETHERMTU.  We use that to determine whether to
2193  * match the type field or to check the type field for the special
2194  * LINUX_SLL_P_802_2 value and then do the appropriate test.
2195  */
2196 static struct block *
gen_linux_sll_linktype(compiler_state_t * cstate,int proto)2197 gen_linux_sll_linktype(compiler_state_t *cstate, int proto)
2198 {
2199 	struct block *b0, *b1;
2200 
2201 	switch (proto) {
2202 
2203 	case LLCSAP_ISONS:
2204 	case LLCSAP_IP:
2205 	case LLCSAP_NETBEUI:
2206 		/*
2207 		 * OSI protocols and NetBEUI always use 802.2 encapsulation,
2208 		 * so we check the DSAP and SSAP.
2209 		 *
2210 		 * LLCSAP_IP checks for IP-over-802.2, rather
2211 		 * than IP-over-Ethernet or IP-over-SNAP.
2212 		 *
2213 		 * XXX - should we check both the DSAP and the
2214 		 * SSAP, like this, or should we check just the
2215 		 * DSAP, as we do for other types <= ETHERMTU
2216 		 * (i.e., other SAP values)?
2217 		 */
2218 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2219 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)
2220 			     ((proto << 8) | proto));
2221 		gen_and(b0, b1);
2222 		return b1;
2223 
2224 	case LLCSAP_IPX:
2225 		/*
2226 		 *	Ethernet_II frames, which are Ethernet
2227 		 *	frames with a frame type of ETHERTYPE_IPX;
2228 		 *
2229 		 *	Ethernet_802.3 frames, which have a frame
2230 		 *	type of LINUX_SLL_P_802_3;
2231 		 *
2232 		 *	Ethernet_802.2 frames, which are 802.3
2233 		 *	frames with an 802.2 LLC header (i.e, have
2234 		 *	a frame type of LINUX_SLL_P_802_2) and
2235 		 *	with the IPX LSAP as the DSAP in the LLC
2236 		 *	header;
2237 		 *
2238 		 *	Ethernet_SNAP frames, which are 802.3
2239 		 *	frames with an LLC header and a SNAP
2240 		 *	header and with an OUI of 0x000000
2241 		 *	(encapsulated Ethernet) and a protocol
2242 		 *	ID of ETHERTYPE_IPX in the SNAP header.
2243 		 *
2244 		 * First, do the checks on LINUX_SLL_P_802_2
2245 		 * frames; generate the check for either
2246 		 * Ethernet_802.2 or Ethernet_SNAP frames, and
2247 		 * then put a check for LINUX_SLL_P_802_2 frames
2248 		 * before it.
2249 		 */
2250 		b0 = gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)LLCSAP_IPX);
2251 		b1 = gen_snap(cstate, 0x000000, ETHERTYPE_IPX);
2252 		gen_or(b0, b1);
2253 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2254 		gen_and(b0, b1);
2255 
2256 		/*
2257 		 * Now check for 802.3 frames and OR that with
2258 		 * the previous test.
2259 		 */
2260 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_3);
2261 		gen_or(b0, b1);
2262 
2263 		/*
2264 		 * Now add the check for Ethernet_II frames, and
2265 		 * do that before checking for the other frame
2266 		 * types.
2267 		 */
2268 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)ETHERTYPE_IPX);
2269 		gen_or(b0, b1);
2270 		return b1;
2271 
2272 	case ETHERTYPE_ATALK:
2273 	case ETHERTYPE_AARP:
2274 		/*
2275 		 * EtherTalk (AppleTalk protocols on Ethernet link
2276 		 * layer) may use 802.2 encapsulation.
2277 		 */
2278 
2279 		/*
2280 		 * Check for 802.2 encapsulation (EtherTalk phase 2?);
2281 		 * we check for the 802.2 protocol type in the
2282 		 * "Ethernet type" field.
2283 		 */
2284 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2285 
2286 		/*
2287 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
2288 		 * SNAP packets with an organization code of
2289 		 * 0x080007 (Apple, for Appletalk) and a protocol
2290 		 * type of ETHERTYPE_ATALK (Appletalk).
2291 		 *
2292 		 * 802.2-encapsulated ETHERTYPE_AARP packets are
2293 		 * SNAP packets with an organization code of
2294 		 * 0x000000 (encapsulated Ethernet) and a protocol
2295 		 * type of ETHERTYPE_AARP (Appletalk ARP).
2296 		 */
2297 		if (proto == ETHERTYPE_ATALK)
2298 			b1 = gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
2299 		else	/* proto == ETHERTYPE_AARP */
2300 			b1 = gen_snap(cstate, 0x000000, ETHERTYPE_AARP);
2301 		gen_and(b0, b1);
2302 
2303 		/*
2304 		 * Check for Ethernet encapsulation (Ethertalk
2305 		 * phase 1?); we just check for the Ethernet
2306 		 * protocol type.
2307 		 */
2308 		b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2309 
2310 		gen_or(b0, b1);
2311 		return b1;
2312 
2313 	default:
2314 		if (proto <= ETHERMTU) {
2315 			/*
2316 			 * This is an LLC SAP value, so the frames
2317 			 * that match would be 802.2 frames.
2318 			 * Check for the 802.2 protocol type
2319 			 * in the "Ethernet type" field, and
2320 			 * then check the DSAP.
2321 			 */
2322 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, LINUX_SLL_P_802_2);
2323 			b1 = gen_cmp(cstate, OR_LINKHDR, cstate->off_linkpl.constant_part, BPF_B,
2324 			     (bpf_int32)proto);
2325 			gen_and(b0, b1);
2326 			return b1;
2327 		} else {
2328 			/*
2329 			 * This is an Ethernet type, so compare
2330 			 * the length/type field with it (if
2331 			 * the frame is an 802.2 frame, the length
2332 			 * field will be <= ETHERMTU, and, as
2333 			 * "proto" is > ETHERMTU, this test
2334 			 * will fail and the frame won't match,
2335 			 * which is what we want).
2336 			 */
2337 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
2338 		}
2339 	}
2340 }
2341 
2342 static struct slist *
gen_load_prism_llprefixlen(compiler_state_t * cstate)2343 gen_load_prism_llprefixlen(compiler_state_t *cstate)
2344 {
2345 	struct slist *s1, *s2;
2346 	struct slist *sjeq_avs_cookie;
2347 	struct slist *sjcommon;
2348 
2349 	/*
2350 	 * This code is not compatible with the optimizer, as
2351 	 * we are generating jmp instructions within a normal
2352 	 * slist of instructions
2353 	 */
2354 	cstate->no_optimize = 1;
2355 
2356 	/*
2357 	 * Generate code to load the length of the radio header into
2358 	 * the register assigned to hold that length, if one has been
2359 	 * assigned.  (If one hasn't been assigned, no code we've
2360 	 * generated uses that prefix, so we don't need to generate any
2361 	 * code to load it.)
2362 	 *
2363 	 * Some Linux drivers use ARPHRD_IEEE80211_PRISM but sometimes
2364 	 * or always use the AVS header rather than the Prism header.
2365 	 * We load a 4-byte big-endian value at the beginning of the
2366 	 * raw packet data, and see whether, when masked with 0xFFFFF000,
2367 	 * it's equal to 0x80211000.  If so, that indicates that it's
2368 	 * an AVS header (the masked-out bits are the version number).
2369 	 * Otherwise, it's a Prism header.
2370 	 *
2371 	 * XXX - the Prism header is also, in theory, variable-length,
2372 	 * but no known software generates headers that aren't 144
2373 	 * bytes long.
2374 	 */
2375 	if (cstate->off_linkhdr.reg != -1) {
2376 		/*
2377 		 * Load the cookie.
2378 		 */
2379 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2380 		s1->s.k = 0;
2381 
2382 		/*
2383 		 * AND it with 0xFFFFF000.
2384 		 */
2385 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
2386 		s2->s.k = 0xFFFFF000;
2387 		sappend(s1, s2);
2388 
2389 		/*
2390 		 * Compare with 0x80211000.
2391 		 */
2392 		sjeq_avs_cookie = new_stmt(cstate, JMP(BPF_JEQ));
2393 		sjeq_avs_cookie->s.k = 0x80211000;
2394 		sappend(s1, sjeq_avs_cookie);
2395 
2396 		/*
2397 		 * If it's AVS:
2398 		 *
2399 		 * The 4 bytes at an offset of 4 from the beginning of
2400 		 * the AVS header are the length of the AVS header.
2401 		 * That field is big-endian.
2402 		 */
2403 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2404 		s2->s.k = 4;
2405 		sappend(s1, s2);
2406 		sjeq_avs_cookie->s.jt = s2;
2407 
2408 		/*
2409 		 * Now jump to the code to allocate a register
2410 		 * into which to save the header length and
2411 		 * store the length there.  (The "jump always"
2412 		 * instruction needs to have the k field set;
2413 		 * it's added to the PC, so, as we're jumping
2414 		 * over a single instruction, it should be 1.)
2415 		 */
2416 		sjcommon = new_stmt(cstate, JMP(BPF_JA));
2417 		sjcommon->s.k = 1;
2418 		sappend(s1, sjcommon);
2419 
2420 		/*
2421 		 * Now for the code that handles the Prism header.
2422 		 * Just load the length of the Prism header (144)
2423 		 * into the A register.  Have the test for an AVS
2424 		 * header branch here if we don't have an AVS header.
2425 		 */
2426 		s2 = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2427 		s2->s.k = 144;
2428 		sappend(s1, s2);
2429 		sjeq_avs_cookie->s.jf = s2;
2430 
2431 		/*
2432 		 * Now allocate a register to hold that value and store
2433 		 * it.  The code for the AVS header will jump here after
2434 		 * loading the length of the AVS header.
2435 		 */
2436 		s2 = new_stmt(cstate, BPF_ST);
2437 		s2->s.k = cstate->off_linkhdr.reg;
2438 		sappend(s1, s2);
2439 		sjcommon->s.jf = s2;
2440 
2441 		/*
2442 		 * Now move it into the X register.
2443 		 */
2444 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2445 		sappend(s1, s2);
2446 
2447 		return (s1);
2448 	} else
2449 		return (NULL);
2450 }
2451 
2452 static struct slist *
gen_load_avs_llprefixlen(compiler_state_t * cstate)2453 gen_load_avs_llprefixlen(compiler_state_t *cstate)
2454 {
2455 	struct slist *s1, *s2;
2456 
2457 	/*
2458 	 * Generate code to load the length of the AVS header into
2459 	 * the register assigned to hold that length, if one has been
2460 	 * assigned.  (If one hasn't been assigned, no code we've
2461 	 * generated uses that prefix, so we don't need to generate any
2462 	 * code to load it.)
2463 	 */
2464 	if (cstate->off_linkhdr.reg != -1) {
2465 		/*
2466 		 * The 4 bytes at an offset of 4 from the beginning of
2467 		 * the AVS header are the length of the AVS header.
2468 		 * That field is big-endian.
2469 		 */
2470 		s1 = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2471 		s1->s.k = 4;
2472 
2473 		/*
2474 		 * Now allocate a register to hold that value and store
2475 		 * it.
2476 		 */
2477 		s2 = new_stmt(cstate, BPF_ST);
2478 		s2->s.k = cstate->off_linkhdr.reg;
2479 		sappend(s1, s2);
2480 
2481 		/*
2482 		 * Now move it into the X register.
2483 		 */
2484 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2485 		sappend(s1, s2);
2486 
2487 		return (s1);
2488 	} else
2489 		return (NULL);
2490 }
2491 
2492 static struct slist *
gen_load_radiotap_llprefixlen(compiler_state_t * cstate)2493 gen_load_radiotap_llprefixlen(compiler_state_t *cstate)
2494 {
2495 	struct slist *s1, *s2;
2496 
2497 	/*
2498 	 * Generate code to load the length of the radiotap header into
2499 	 * the register assigned to hold that length, if one has been
2500 	 * assigned.  (If one hasn't been assigned, no code we've
2501 	 * generated uses that prefix, so we don't need to generate any
2502 	 * code to load it.)
2503 	 */
2504 	if (cstate->off_linkhdr.reg != -1) {
2505 		/*
2506 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2507 		 * of the radiotap header are the length of the radiotap
2508 		 * header; unfortunately, it's little-endian, so we have
2509 		 * to load it a byte at a time and construct the value.
2510 		 */
2511 
2512 		/*
2513 		 * Load the high-order byte, at an offset of 3, shift it
2514 		 * left a byte, and put the result in the X register.
2515 		 */
2516 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2517 		s1->s.k = 3;
2518 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2519 		sappend(s1, s2);
2520 		s2->s.k = 8;
2521 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2522 		sappend(s1, s2);
2523 
2524 		/*
2525 		 * Load the next byte, at an offset of 2, and OR the
2526 		 * value from the X register into it.
2527 		 */
2528 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2529 		sappend(s1, s2);
2530 		s2->s.k = 2;
2531 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2532 		sappend(s1, s2);
2533 
2534 		/*
2535 		 * Now allocate a register to hold that value and store
2536 		 * it.
2537 		 */
2538 		s2 = new_stmt(cstate, BPF_ST);
2539 		s2->s.k = cstate->off_linkhdr.reg;
2540 		sappend(s1, s2);
2541 
2542 		/*
2543 		 * Now move it into the X register.
2544 		 */
2545 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2546 		sappend(s1, s2);
2547 
2548 		return (s1);
2549 	} else
2550 		return (NULL);
2551 }
2552 
2553 /*
2554  * At the moment we treat PPI as normal Radiotap encoded
2555  * packets. The difference is in the function that generates
2556  * the code at the beginning to compute the header length.
2557  * Since this code generator of PPI supports bare 802.11
2558  * encapsulation only (i.e. the encapsulated DLT should be
2559  * DLT_IEEE802_11) we generate code to check for this too;
2560  * that's done in finish_parse().
2561  */
2562 static struct slist *
gen_load_ppi_llprefixlen(compiler_state_t * cstate)2563 gen_load_ppi_llprefixlen(compiler_state_t *cstate)
2564 {
2565 	struct slist *s1, *s2;
2566 
2567 	/*
2568 	 * Generate code to load the length of the radiotap header
2569 	 * into the register assigned to hold that length, if one has
2570 	 * been assigned.
2571 	 */
2572 	if (cstate->off_linkhdr.reg != -1) {
2573 		/*
2574 		 * The 2 bytes at offsets of 2 and 3 from the beginning
2575 		 * of the radiotap header are the length of the radiotap
2576 		 * header; unfortunately, it's little-endian, so we have
2577 		 * to load it a byte at a time and construct the value.
2578 		 */
2579 
2580 		/*
2581 		 * Load the high-order byte, at an offset of 3, shift it
2582 		 * left a byte, and put the result in the X register.
2583 		 */
2584 		s1 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2585 		s1->s.k = 3;
2586 		s2 = new_stmt(cstate, BPF_ALU|BPF_LSH|BPF_K);
2587 		sappend(s1, s2);
2588 		s2->s.k = 8;
2589 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2590 		sappend(s1, s2);
2591 
2592 		/*
2593 		 * Load the next byte, at an offset of 2, and OR the
2594 		 * value from the X register into it.
2595 		 */
2596 		s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
2597 		sappend(s1, s2);
2598 		s2->s.k = 2;
2599 		s2 = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_X);
2600 		sappend(s1, s2);
2601 
2602 		/*
2603 		 * Now allocate a register to hold that value and store
2604 		 * it.
2605 		 */
2606 		s2 = new_stmt(cstate, BPF_ST);
2607 		s2->s.k = cstate->off_linkhdr.reg;
2608 		sappend(s1, s2);
2609 
2610 		/*
2611 		 * Now move it into the X register.
2612 		 */
2613 		s2 = new_stmt(cstate, BPF_MISC|BPF_TAX);
2614 		sappend(s1, s2);
2615 
2616 		return (s1);
2617 	} else
2618 		return (NULL);
2619 }
2620 
2621 /*
2622  * Load a value relative to the beginning of the link-layer header after the 802.11
2623  * header, i.e. LLC_SNAP.
2624  * The link-layer header doesn't necessarily begin at the beginning
2625  * of the packet data; there might be a variable-length prefix containing
2626  * radio information.
2627  */
2628 static struct slist *
gen_load_802_11_header_len(compiler_state_t * cstate,struct slist * s,struct slist * snext)2629 gen_load_802_11_header_len(compiler_state_t *cstate, struct slist *s, struct slist *snext)
2630 {
2631 	struct slist *s2;
2632 	struct slist *sjset_data_frame_1;
2633 	struct slist *sjset_data_frame_2;
2634 	struct slist *sjset_qos;
2635 	struct slist *sjset_radiotap_flags_present;
2636 	struct slist *sjset_radiotap_ext_present;
2637 	struct slist *sjset_radiotap_tsft_present;
2638 	struct slist *sjset_tsft_datapad, *sjset_notsft_datapad;
2639 	struct slist *s_roundup;
2640 
2641 	if (cstate->off_linkpl.reg == -1) {
2642 		/*
2643 		 * No register has been assigned to the offset of
2644 		 * the link-layer payload, which means nobody needs
2645 		 * it; don't bother computing it - just return
2646 		 * what we already have.
2647 		 */
2648 		return (s);
2649 	}
2650 
2651 	/*
2652 	 * This code is not compatible with the optimizer, as
2653 	 * we are generating jmp instructions within a normal
2654 	 * slist of instructions
2655 	 */
2656 	cstate->no_optimize = 1;
2657 
2658 	/*
2659 	 * If "s" is non-null, it has code to arrange that the X register
2660 	 * contains the length of the prefix preceding the link-layer
2661 	 * header.
2662 	 *
2663 	 * Otherwise, the length of the prefix preceding the link-layer
2664 	 * header is "off_outermostlinkhdr.constant_part".
2665 	 */
2666 	if (s == NULL) {
2667 		/*
2668 		 * There is no variable-length header preceding the
2669 		 * link-layer header.
2670 		 *
2671 		 * Load the length of the fixed-length prefix preceding
2672 		 * the link-layer header (if any) into the X register,
2673 		 * and store it in the cstate->off_linkpl.reg register.
2674 		 * That length is off_outermostlinkhdr.constant_part.
2675 		 */
2676 		s = new_stmt(cstate, BPF_LDX|BPF_IMM);
2677 		s->s.k = cstate->off_outermostlinkhdr.constant_part;
2678 	}
2679 
2680 	/*
2681 	 * The X register contains the offset of the beginning of the
2682 	 * link-layer header; add 24, which is the minimum length
2683 	 * of the MAC header for a data frame, to that, and store it
2684 	 * in cstate->off_linkpl.reg, and then load the Frame Control field,
2685 	 * which is at the offset in the X register, with an indexed load.
2686 	 */
2687 	s2 = new_stmt(cstate, BPF_MISC|BPF_TXA);
2688 	sappend(s, s2);
2689 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
2690 	s2->s.k = 24;
2691 	sappend(s, s2);
2692 	s2 = new_stmt(cstate, BPF_ST);
2693 	s2->s.k = cstate->off_linkpl.reg;
2694 	sappend(s, s2);
2695 
2696 	s2 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
2697 	s2->s.k = 0;
2698 	sappend(s, s2);
2699 
2700 	/*
2701 	 * Check the Frame Control field to see if this is a data frame;
2702 	 * a data frame has the 0x08 bit (b3) in that field set and the
2703 	 * 0x04 bit (b2) clear.
2704 	 */
2705 	sjset_data_frame_1 = new_stmt(cstate, JMP(BPF_JSET));
2706 	sjset_data_frame_1->s.k = 0x08;
2707 	sappend(s, sjset_data_frame_1);
2708 
2709 	/*
2710 	 * If b3 is set, test b2, otherwise go to the first statement of
2711 	 * the rest of the program.
2712 	 */
2713 	sjset_data_frame_1->s.jt = sjset_data_frame_2 = new_stmt(cstate, JMP(BPF_JSET));
2714 	sjset_data_frame_2->s.k = 0x04;
2715 	sappend(s, sjset_data_frame_2);
2716 	sjset_data_frame_1->s.jf = snext;
2717 
2718 	/*
2719 	 * If b2 is not set, this is a data frame; test the QoS bit.
2720 	 * Otherwise, go to the first statement of the rest of the
2721 	 * program.
2722 	 */
2723 	sjset_data_frame_2->s.jt = snext;
2724 	sjset_data_frame_2->s.jf = sjset_qos = new_stmt(cstate, JMP(BPF_JSET));
2725 	sjset_qos->s.k = 0x80;	/* QoS bit */
2726 	sappend(s, sjset_qos);
2727 
2728 	/*
2729 	 * If it's set, add 2 to cstate->off_linkpl.reg, to skip the QoS
2730 	 * field.
2731 	 * Otherwise, go to the first statement of the rest of the
2732 	 * program.
2733 	 */
2734 	sjset_qos->s.jt = s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
2735 	s2->s.k = cstate->off_linkpl.reg;
2736 	sappend(s, s2);
2737 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2738 	s2->s.k = 2;
2739 	sappend(s, s2);
2740 	s2 = new_stmt(cstate, BPF_ST);
2741 	s2->s.k = cstate->off_linkpl.reg;
2742 	sappend(s, s2);
2743 
2744 	/*
2745 	 * If we have a radiotap header, look at it to see whether
2746 	 * there's Atheros padding between the MAC-layer header
2747 	 * and the payload.
2748 	 *
2749 	 * Note: all of the fields in the radiotap header are
2750 	 * little-endian, so we byte-swap all of the values
2751 	 * we test against, as they will be loaded as big-endian
2752 	 * values.
2753 	 *
2754 	 * XXX - in the general case, we would have to scan through
2755 	 * *all* the presence bits, if there's more than one word of
2756 	 * presence bits.  That would require a loop, meaning that
2757 	 * we wouldn't be able to run the filter in the kernel.
2758 	 *
2759 	 * We assume here that the Atheros adapters that insert the
2760 	 * annoying padding don't have multiple antennae and therefore
2761 	 * do not generate radiotap headers with multiple presence words.
2762 	 */
2763 	if (cstate->linktype == DLT_IEEE802_11_RADIO) {
2764 		/*
2765 		 * Is the IEEE80211_RADIOTAP_FLAGS bit (0x0000002) set
2766 		 * in the first presence flag word?
2767 		 */
2768 		sjset_qos->s.jf = s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_W);
2769 		s2->s.k = 4;
2770 		sappend(s, s2);
2771 
2772 		sjset_radiotap_flags_present = new_stmt(cstate, JMP(BPF_JSET));
2773 		sjset_radiotap_flags_present->s.k = SWAPLONG(0x00000002);
2774 		sappend(s, sjset_radiotap_flags_present);
2775 
2776 		/*
2777 		 * If not, skip all of this.
2778 		 */
2779 		sjset_radiotap_flags_present->s.jf = snext;
2780 
2781 		/*
2782 		 * Otherwise, is the "extension" bit set in that word?
2783 		 */
2784 		sjset_radiotap_ext_present = new_stmt(cstate, JMP(BPF_JSET));
2785 		sjset_radiotap_ext_present->s.k = SWAPLONG(0x80000000);
2786 		sappend(s, sjset_radiotap_ext_present);
2787 		sjset_radiotap_flags_present->s.jt = sjset_radiotap_ext_present;
2788 
2789 		/*
2790 		 * If so, skip all of this.
2791 		 */
2792 		sjset_radiotap_ext_present->s.jt = snext;
2793 
2794 		/*
2795 		 * Otherwise, is the IEEE80211_RADIOTAP_TSFT bit set?
2796 		 */
2797 		sjset_radiotap_tsft_present = new_stmt(cstate, JMP(BPF_JSET));
2798 		sjset_radiotap_tsft_present->s.k = SWAPLONG(0x00000001);
2799 		sappend(s, sjset_radiotap_tsft_present);
2800 		sjset_radiotap_ext_present->s.jf = sjset_radiotap_tsft_present;
2801 
2802 		/*
2803 		 * If IEEE80211_RADIOTAP_TSFT is set, the flags field is
2804 		 * at an offset of 16 from the beginning of the raw packet
2805 		 * data (8 bytes for the radiotap header and 8 bytes for
2806 		 * the TSFT field).
2807 		 *
2808 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2809 		 * is set.
2810 		 */
2811 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2812 		s2->s.k = 16;
2813 		sappend(s, s2);
2814 		sjset_radiotap_tsft_present->s.jt = s2;
2815 
2816 		sjset_tsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2817 		sjset_tsft_datapad->s.k = 0x20;
2818 		sappend(s, sjset_tsft_datapad);
2819 
2820 		/*
2821 		 * If IEEE80211_RADIOTAP_TSFT is not set, the flags field is
2822 		 * at an offset of 8 from the beginning of the raw packet
2823 		 * data (8 bytes for the radiotap header).
2824 		 *
2825 		 * Test whether the IEEE80211_RADIOTAP_F_DATAPAD bit (0x20)
2826 		 * is set.
2827 		 */
2828 		s2 = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
2829 		s2->s.k = 8;
2830 		sappend(s, s2);
2831 		sjset_radiotap_tsft_present->s.jf = s2;
2832 
2833 		sjset_notsft_datapad = new_stmt(cstate, JMP(BPF_JSET));
2834 		sjset_notsft_datapad->s.k = 0x20;
2835 		sappend(s, sjset_notsft_datapad);
2836 
2837 		/*
2838 		 * In either case, if IEEE80211_RADIOTAP_F_DATAPAD is
2839 		 * set, round the length of the 802.11 header to
2840 		 * a multiple of 4.  Do that by adding 3 and then
2841 		 * dividing by and multiplying by 4, which we do by
2842 		 * ANDing with ~3.
2843 		 */
2844 		s_roundup = new_stmt(cstate, BPF_LD|BPF_MEM);
2845 		s_roundup->s.k = cstate->off_linkpl.reg;
2846 		sappend(s, s_roundup);
2847 		s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
2848 		s2->s.k = 3;
2849 		sappend(s, s2);
2850 		s2 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_IMM);
2851 		s2->s.k = ~3;
2852 		sappend(s, s2);
2853 		s2 = new_stmt(cstate, BPF_ST);
2854 		s2->s.k = cstate->off_linkpl.reg;
2855 		sappend(s, s2);
2856 
2857 		sjset_tsft_datapad->s.jt = s_roundup;
2858 		sjset_tsft_datapad->s.jf = snext;
2859 		sjset_notsft_datapad->s.jt = s_roundup;
2860 		sjset_notsft_datapad->s.jf = snext;
2861 	} else
2862 		sjset_qos->s.jf = snext;
2863 
2864 	return s;
2865 }
2866 
2867 static void
insert_compute_vloffsets(compiler_state_t * cstate,struct block * b)2868 insert_compute_vloffsets(compiler_state_t *cstate, struct block *b)
2869 {
2870 	struct slist *s;
2871 
2872 	/* There is an implicit dependency between the link
2873 	 * payload and link header since the payload computation
2874 	 * includes the variable part of the header. Therefore,
2875 	 * if nobody else has allocated a register for the link
2876 	 * header and we need it, do it now. */
2877 	if (cstate->off_linkpl.reg != -1 && cstate->off_linkhdr.is_variable &&
2878 	    cstate->off_linkhdr.reg == -1)
2879 		cstate->off_linkhdr.reg = alloc_reg(cstate);
2880 
2881 	/*
2882 	 * For link-layer types that have a variable-length header
2883 	 * preceding the link-layer header, generate code to load
2884 	 * the offset of the link-layer header into the register
2885 	 * assigned to that offset, if any.
2886 	 *
2887 	 * XXX - this, and the next switch statement, won't handle
2888 	 * encapsulation of 802.11 or 802.11+radio information in
2889 	 * some other protocol stack.  That's significantly more
2890 	 * complicated.
2891 	 */
2892 	switch (cstate->outermostlinktype) {
2893 
2894 	case DLT_PRISM_HEADER:
2895 		s = gen_load_prism_llprefixlen(cstate);
2896 		break;
2897 
2898 	case DLT_IEEE802_11_RADIO_AVS:
2899 		s = gen_load_avs_llprefixlen(cstate);
2900 		break;
2901 
2902 	case DLT_IEEE802_11_RADIO:
2903 		s = gen_load_radiotap_llprefixlen(cstate);
2904 		break;
2905 
2906 	case DLT_PPI:
2907 		s = gen_load_ppi_llprefixlen(cstate);
2908 		break;
2909 
2910 	default:
2911 		s = NULL;
2912 		break;
2913 	}
2914 
2915 	/*
2916 	 * For link-layer types that have a variable-length link-layer
2917 	 * header, generate code to load the offset of the link-layer
2918 	 * payload into the register assigned to that offset, if any.
2919 	 */
2920 	switch (cstate->outermostlinktype) {
2921 
2922 	case DLT_IEEE802_11:
2923 	case DLT_PRISM_HEADER:
2924 	case DLT_IEEE802_11_RADIO_AVS:
2925 	case DLT_IEEE802_11_RADIO:
2926 	case DLT_PPI:
2927 		s = gen_load_802_11_header_len(cstate, s, b->stmts);
2928 		break;
2929 	}
2930 
2931 	/*
2932 	 * If there there is no initialization yet and we need variable
2933 	 * length offsets for VLAN, initialize them to zero
2934 	 */
2935 	if (s == NULL && cstate->is_vlan_vloffset) {
2936 		struct slist *s2;
2937 
2938 		if (cstate->off_linkpl.reg == -1)
2939 			cstate->off_linkpl.reg = alloc_reg(cstate);
2940 		if (cstate->off_linktype.reg == -1)
2941 			cstate->off_linktype.reg = alloc_reg(cstate);
2942 
2943 		s = new_stmt(cstate, BPF_LD|BPF_W|BPF_IMM);
2944 		s->s.k = 0;
2945 		s2 = new_stmt(cstate, BPF_ST);
2946 		s2->s.k = cstate->off_linkpl.reg;
2947 		sappend(s, s2);
2948 		s2 = new_stmt(cstate, BPF_ST);
2949 		s2->s.k = cstate->off_linktype.reg;
2950 		sappend(s, s2);
2951 	}
2952 
2953 	/*
2954 	 * If we have any offset-loading code, append all the
2955 	 * existing statements in the block to those statements,
2956 	 * and make the resulting list the list of statements
2957 	 * for the block.
2958 	 */
2959 	if (s != NULL) {
2960 		sappend(s, b->stmts);
2961 		b->stmts = s;
2962 	}
2963 }
2964 
2965 static struct block *
gen_ppi_dlt_check(compiler_state_t * cstate)2966 gen_ppi_dlt_check(compiler_state_t *cstate)
2967 {
2968 	struct slist *s_load_dlt;
2969 	struct block *b;
2970 
2971 	if (cstate->linktype == DLT_PPI)
2972 	{
2973 		/* Create the statements that check for the DLT
2974 		 */
2975 		s_load_dlt = new_stmt(cstate, BPF_LD|BPF_W|BPF_ABS);
2976 		s_load_dlt->s.k = 4;
2977 
2978 		b = new_block(cstate, JMP(BPF_JEQ));
2979 
2980 		b->stmts = s_load_dlt;
2981 		b->s.k = SWAPLONG(DLT_IEEE802_11);
2982 	}
2983 	else
2984 	{
2985 		b = NULL;
2986 	}
2987 
2988 	return b;
2989 }
2990 
2991 /*
2992  * Take an absolute offset, and:
2993  *
2994  *    if it has no variable part, return NULL;
2995  *
2996  *    if it has a variable part, generate code to load the register
2997  *    containing that variable part into the X register, returning
2998  *    a pointer to that code - if no register for that offset has
2999  *    been allocated, allocate it first.
3000  *
3001  * (The code to set that register will be generated later, but will
3002  * be placed earlier in the code sequence.)
3003  */
3004 static struct slist *
gen_abs_offset_varpart(compiler_state_t * cstate,bpf_abs_offset * off)3005 gen_abs_offset_varpart(compiler_state_t *cstate, bpf_abs_offset *off)
3006 {
3007 	struct slist *s;
3008 
3009 	if (off->is_variable) {
3010 		if (off->reg == -1) {
3011 			/*
3012 			 * We haven't yet assigned a register for the
3013 			 * variable part of the offset of the link-layer
3014 			 * header; allocate one.
3015 			 */
3016 			off->reg = alloc_reg(cstate);
3017 		}
3018 
3019 		/*
3020 		 * Load the register containing the variable part of the
3021 		 * offset of the link-layer header into the X register.
3022 		 */
3023 		s = new_stmt(cstate, BPF_LDX|BPF_MEM);
3024 		s->s.k = off->reg;
3025 		return s;
3026 	} else {
3027 		/*
3028 		 * That offset isn't variable, there's no variable part,
3029 		 * so we don't need to generate any code.
3030 		 */
3031 		return NULL;
3032 	}
3033 }
3034 
3035 /*
3036  * Map an Ethernet type to the equivalent PPP type.
3037  */
3038 static int
ethertype_to_ppptype(int proto)3039 ethertype_to_ppptype(int proto)
3040 {
3041 	switch (proto) {
3042 
3043 	case ETHERTYPE_IP:
3044 		proto = PPP_IP;
3045 		break;
3046 
3047 	case ETHERTYPE_IPV6:
3048 		proto = PPP_IPV6;
3049 		break;
3050 
3051 	case ETHERTYPE_DN:
3052 		proto = PPP_DECNET;
3053 		break;
3054 
3055 	case ETHERTYPE_ATALK:
3056 		proto = PPP_APPLE;
3057 		break;
3058 
3059 	case ETHERTYPE_NS:
3060 		proto = PPP_NS;
3061 		break;
3062 
3063 	case LLCSAP_ISONS:
3064 		proto = PPP_OSI;
3065 		break;
3066 
3067 	case LLCSAP_8021D:
3068 		/*
3069 		 * I'm assuming the "Bridging PDU"s that go
3070 		 * over PPP are Spanning Tree Protocol
3071 		 * Bridging PDUs.
3072 		 */
3073 		proto = PPP_BRPDU;
3074 		break;
3075 
3076 	case LLCSAP_IPX:
3077 		proto = PPP_IPX;
3078 		break;
3079 	}
3080 	return (proto);
3081 }
3082 
3083 /*
3084  * Generate any tests that, for encapsulation of a link-layer packet
3085  * inside another protocol stack, need to be done to check for those
3086  * link-layer packets (and that haven't already been done by a check
3087  * for that encapsulation).
3088  */
3089 static struct block *
gen_prevlinkhdr_check(compiler_state_t * cstate)3090 gen_prevlinkhdr_check(compiler_state_t *cstate)
3091 {
3092 	struct block *b0;
3093 
3094 	if (cstate->is_geneve)
3095 		return gen_geneve_ll_check(cstate);
3096 
3097 	switch (cstate->prevlinktype) {
3098 
3099 	case DLT_SUNATM:
3100 		/*
3101 		 * This is LANE-encapsulated Ethernet; check that the LANE
3102 		 * packet doesn't begin with an LE Control marker, i.e.
3103 		 * that it's data, not a control message.
3104 		 *
3105 		 * (We've already generated a test for LANE.)
3106 		 */
3107 		b0 = gen_cmp(cstate, OR_PREVLINKHDR, SUNATM_PKT_BEGIN_POS, BPF_H, 0xFF00);
3108 		gen_not(b0);
3109 		return b0;
3110 
3111 	default:
3112 		/*
3113 		 * No such tests are necessary.
3114 		 */
3115 		return NULL;
3116 	}
3117 	/*NOTREACHED*/
3118 }
3119 
3120 /*
3121  * The three different values we should check for when checking for an
3122  * IPv6 packet with DLT_NULL.
3123  */
3124 #define BSD_AFNUM_INET6_BSD	24	/* NetBSD, OpenBSD, BSD/OS, Npcap */
3125 #define BSD_AFNUM_INET6_FREEBSD	28	/* FreeBSD */
3126 #define BSD_AFNUM_INET6_DARWIN	30	/* macOS, iOS, other Darwin-based OSes */
3127 
3128 /*
3129  * Generate code to match a particular packet type by matching the
3130  * link-layer type field or fields in the 802.2 LLC header.
3131  *
3132  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3133  * value, if <= ETHERMTU.
3134  */
3135 static struct block *
gen_linktype(compiler_state_t * cstate,int proto)3136 gen_linktype(compiler_state_t *cstate, int proto)
3137 {
3138 	struct block *b0, *b1, *b2;
3139 	const char *description;
3140 
3141 	/* are we checking MPLS-encapsulated packets? */
3142 	if (cstate->label_stack_depth > 0) {
3143 		switch (proto) {
3144 		case ETHERTYPE_IP:
3145 		case PPP_IP:
3146 			/* FIXME add other L3 proto IDs */
3147 			return gen_mpls_linktype(cstate, Q_IP);
3148 
3149 		case ETHERTYPE_IPV6:
3150 		case PPP_IPV6:
3151 			/* FIXME add other L3 proto IDs */
3152 			return gen_mpls_linktype(cstate, Q_IPV6);
3153 
3154 		default:
3155 			bpf_error(cstate, "unsupported protocol over mpls");
3156 			/*NOTREACHED*/
3157 		}
3158 	}
3159 
3160 	switch (cstate->linktype) {
3161 
3162 	case DLT_EN10MB:
3163 	case DLT_NETANALYZER:
3164 	case DLT_NETANALYZER_TRANSPARENT:
3165 		/* Geneve has an EtherType regardless of whether there is an
3166 		 * L2 header. */
3167 		if (!cstate->is_geneve)
3168 			b0 = gen_prevlinkhdr_check(cstate);
3169 		else
3170 			b0 = NULL;
3171 
3172 		b1 = gen_ether_linktype(cstate, proto);
3173 		if (b0 != NULL)
3174 			gen_and(b0, b1);
3175 		return b1;
3176 		/*NOTREACHED*/
3177 
3178 	case DLT_C_HDLC:
3179 		switch (proto) {
3180 
3181 		case LLCSAP_ISONS:
3182 			proto = (proto << 8 | LLCSAP_ISONS);
3183 			/* fall through */
3184 
3185 		default:
3186 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3187 			/*NOTREACHED*/
3188 		}
3189 
3190 	case DLT_IEEE802_11:
3191 	case DLT_PRISM_HEADER:
3192 	case DLT_IEEE802_11_RADIO_AVS:
3193 	case DLT_IEEE802_11_RADIO:
3194 	case DLT_PPI:
3195 		/*
3196 		 * Check that we have a data frame.
3197 		 */
3198 		b0 = gen_check_802_11_data_frame(cstate);
3199 
3200 		/*
3201 		 * Now check for the specified link-layer type.
3202 		 */
3203 		b1 = gen_llc_linktype(cstate, proto);
3204 		gen_and(b0, b1);
3205 		return b1;
3206 		/*NOTREACHED*/
3207 
3208 	case DLT_FDDI:
3209 		/*
3210 		 * XXX - check for LLC frames.
3211 		 */
3212 		return gen_llc_linktype(cstate, proto);
3213 		/*NOTREACHED*/
3214 
3215 	case DLT_IEEE802:
3216 		/*
3217 		 * XXX - check for LLC PDUs, as per IEEE 802.5.
3218 		 */
3219 		return gen_llc_linktype(cstate, proto);
3220 		/*NOTREACHED*/
3221 
3222 	case DLT_ATM_RFC1483:
3223 	case DLT_ATM_CLIP:
3224 	case DLT_IP_OVER_FC:
3225 		return gen_llc_linktype(cstate, proto);
3226 		/*NOTREACHED*/
3227 
3228 	case DLT_SUNATM:
3229 		/*
3230 		 * Check for an LLC-encapsulated version of this protocol;
3231 		 * if we were checking for LANE, linktype would no longer
3232 		 * be DLT_SUNATM.
3233 		 *
3234 		 * Check for LLC encapsulation and then check the protocol.
3235 		 */
3236 		b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
3237 		b1 = gen_llc_linktype(cstate, proto);
3238 		gen_and(b0, b1);
3239 		return b1;
3240 		/*NOTREACHED*/
3241 
3242 	case DLT_LINUX_SLL:
3243 		return gen_linux_sll_linktype(cstate, proto);
3244 		/*NOTREACHED*/
3245 
3246 	case DLT_SLIP:
3247 	case DLT_SLIP_BSDOS:
3248 	case DLT_RAW:
3249 		/*
3250 		 * These types don't provide any type field; packets
3251 		 * are always IPv4 or IPv6.
3252 		 *
3253 		 * XXX - for IPv4, check for a version number of 4, and,
3254 		 * for IPv6, check for a version number of 6?
3255 		 */
3256 		switch (proto) {
3257 
3258 		case ETHERTYPE_IP:
3259 			/* Check for a version number of 4. */
3260 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x40, 0xF0);
3261 
3262 		case ETHERTYPE_IPV6:
3263 			/* Check for a version number of 6. */
3264 			return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, 0x60, 0xF0);
3265 
3266 		default:
3267 			return gen_false(cstate);	/* always false */
3268 		}
3269 		/*NOTREACHED*/
3270 
3271 	case DLT_IPV4:
3272 		/*
3273 		 * Raw IPv4, so no type field.
3274 		 */
3275 		if (proto == ETHERTYPE_IP)
3276 			return gen_true(cstate);	/* always true */
3277 
3278 		/* Checking for something other than IPv4; always false */
3279 		return gen_false(cstate);
3280 		/*NOTREACHED*/
3281 
3282 	case DLT_IPV6:
3283 		/*
3284 		 * Raw IPv6, so no type field.
3285 		 */
3286 		if (proto == ETHERTYPE_IPV6)
3287 			return gen_true(cstate);	/* always true */
3288 
3289 		/* Checking for something other than IPv6; always false */
3290 		return gen_false(cstate);
3291 		/*NOTREACHED*/
3292 
3293 	case DLT_PPP:
3294 	case DLT_PPP_PPPD:
3295 	case DLT_PPP_SERIAL:
3296 	case DLT_PPP_ETHER:
3297 		/*
3298 		 * We use Ethernet protocol types inside libpcap;
3299 		 * map them to the corresponding PPP protocol types.
3300 		 */
3301 		proto = ethertype_to_ppptype(proto);
3302 		return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3303 		/*NOTREACHED*/
3304 
3305 	case DLT_PPP_BSDOS:
3306 		/*
3307 		 * We use Ethernet protocol types inside libpcap;
3308 		 * map them to the corresponding PPP protocol types.
3309 		 */
3310 		switch (proto) {
3311 
3312 		case ETHERTYPE_IP:
3313 			/*
3314 			 * Also check for Van Jacobson-compressed IP.
3315 			 * XXX - do this for other forms of PPP?
3316 			 */
3317 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_IP);
3318 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJC);
3319 			gen_or(b0, b1);
3320 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, PPP_VJNC);
3321 			gen_or(b1, b0);
3322 			return b0;
3323 
3324 		default:
3325 			proto = ethertype_to_ppptype(proto);
3326 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H,
3327 				(bpf_int32)proto);
3328 		}
3329 		/*NOTREACHED*/
3330 
3331 	case DLT_NULL:
3332 	case DLT_LOOP:
3333 	case DLT_ENC:
3334 		switch (proto) {
3335 
3336 		case ETHERTYPE_IP:
3337 			return (gen_loopback_linktype(cstate, AF_INET));
3338 
3339 		case ETHERTYPE_IPV6:
3340 			/*
3341 			 * AF_ values may, unfortunately, be platform-
3342 			 * dependent; AF_INET isn't, because everybody
3343 			 * used 4.2BSD's value, but AF_INET6 is, because
3344 			 * 4.2BSD didn't have a value for it (given that
3345 			 * IPv6 didn't exist back in the early 1980's),
3346 			 * and they all picked their own values.
3347 			 *
3348 			 * This means that, if we're reading from a
3349 			 * savefile, we need to check for all the
3350 			 * possible values.
3351 			 *
3352 			 * If we're doing a live capture, we only need
3353 			 * to check for this platform's value; however,
3354 			 * Npcap uses 24, which isn't Windows's AF_INET6
3355 			 * value.  (Given the multiple different values,
3356 			 * programs that read pcap files shouldn't be
3357 			 * checking for their platform's AF_INET6 value
3358 			 * anyway, they should check for all of the
3359 			 * possible values. and they might as well do
3360 			 * that even for live captures.)
3361 			 */
3362 			if (cstate->bpf_pcap->rfile != NULL) {
3363 				/*
3364 				 * Savefile - check for all three
3365 				 * possible IPv6 values.
3366 				 */
3367 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_BSD);
3368 				b1 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_FREEBSD);
3369 				gen_or(b0, b1);
3370 				b0 = gen_loopback_linktype(cstate, BSD_AFNUM_INET6_DARWIN);
3371 				gen_or(b0, b1);
3372 				return (b1);
3373 			} else {
3374 				/*
3375 				 * Live capture, so we only need to
3376 				 * check for the value used on this
3377 				 * platform.
3378 				 */
3379 #ifdef _WIN32
3380 				/*
3381 				 * Npcap doesn't use Windows's AF_INET6,
3382 				 * as that collides with AF_IPX on
3383 				 * some BSDs (both have the value 23).
3384 				 * Instead, it uses 24.
3385 				 */
3386 				return (gen_loopback_linktype(cstate, 24));
3387 #else /* _WIN32 */
3388 #ifdef AF_INET6
3389 				return (gen_loopback_linktype(cstate, AF_INET6));
3390 #else /* AF_INET6 */
3391 				/*
3392 				 * I guess this platform doesn't support
3393 				 * IPv6, so we just reject all packets.
3394 				 */
3395 				return gen_false(cstate);
3396 #endif /* AF_INET6 */
3397 #endif /* _WIN32 */
3398 			}
3399 
3400 		default:
3401 			/*
3402 			 * Not a type on which we support filtering.
3403 			 * XXX - support those that have AF_ values
3404 			 * #defined on this platform, at least?
3405 			 */
3406 			return gen_false(cstate);
3407 		}
3408 
3409 #ifdef HAVE_NET_PFVAR_H
3410 	case DLT_PFLOG:
3411 		/*
3412 		 * af field is host byte order in contrast to the rest of
3413 		 * the packet.
3414 		 */
3415 		if (proto == ETHERTYPE_IP)
3416 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3417 			    BPF_B, (bpf_int32)AF_INET));
3418 		else if (proto == ETHERTYPE_IPV6)
3419 			return (gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, af),
3420 			    BPF_B, (bpf_int32)AF_INET6));
3421 		else
3422 			return gen_false(cstate);
3423 		/*NOTREACHED*/
3424 #endif /* HAVE_NET_PFVAR_H */
3425 
3426 	case DLT_ARCNET:
3427 	case DLT_ARCNET_LINUX:
3428 		/*
3429 		 * XXX should we check for first fragment if the protocol
3430 		 * uses PHDS?
3431 		 */
3432 		switch (proto) {
3433 
3434 		default:
3435 			return gen_false(cstate);
3436 
3437 		case ETHERTYPE_IPV6:
3438 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3439 				(bpf_int32)ARCTYPE_INET6));
3440 
3441 		case ETHERTYPE_IP:
3442 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3443 				     (bpf_int32)ARCTYPE_IP);
3444 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3445 				     (bpf_int32)ARCTYPE_IP_OLD);
3446 			gen_or(b0, b1);
3447 			return (b1);
3448 
3449 		case ETHERTYPE_ARP:
3450 			b0 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3451 				     (bpf_int32)ARCTYPE_ARP);
3452 			b1 = gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3453 				     (bpf_int32)ARCTYPE_ARP_OLD);
3454 			gen_or(b0, b1);
3455 			return (b1);
3456 
3457 		case ETHERTYPE_REVARP:
3458 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3459 					(bpf_int32)ARCTYPE_REVARP));
3460 
3461 		case ETHERTYPE_ATALK:
3462 			return (gen_cmp(cstate, OR_LINKTYPE, 0, BPF_B,
3463 					(bpf_int32)ARCTYPE_ATALK));
3464 		}
3465 		/*NOTREACHED*/
3466 
3467 	case DLT_LTALK:
3468 		switch (proto) {
3469 		case ETHERTYPE_ATALK:
3470 			return gen_true(cstate);
3471 		default:
3472 			return gen_false(cstate);
3473 		}
3474 		/*NOTREACHED*/
3475 
3476 	case DLT_FRELAY:
3477 		/*
3478 		 * XXX - assumes a 2-byte Frame Relay header with
3479 		 * DLCI and flags.  What if the address is longer?
3480 		 */
3481 		switch (proto) {
3482 
3483 		case ETHERTYPE_IP:
3484 			/*
3485 			 * Check for the special NLPID for IP.
3486 			 */
3487 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0xcc);
3488 
3489 		case ETHERTYPE_IPV6:
3490 			/*
3491 			 * Check for the special NLPID for IPv6.
3492 			 */
3493 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | 0x8e);
3494 
3495 		case LLCSAP_ISONS:
3496 			/*
3497 			 * Check for several OSI protocols.
3498 			 *
3499 			 * Frame Relay packets typically have an OSI
3500 			 * NLPID at the beginning; we check for each
3501 			 * of them.
3502 			 *
3503 			 * What we check for is the NLPID and a frame
3504 			 * control field of UI, i.e. 0x03 followed
3505 			 * by the NLPID.
3506 			 */
3507 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO8473_CLNP);
3508 			b1 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO9542_ESIS);
3509 			b2 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | ISO10589_ISIS);
3510 			gen_or(b1, b2);
3511 			gen_or(b0, b2);
3512 			return b2;
3513 
3514 		default:
3515 			return gen_false(cstate);
3516 		}
3517 		/*NOTREACHED*/
3518 
3519 	case DLT_MFR:
3520 		bpf_error(cstate, "Multi-link Frame Relay link-layer type filtering not implemented");
3521 
3522         case DLT_JUNIPER_MFR:
3523         case DLT_JUNIPER_MLFR:
3524         case DLT_JUNIPER_MLPPP:
3525 	case DLT_JUNIPER_ATM1:
3526 	case DLT_JUNIPER_ATM2:
3527 	case DLT_JUNIPER_PPPOE:
3528 	case DLT_JUNIPER_PPPOE_ATM:
3529         case DLT_JUNIPER_GGSN:
3530         case DLT_JUNIPER_ES:
3531         case DLT_JUNIPER_MONITOR:
3532         case DLT_JUNIPER_SERVICES:
3533         case DLT_JUNIPER_ETHER:
3534         case DLT_JUNIPER_PPP:
3535         case DLT_JUNIPER_FRELAY:
3536         case DLT_JUNIPER_CHDLC:
3537         case DLT_JUNIPER_VP:
3538         case DLT_JUNIPER_ST:
3539         case DLT_JUNIPER_ISM:
3540         case DLT_JUNIPER_VS:
3541         case DLT_JUNIPER_SRX_E2E:
3542         case DLT_JUNIPER_FIBRECHANNEL:
3543 	case DLT_JUNIPER_ATM_CEMIC:
3544 
3545 		/* just lets verify the magic number for now -
3546 		 * on ATM we may have up to 6 different encapsulations on the wire
3547 		 * and need a lot of heuristics to figure out that the payload
3548 		 * might be;
3549 		 *
3550 		 * FIXME encapsulation specific BPF_ filters
3551 		 */
3552 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x4d474300, 0xffffff00); /* compare the magic number */
3553 
3554 	case DLT_BACNET_MS_TP:
3555 		return gen_mcmp(cstate, OR_LINKHDR, 0, BPF_W, 0x55FF0000, 0xffff0000);
3556 
3557 	case DLT_IPNET:
3558 		return gen_ipnet_linktype(cstate, proto);
3559 
3560 	case DLT_LINUX_IRDA:
3561 		bpf_error(cstate, "IrDA link-layer type filtering not implemented");
3562 
3563 	case DLT_DOCSIS:
3564 		bpf_error(cstate, "DOCSIS link-layer type filtering not implemented");
3565 
3566 	case DLT_MTP2:
3567 	case DLT_MTP2_WITH_PHDR:
3568 		bpf_error(cstate, "MTP2 link-layer type filtering not implemented");
3569 
3570 	case DLT_ERF:
3571 		bpf_error(cstate, "ERF link-layer type filtering not implemented");
3572 
3573 	case DLT_PFSYNC:
3574 		bpf_error(cstate, "PFSYNC link-layer type filtering not implemented");
3575 
3576 	case DLT_LINUX_LAPD:
3577 		bpf_error(cstate, "LAPD link-layer type filtering not implemented");
3578 
3579 	case DLT_USB_FREEBSD:
3580 	case DLT_USB_LINUX:
3581 	case DLT_USB_LINUX_MMAPPED:
3582 	case DLT_USBPCAP:
3583 		bpf_error(cstate, "USB link-layer type filtering not implemented");
3584 
3585 	case DLT_BLUETOOTH_HCI_H4:
3586 	case DLT_BLUETOOTH_HCI_H4_WITH_PHDR:
3587 		bpf_error(cstate, "Bluetooth link-layer type filtering not implemented");
3588 
3589 	case DLT_CAN20B:
3590 	case DLT_CAN_SOCKETCAN:
3591 		bpf_error(cstate, "CAN link-layer type filtering not implemented");
3592 
3593 	case DLT_IEEE802_15_4:
3594 	case DLT_IEEE802_15_4_LINUX:
3595 	case DLT_IEEE802_15_4_NONASK_PHY:
3596 	case DLT_IEEE802_15_4_NOFCS:
3597 		bpf_error(cstate, "IEEE 802.15.4 link-layer type filtering not implemented");
3598 
3599 	case DLT_IEEE802_16_MAC_CPS_RADIO:
3600 		bpf_error(cstate, "IEEE 802.16 link-layer type filtering not implemented");
3601 
3602 	case DLT_SITA:
3603 		bpf_error(cstate, "SITA link-layer type filtering not implemented");
3604 
3605 	case DLT_RAIF1:
3606 		bpf_error(cstate, "RAIF1 link-layer type filtering not implemented");
3607 
3608 	case DLT_IPMB_KONTRON:
3609 	case DLT_IPMB_LINUX:
3610 		bpf_error(cstate, "IPMB link-layer type filtering not implemented");
3611 
3612 	case DLT_AX25_KISS:
3613 		bpf_error(cstate, "AX.25 link-layer type filtering not implemented");
3614 
3615 	case DLT_NFLOG:
3616 		/* Using the fixed-size NFLOG header it is possible to tell only
3617 		 * the address family of the packet, other meaningful data is
3618 		 * either missing or behind TLVs.
3619 		 */
3620 		bpf_error(cstate, "NFLOG link-layer type filtering not implemented");
3621 
3622 	default:
3623 		/*
3624 		 * Does this link-layer header type have a field
3625 		 * indicating the type of the next protocol?  If
3626 		 * so, off_linktype.constant_part will be the offset of that
3627 		 * field in the packet; if not, it will be OFFSET_NOT_SET.
3628 		 */
3629 		if (cstate->off_linktype.constant_part != OFFSET_NOT_SET) {
3630 			/*
3631 			 * Yes; assume it's an Ethernet type.  (If
3632 			 * it's not, it needs to be handled specially
3633 			 * above.)
3634 			 */
3635 			return gen_cmp(cstate, OR_LINKTYPE, 0, BPF_H, (bpf_int32)proto);
3636 			/*NOTREACHED */
3637 		} else {
3638 			/*
3639 			 * No; report an error.
3640 			 */
3641 			description = pcap_datalink_val_to_description_or_dlt(cstate->linktype);
3642 			bpf_error(cstate, "%s link-layer type filtering not implemented",
3643 			    description);
3644 			/*NOTREACHED */
3645 		}
3646 	}
3647 }
3648 
3649 /*
3650  * Check for an LLC SNAP packet with a given organization code and
3651  * protocol type; we check the entire contents of the 802.2 LLC and
3652  * snap headers, checking for DSAP and SSAP of SNAP and a control
3653  * field of 0x03 in the LLC header, and for the specified organization
3654  * code and protocol type in the SNAP header.
3655  */
3656 static struct block *
gen_snap(compiler_state_t * cstate,bpf_u_int32 orgcode,bpf_u_int32 ptype)3657 gen_snap(compiler_state_t *cstate, bpf_u_int32 orgcode, bpf_u_int32 ptype)
3658 {
3659 	u_char snapblock[8];
3660 
3661 	snapblock[0] = LLCSAP_SNAP;		/* DSAP = SNAP */
3662 	snapblock[1] = LLCSAP_SNAP;		/* SSAP = SNAP */
3663 	snapblock[2] = 0x03;			/* control = UI */
3664 	snapblock[3] = (u_char)(orgcode >> 16);	/* upper 8 bits of organization code */
3665 	snapblock[4] = (u_char)(orgcode >> 8);	/* middle 8 bits of organization code */
3666 	snapblock[5] = (u_char)(orgcode >> 0);	/* lower 8 bits of organization code */
3667 	snapblock[6] = (u_char)(ptype >> 8);	/* upper 8 bits of protocol type */
3668 	snapblock[7] = (u_char)(ptype >> 0);	/* lower 8 bits of protocol type */
3669 	return gen_bcmp(cstate, OR_LLC, 0, 8, snapblock);
3670 }
3671 
3672 /*
3673  * Generate code to match frames with an LLC header.
3674  */
3675 static struct block *
gen_llc_internal(compiler_state_t * cstate)3676 gen_llc_internal(compiler_state_t *cstate)
3677 {
3678 	struct block *b0, *b1;
3679 
3680 	switch (cstate->linktype) {
3681 
3682 	case DLT_EN10MB:
3683 		/*
3684 		 * We check for an Ethernet type field less than
3685 		 * 1500, which means it's an 802.3 length field.
3686 		 */
3687 		b0 = gen_cmp_gt(cstate, OR_LINKTYPE, 0, BPF_H, ETHERMTU);
3688 		gen_not(b0);
3689 
3690 		/*
3691 		 * Now check for the purported DSAP and SSAP not being
3692 		 * 0xFF, to rule out NetWare-over-802.3.
3693 		 */
3694 		b1 = gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_int32)0xFFFF);
3695 		gen_not(b1);
3696 		gen_and(b0, b1);
3697 		return b1;
3698 
3699 	case DLT_SUNATM:
3700 		/*
3701 		 * We check for LLC traffic.
3702 		 */
3703 		b0 = gen_atmtype_llc(cstate);
3704 		return b0;
3705 
3706 	case DLT_IEEE802:	/* Token Ring */
3707 		/*
3708 		 * XXX - check for LLC frames.
3709 		 */
3710 		return gen_true(cstate);
3711 
3712 	case DLT_FDDI:
3713 		/*
3714 		 * XXX - check for LLC frames.
3715 		 */
3716 		return gen_true(cstate);
3717 
3718 	case DLT_ATM_RFC1483:
3719 		/*
3720 		 * For LLC encapsulation, these are defined to have an
3721 		 * 802.2 LLC header.
3722 		 *
3723 		 * For VC encapsulation, they don't, but there's no
3724 		 * way to check for that; the protocol used on the VC
3725 		 * is negotiated out of band.
3726 		 */
3727 		return gen_true(cstate);
3728 
3729 	case DLT_IEEE802_11:
3730 	case DLT_PRISM_HEADER:
3731 	case DLT_IEEE802_11_RADIO:
3732 	case DLT_IEEE802_11_RADIO_AVS:
3733 	case DLT_PPI:
3734 		/*
3735 		 * Check that we have a data frame.
3736 		 */
3737 		b0 = gen_check_802_11_data_frame(cstate);
3738 		return b0;
3739 
3740 	default:
3741 		bpf_error(cstate, "'llc' not supported for %s",
3742 			  pcap_datalink_val_to_description_or_dlt(cstate->linktype));
3743 		/*NOTREACHED*/
3744 	}
3745 }
3746 
3747 struct block *
gen_llc(compiler_state_t * cstate)3748 gen_llc(compiler_state_t *cstate)
3749 {
3750 	/*
3751 	 * Catch errors reported by us and routines below us, and return NULL
3752 	 * on an error.
3753 	 */
3754 	if (setjmp(cstate->top_ctx))
3755 		return (NULL);
3756 
3757 	return gen_llc_internal(cstate);
3758 }
3759 
3760 struct block *
gen_llc_i(compiler_state_t * cstate)3761 gen_llc_i(compiler_state_t *cstate)
3762 {
3763 	struct block *b0, *b1;
3764 	struct slist *s;
3765 
3766 	/*
3767 	 * Catch errors reported by us and routines below us, and return NULL
3768 	 * on an error.
3769 	 */
3770 	if (setjmp(cstate->top_ctx))
3771 		return (NULL);
3772 
3773 	/*
3774 	 * Check whether this is an LLC frame.
3775 	 */
3776 	b0 = gen_llc_internal(cstate);
3777 
3778 	/*
3779 	 * Load the control byte and test the low-order bit; it must
3780 	 * be clear for I frames.
3781 	 */
3782 	s = gen_load_a(cstate, OR_LLC, 2, BPF_B);
3783 	b1 = new_block(cstate, JMP(BPF_JSET));
3784 	b1->s.k = 0x01;
3785 	b1->stmts = s;
3786 	gen_not(b1);
3787 	gen_and(b0, b1);
3788 	return b1;
3789 }
3790 
3791 struct block *
gen_llc_s(compiler_state_t * cstate)3792 gen_llc_s(compiler_state_t *cstate)
3793 {
3794 	struct block *b0, *b1;
3795 
3796 	/*
3797 	 * Catch errors reported by us and routines below us, and return NULL
3798 	 * on an error.
3799 	 */
3800 	if (setjmp(cstate->top_ctx))
3801 		return (NULL);
3802 
3803 	/*
3804 	 * Check whether this is an LLC frame.
3805 	 */
3806 	b0 = gen_llc_internal(cstate);
3807 
3808 	/*
3809 	 * Now compare the low-order 2 bit of the control byte against
3810 	 * the appropriate value for S frames.
3811 	 */
3812 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_S_FMT, 0x03);
3813 	gen_and(b0, b1);
3814 	return b1;
3815 }
3816 
3817 struct block *
gen_llc_u(compiler_state_t * cstate)3818 gen_llc_u(compiler_state_t *cstate)
3819 {
3820 	struct block *b0, *b1;
3821 
3822 	/*
3823 	 * Catch errors reported by us and routines below us, and return NULL
3824 	 * on an error.
3825 	 */
3826 	if (setjmp(cstate->top_ctx))
3827 		return (NULL);
3828 
3829 	/*
3830 	 * Check whether this is an LLC frame.
3831 	 */
3832 	b0 = gen_llc_internal(cstate);
3833 
3834 	/*
3835 	 * Now compare the low-order 2 bit of the control byte against
3836 	 * the appropriate value for U frames.
3837 	 */
3838 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, LLC_U_FMT, 0x03);
3839 	gen_and(b0, b1);
3840 	return b1;
3841 }
3842 
3843 struct block *
gen_llc_s_subtype(compiler_state_t * cstate,bpf_u_int32 subtype)3844 gen_llc_s_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3845 {
3846 	struct block *b0, *b1;
3847 
3848 	/*
3849 	 * Catch errors reported by us and routines below us, and return NULL
3850 	 * on an error.
3851 	 */
3852 	if (setjmp(cstate->top_ctx))
3853 		return (NULL);
3854 
3855 	/*
3856 	 * Check whether this is an LLC frame.
3857 	 */
3858 	b0 = gen_llc_internal(cstate);
3859 
3860 	/*
3861 	 * Now check for an S frame with the appropriate type.
3862 	 */
3863 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_S_CMD_MASK);
3864 	gen_and(b0, b1);
3865 	return b1;
3866 }
3867 
3868 struct block *
gen_llc_u_subtype(compiler_state_t * cstate,bpf_u_int32 subtype)3869 gen_llc_u_subtype(compiler_state_t *cstate, bpf_u_int32 subtype)
3870 {
3871 	struct block *b0, *b1;
3872 
3873 	/*
3874 	 * Catch errors reported by us and routines below us, and return NULL
3875 	 * on an error.
3876 	 */
3877 	if (setjmp(cstate->top_ctx))
3878 		return (NULL);
3879 
3880 	/*
3881 	 * Check whether this is an LLC frame.
3882 	 */
3883 	b0 = gen_llc_internal(cstate);
3884 
3885 	/*
3886 	 * Now check for a U frame with the appropriate type.
3887 	 */
3888 	b1 = gen_mcmp(cstate, OR_LLC, 2, BPF_B, subtype, LLC_U_CMD_MASK);
3889 	gen_and(b0, b1);
3890 	return b1;
3891 }
3892 
3893 /*
3894  * Generate code to match a particular packet type, for link-layer types
3895  * using 802.2 LLC headers.
3896  *
3897  * This is *NOT* used for Ethernet; "gen_ether_linktype()" is used
3898  * for that - it handles the D/I/X Ethernet vs. 802.3+802.2 issues.
3899  *
3900  * "proto" is an Ethernet type value, if > ETHERMTU, or an LLC SAP
3901  * value, if <= ETHERMTU.  We use that to determine whether to
3902  * match the DSAP or both DSAP and LSAP or to check the OUI and
3903  * protocol ID in a SNAP header.
3904  */
3905 static struct block *
gen_llc_linktype(compiler_state_t * cstate,int proto)3906 gen_llc_linktype(compiler_state_t *cstate, int proto)
3907 {
3908 	/*
3909 	 * XXX - handle token-ring variable-length header.
3910 	 */
3911 	switch (proto) {
3912 
3913 	case LLCSAP_IP:
3914 	case LLCSAP_ISONS:
3915 	case LLCSAP_NETBEUI:
3916 		/*
3917 		 * XXX - should we check both the DSAP and the
3918 		 * SSAP, like this, or should we check just the
3919 		 * DSAP, as we do for other SAP values?
3920 		 */
3921 		return gen_cmp(cstate, OR_LLC, 0, BPF_H, (bpf_u_int32)
3922 			     ((proto << 8) | proto));
3923 
3924 	case LLCSAP_IPX:
3925 		/*
3926 		 * XXX - are there ever SNAP frames for IPX on
3927 		 * non-Ethernet 802.x networks?
3928 		 */
3929 		return gen_cmp(cstate, OR_LLC, 0, BPF_B,
3930 		    (bpf_int32)LLCSAP_IPX);
3931 
3932 	case ETHERTYPE_ATALK:
3933 		/*
3934 		 * 802.2-encapsulated ETHERTYPE_ATALK packets are
3935 		 * SNAP packets with an organization code of
3936 		 * 0x080007 (Apple, for Appletalk) and a protocol
3937 		 * type of ETHERTYPE_ATALK (Appletalk).
3938 		 *
3939 		 * XXX - check for an organization code of
3940 		 * encapsulated Ethernet as well?
3941 		 */
3942 		return gen_snap(cstate, 0x080007, ETHERTYPE_ATALK);
3943 
3944 	default:
3945 		/*
3946 		 * XXX - we don't have to check for IPX 802.3
3947 		 * here, but should we check for the IPX Ethertype?
3948 		 */
3949 		if (proto <= ETHERMTU) {
3950 			/*
3951 			 * This is an LLC SAP value, so check
3952 			 * the DSAP.
3953 			 */
3954 			return gen_cmp(cstate, OR_LLC, 0, BPF_B, (bpf_int32)proto);
3955 		} else {
3956 			/*
3957 			 * This is an Ethernet type; we assume that it's
3958 			 * unlikely that it'll appear in the right place
3959 			 * at random, and therefore check only the
3960 			 * location that would hold the Ethernet type
3961 			 * in a SNAP frame with an organization code of
3962 			 * 0x000000 (encapsulated Ethernet).
3963 			 *
3964 			 * XXX - if we were to check for the SNAP DSAP and
3965 			 * LSAP, as per XXX, and were also to check for an
3966 			 * organization code of 0x000000 (encapsulated
3967 			 * Ethernet), we'd do
3968 			 *
3969 			 *	return gen_snap(cstate, 0x000000, proto);
3970 			 *
3971 			 * here; for now, we don't, as per the above.
3972 			 * I don't know whether it's worth the extra CPU
3973 			 * time to do the right check or not.
3974 			 */
3975 			return gen_cmp(cstate, OR_LLC, 6, BPF_H, (bpf_int32)proto);
3976 		}
3977 	}
3978 }
3979 
3980 static struct block *
gen_hostop(compiler_state_t * cstate,bpf_u_int32 addr,bpf_u_int32 mask,int dir,int proto,u_int src_off,u_int dst_off)3981 gen_hostop(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
3982     int dir, int proto, u_int src_off, u_int dst_off)
3983 {
3984 	struct block *b0, *b1;
3985 	u_int offset;
3986 
3987 	switch (dir) {
3988 
3989 	case Q_SRC:
3990 		offset = src_off;
3991 		break;
3992 
3993 	case Q_DST:
3994 		offset = dst_off;
3995 		break;
3996 
3997 	case Q_AND:
3998 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
3999 		b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
4000 		gen_and(b0, b1);
4001 		return b1;
4002 
4003 	case Q_DEFAULT:
4004 	case Q_OR:
4005 		b0 = gen_hostop(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
4006 		b1 = gen_hostop(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
4007 		gen_or(b0, b1);
4008 		return b1;
4009 
4010 	case Q_ADDR1:
4011 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4012 		/*NOTREACHED*/
4013 
4014 	case Q_ADDR2:
4015 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4016 		/*NOTREACHED*/
4017 
4018 	case Q_ADDR3:
4019 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4020 		/*NOTREACHED*/
4021 
4022 	case Q_ADDR4:
4023 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4024 		/*NOTREACHED*/
4025 
4026 	case Q_RA:
4027 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4028 		/*NOTREACHED*/
4029 
4030 	case Q_TA:
4031 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4032 		/*NOTREACHED*/
4033 
4034 	default:
4035 		abort();
4036 		/*NOTREACHED*/
4037 	}
4038 	b0 = gen_linktype(cstate, proto);
4039 	b1 = gen_mcmp(cstate, OR_LINKPL, offset, BPF_W, (bpf_int32)addr, mask);
4040 	gen_and(b0, b1);
4041 	return b1;
4042 }
4043 
4044 #ifdef INET6
4045 static struct block *
gen_hostop6(compiler_state_t * cstate,struct in6_addr * addr,struct in6_addr * mask,int dir,int proto,u_int src_off,u_int dst_off)4046 gen_hostop6(compiler_state_t *cstate, struct in6_addr *addr,
4047     struct in6_addr *mask, int dir, int proto, u_int src_off, u_int dst_off)
4048 {
4049 	struct block *b0, *b1;
4050 	u_int offset;
4051 	uint32_t *a, *m;
4052 
4053 	switch (dir) {
4054 
4055 	case Q_SRC:
4056 		offset = src_off;
4057 		break;
4058 
4059 	case Q_DST:
4060 		offset = dst_off;
4061 		break;
4062 
4063 	case Q_AND:
4064 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
4065 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
4066 		gen_and(b0, b1);
4067 		return b1;
4068 
4069 	case Q_DEFAULT:
4070 	case Q_OR:
4071 		b0 = gen_hostop6(cstate, addr, mask, Q_SRC, proto, src_off, dst_off);
4072 		b1 = gen_hostop6(cstate, addr, mask, Q_DST, proto, src_off, dst_off);
4073 		gen_or(b0, b1);
4074 		return b1;
4075 
4076 	case Q_ADDR1:
4077 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4078 		/*NOTREACHED*/
4079 
4080 	case Q_ADDR2:
4081 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4082 		/*NOTREACHED*/
4083 
4084 	case Q_ADDR3:
4085 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4086 		/*NOTREACHED*/
4087 
4088 	case Q_ADDR4:
4089 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4090 		/*NOTREACHED*/
4091 
4092 	case Q_RA:
4093 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4094 		/*NOTREACHED*/
4095 
4096 	case Q_TA:
4097 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4098 		/*NOTREACHED*/
4099 
4100 	default:
4101 		abort();
4102 		/*NOTREACHED*/
4103 	}
4104 	/* this order is important */
4105 	a = (uint32_t *)addr;
4106 	m = (uint32_t *)mask;
4107 	b1 = gen_mcmp(cstate, OR_LINKPL, offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
4108 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
4109 	gen_and(b0, b1);
4110 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
4111 	gen_and(b0, b1);
4112 	b0 = gen_mcmp(cstate, OR_LINKPL, offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
4113 	gen_and(b0, b1);
4114 	b0 = gen_linktype(cstate, proto);
4115 	gen_and(b0, b1);
4116 	return b1;
4117 }
4118 #endif
4119 
4120 static struct block *
gen_ehostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4121 gen_ehostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4122 {
4123 	register struct block *b0, *b1;
4124 
4125 	switch (dir) {
4126 	case Q_SRC:
4127 		return gen_bcmp(cstate, OR_LINKHDR, 6, 6, eaddr);
4128 
4129 	case Q_DST:
4130 		return gen_bcmp(cstate, OR_LINKHDR, 0, 6, eaddr);
4131 
4132 	case Q_AND:
4133 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4134 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4135 		gen_and(b0, b1);
4136 		return b1;
4137 
4138 	case Q_DEFAULT:
4139 	case Q_OR:
4140 		b0 = gen_ehostop(cstate, eaddr, Q_SRC);
4141 		b1 = gen_ehostop(cstate, eaddr, Q_DST);
4142 		gen_or(b0, b1);
4143 		return b1;
4144 
4145 	case Q_ADDR1:
4146 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11 with 802.11 headers");
4147 		/*NOTREACHED*/
4148 
4149 	case Q_ADDR2:
4150 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11 with 802.11 headers");
4151 		/*NOTREACHED*/
4152 
4153 	case Q_ADDR3:
4154 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11 with 802.11 headers");
4155 		/*NOTREACHED*/
4156 
4157 	case Q_ADDR4:
4158 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11 with 802.11 headers");
4159 		/*NOTREACHED*/
4160 
4161 	case Q_RA:
4162 		bpf_error(cstate, "'ra' is only supported on 802.11 with 802.11 headers");
4163 		/*NOTREACHED*/
4164 
4165 	case Q_TA:
4166 		bpf_error(cstate, "'ta' is only supported on 802.11 with 802.11 headers");
4167 		/*NOTREACHED*/
4168 	}
4169 	abort();
4170 	/*NOTREACHED*/
4171 }
4172 
4173 /*
4174  * Like gen_ehostop, but for DLT_FDDI
4175  */
4176 static struct block *
gen_fhostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4177 gen_fhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4178 {
4179 	struct block *b0, *b1;
4180 
4181 	switch (dir) {
4182 	case Q_SRC:
4183 		return gen_bcmp(cstate, OR_LINKHDR, 6 + 1 + cstate->pcap_fddipad, 6, eaddr);
4184 
4185 	case Q_DST:
4186 		return gen_bcmp(cstate, OR_LINKHDR, 0 + 1 + cstate->pcap_fddipad, 6, eaddr);
4187 
4188 	case Q_AND:
4189 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4190 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4191 		gen_and(b0, b1);
4192 		return b1;
4193 
4194 	case Q_DEFAULT:
4195 	case Q_OR:
4196 		b0 = gen_fhostop(cstate, eaddr, Q_SRC);
4197 		b1 = gen_fhostop(cstate, eaddr, Q_DST);
4198 		gen_or(b0, b1);
4199 		return b1;
4200 
4201 	case Q_ADDR1:
4202 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4203 		/*NOTREACHED*/
4204 
4205 	case Q_ADDR2:
4206 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4207 		/*NOTREACHED*/
4208 
4209 	case Q_ADDR3:
4210 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4211 		/*NOTREACHED*/
4212 
4213 	case Q_ADDR4:
4214 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4215 		/*NOTREACHED*/
4216 
4217 	case Q_RA:
4218 		bpf_error(cstate, "'ra' is only supported on 802.11");
4219 		/*NOTREACHED*/
4220 
4221 	case Q_TA:
4222 		bpf_error(cstate, "'ta' is only supported on 802.11");
4223 		/*NOTREACHED*/
4224 	}
4225 	abort();
4226 	/*NOTREACHED*/
4227 }
4228 
4229 /*
4230  * Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
4231  */
4232 static struct block *
gen_thostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4233 gen_thostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4234 {
4235 	register struct block *b0, *b1;
4236 
4237 	switch (dir) {
4238 	case Q_SRC:
4239 		return gen_bcmp(cstate, OR_LINKHDR, 8, 6, eaddr);
4240 
4241 	case Q_DST:
4242 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4243 
4244 	case Q_AND:
4245 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4246 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4247 		gen_and(b0, b1);
4248 		return b1;
4249 
4250 	case Q_DEFAULT:
4251 	case Q_OR:
4252 		b0 = gen_thostop(cstate, eaddr, Q_SRC);
4253 		b1 = gen_thostop(cstate, eaddr, Q_DST);
4254 		gen_or(b0, b1);
4255 		return b1;
4256 
4257 	case Q_ADDR1:
4258 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4259 		/*NOTREACHED*/
4260 
4261 	case Q_ADDR2:
4262 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4263 		/*NOTREACHED*/
4264 
4265 	case Q_ADDR3:
4266 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4267 		/*NOTREACHED*/
4268 
4269 	case Q_ADDR4:
4270 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4271 		/*NOTREACHED*/
4272 
4273 	case Q_RA:
4274 		bpf_error(cstate, "'ra' is only supported on 802.11");
4275 		/*NOTREACHED*/
4276 
4277 	case Q_TA:
4278 		bpf_error(cstate, "'ta' is only supported on 802.11");
4279 		/*NOTREACHED*/
4280 	}
4281 	abort();
4282 	/*NOTREACHED*/
4283 }
4284 
4285 /*
4286  * Like gen_ehostop, but for DLT_IEEE802_11 (802.11 wireless LAN) and
4287  * various 802.11 + radio headers.
4288  */
4289 static struct block *
gen_wlanhostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4290 gen_wlanhostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4291 {
4292 	register struct block *b0, *b1, *b2;
4293 	register struct slist *s;
4294 
4295 #ifdef ENABLE_WLAN_FILTERING_PATCH
4296 	/*
4297 	 * TODO GV 20070613
4298 	 * We need to disable the optimizer because the optimizer is buggy
4299 	 * and wipes out some LD instructions generated by the below
4300 	 * code to validate the Frame Control bits
4301 	 */
4302 	cstate->no_optimize = 1;
4303 #endif /* ENABLE_WLAN_FILTERING_PATCH */
4304 
4305 	switch (dir) {
4306 	case Q_SRC:
4307 		/*
4308 		 * Oh, yuk.
4309 		 *
4310 		 *	For control frames, there is no SA.
4311 		 *
4312 		 *	For management frames, SA is at an
4313 		 *	offset of 10 from the beginning of
4314 		 *	the packet.
4315 		 *
4316 		 *	For data frames, SA is at an offset
4317 		 *	of 10 from the beginning of the packet
4318 		 *	if From DS is clear, at an offset of
4319 		 *	16 from the beginning of the packet
4320 		 *	if From DS is set and To DS is clear,
4321 		 *	and an offset of 24 from the beginning
4322 		 *	of the packet if From DS is set and To DS
4323 		 *	is set.
4324 		 */
4325 
4326 		/*
4327 		 * Generate the tests to be done for data frames
4328 		 * with From DS set.
4329 		 *
4330 		 * First, check for To DS set, i.e. check "link[1] & 0x01".
4331 		 */
4332 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4333 		b1 = new_block(cstate, JMP(BPF_JSET));
4334 		b1->s.k = 0x01;	/* To DS */
4335 		b1->stmts = s;
4336 
4337 		/*
4338 		 * If To DS is set, the SA is at 24.
4339 		 */
4340 		b0 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4341 		gen_and(b1, b0);
4342 
4343 		/*
4344 		 * Now, check for To DS not set, i.e. check
4345 		 * "!(link[1] & 0x01)".
4346 		 */
4347 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4348 		b2 = new_block(cstate, JMP(BPF_JSET));
4349 		b2->s.k = 0x01;	/* To DS */
4350 		b2->stmts = s;
4351 		gen_not(b2);
4352 
4353 		/*
4354 		 * If To DS is not set, the SA is at 16.
4355 		 */
4356 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4357 		gen_and(b2, b1);
4358 
4359 		/*
4360 		 * Now OR together the last two checks.  That gives
4361 		 * the complete set of checks for data frames with
4362 		 * From DS set.
4363 		 */
4364 		gen_or(b1, b0);
4365 
4366 		/*
4367 		 * Now check for From DS being set, and AND that with
4368 		 * the ORed-together checks.
4369 		 */
4370 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4371 		b1 = new_block(cstate, JMP(BPF_JSET));
4372 		b1->s.k = 0x02;	/* From DS */
4373 		b1->stmts = s;
4374 		gen_and(b1, b0);
4375 
4376 		/*
4377 		 * Now check for data frames with From DS not set.
4378 		 */
4379 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4380 		b2 = new_block(cstate, JMP(BPF_JSET));
4381 		b2->s.k = 0x02;	/* From DS */
4382 		b2->stmts = s;
4383 		gen_not(b2);
4384 
4385 		/*
4386 		 * If From DS isn't set, the SA is at 10.
4387 		 */
4388 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4389 		gen_and(b2, b1);
4390 
4391 		/*
4392 		 * Now OR together the checks for data frames with
4393 		 * From DS not set and for data frames with From DS
4394 		 * set; that gives the checks done for data frames.
4395 		 */
4396 		gen_or(b1, b0);
4397 
4398 		/*
4399 		 * Now check for a data frame.
4400 		 * I.e, check "link[0] & 0x08".
4401 		 */
4402 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4403 		b1 = new_block(cstate, JMP(BPF_JSET));
4404 		b1->s.k = 0x08;
4405 		b1->stmts = s;
4406 
4407 		/*
4408 		 * AND that with the checks done for data frames.
4409 		 */
4410 		gen_and(b1, b0);
4411 
4412 		/*
4413 		 * If the high-order bit of the type value is 0, this
4414 		 * is a management frame.
4415 		 * I.e, check "!(link[0] & 0x08)".
4416 		 */
4417 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4418 		b2 = new_block(cstate, JMP(BPF_JSET));
4419 		b2->s.k = 0x08;
4420 		b2->stmts = s;
4421 		gen_not(b2);
4422 
4423 		/*
4424 		 * For management frames, the SA is at 10.
4425 		 */
4426 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4427 		gen_and(b2, b1);
4428 
4429 		/*
4430 		 * OR that with the checks done for data frames.
4431 		 * That gives the checks done for management and
4432 		 * data frames.
4433 		 */
4434 		gen_or(b1, b0);
4435 
4436 		/*
4437 		 * If the low-order bit of the type value is 1,
4438 		 * this is either a control frame or a frame
4439 		 * with a reserved type, and thus not a
4440 		 * frame with an SA.
4441 		 *
4442 		 * I.e., check "!(link[0] & 0x04)".
4443 		 */
4444 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4445 		b1 = new_block(cstate, JMP(BPF_JSET));
4446 		b1->s.k = 0x04;
4447 		b1->stmts = s;
4448 		gen_not(b1);
4449 
4450 		/*
4451 		 * AND that with the checks for data and management
4452 		 * frames.
4453 		 */
4454 		gen_and(b1, b0);
4455 		return b0;
4456 
4457 	case Q_DST:
4458 		/*
4459 		 * Oh, yuk.
4460 		 *
4461 		 *	For control frames, there is no DA.
4462 		 *
4463 		 *	For management frames, DA is at an
4464 		 *	offset of 4 from the beginning of
4465 		 *	the packet.
4466 		 *
4467 		 *	For data frames, DA is at an offset
4468 		 *	of 4 from the beginning of the packet
4469 		 *	if To DS is clear and at an offset of
4470 		 *	16 from the beginning of the packet
4471 		 *	if To DS is set.
4472 		 */
4473 
4474 		/*
4475 		 * Generate the tests to be done for data frames.
4476 		 *
4477 		 * First, check for To DS set, i.e. "link[1] & 0x01".
4478 		 */
4479 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4480 		b1 = new_block(cstate, JMP(BPF_JSET));
4481 		b1->s.k = 0x01;	/* To DS */
4482 		b1->stmts = s;
4483 
4484 		/*
4485 		 * If To DS is set, the DA is at 16.
4486 		 */
4487 		b0 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4488 		gen_and(b1, b0);
4489 
4490 		/*
4491 		 * Now, check for To DS not set, i.e. check
4492 		 * "!(link[1] & 0x01)".
4493 		 */
4494 		s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
4495 		b2 = new_block(cstate, JMP(BPF_JSET));
4496 		b2->s.k = 0x01;	/* To DS */
4497 		b2->stmts = s;
4498 		gen_not(b2);
4499 
4500 		/*
4501 		 * If To DS is not set, the DA is at 4.
4502 		 */
4503 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4504 		gen_and(b2, b1);
4505 
4506 		/*
4507 		 * Now OR together the last two checks.  That gives
4508 		 * the complete set of checks for data frames.
4509 		 */
4510 		gen_or(b1, b0);
4511 
4512 		/*
4513 		 * Now check for a data frame.
4514 		 * I.e, check "link[0] & 0x08".
4515 		 */
4516 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4517 		b1 = new_block(cstate, JMP(BPF_JSET));
4518 		b1->s.k = 0x08;
4519 		b1->stmts = s;
4520 
4521 		/*
4522 		 * AND that with the checks done for data frames.
4523 		 */
4524 		gen_and(b1, b0);
4525 
4526 		/*
4527 		 * If the high-order bit of the type value is 0, this
4528 		 * is a management frame.
4529 		 * I.e, check "!(link[0] & 0x08)".
4530 		 */
4531 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4532 		b2 = new_block(cstate, JMP(BPF_JSET));
4533 		b2->s.k = 0x08;
4534 		b2->stmts = s;
4535 		gen_not(b2);
4536 
4537 		/*
4538 		 * For management frames, the DA is at 4.
4539 		 */
4540 		b1 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4541 		gen_and(b2, b1);
4542 
4543 		/*
4544 		 * OR that with the checks done for data frames.
4545 		 * That gives the checks done for management and
4546 		 * data frames.
4547 		 */
4548 		gen_or(b1, b0);
4549 
4550 		/*
4551 		 * If the low-order bit of the type value is 1,
4552 		 * this is either a control frame or a frame
4553 		 * with a reserved type, and thus not a
4554 		 * frame with an SA.
4555 		 *
4556 		 * I.e., check "!(link[0] & 0x04)".
4557 		 */
4558 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4559 		b1 = new_block(cstate, JMP(BPF_JSET));
4560 		b1->s.k = 0x04;
4561 		b1->stmts = s;
4562 		gen_not(b1);
4563 
4564 		/*
4565 		 * AND that with the checks for data and management
4566 		 * frames.
4567 		 */
4568 		gen_and(b1, b0);
4569 		return b0;
4570 
4571 	case Q_AND:
4572 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4573 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4574 		gen_and(b0, b1);
4575 		return b1;
4576 
4577 	case Q_DEFAULT:
4578 	case Q_OR:
4579 		b0 = gen_wlanhostop(cstate, eaddr, Q_SRC);
4580 		b1 = gen_wlanhostop(cstate, eaddr, Q_DST);
4581 		gen_or(b0, b1);
4582 		return b1;
4583 
4584 	/*
4585 	 * XXX - add BSSID keyword?
4586 	 */
4587 	case Q_ADDR1:
4588 		return (gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr));
4589 
4590 	case Q_ADDR2:
4591 		/*
4592 		 * Not present in CTS or ACK control frames.
4593 		 */
4594 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4595 			IEEE80211_FC0_TYPE_MASK);
4596 		gen_not(b0);
4597 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4598 			IEEE80211_FC0_SUBTYPE_MASK);
4599 		gen_not(b1);
4600 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4601 			IEEE80211_FC0_SUBTYPE_MASK);
4602 		gen_not(b2);
4603 		gen_and(b1, b2);
4604 		gen_or(b0, b2);
4605 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4606 		gen_and(b2, b1);
4607 		return b1;
4608 
4609 	case Q_ADDR3:
4610 		/*
4611 		 * Not present in control frames.
4612 		 */
4613 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4614 			IEEE80211_FC0_TYPE_MASK);
4615 		gen_not(b0);
4616 		b1 = gen_bcmp(cstate, OR_LINKHDR, 16, 6, eaddr);
4617 		gen_and(b0, b1);
4618 		return b1;
4619 
4620 	case Q_ADDR4:
4621 		/*
4622 		 * Present only if the direction mask has both "From DS"
4623 		 * and "To DS" set.  Neither control frames nor management
4624 		 * frames should have both of those set, so we don't
4625 		 * check the frame type.
4626 		 */
4627 		b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B,
4628 			IEEE80211_FC1_DIR_DSTODS, IEEE80211_FC1_DIR_MASK);
4629 		b1 = gen_bcmp(cstate, OR_LINKHDR, 24, 6, eaddr);
4630 		gen_and(b0, b1);
4631 		return b1;
4632 
4633 	case Q_RA:
4634 		/*
4635 		 * Not present in management frames; addr1 in other
4636 		 * frames.
4637 		 */
4638 
4639 		/*
4640 		 * If the high-order bit of the type value is 0, this
4641 		 * is a management frame.
4642 		 * I.e, check "(link[0] & 0x08)".
4643 		 */
4644 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4645 		b1 = new_block(cstate, JMP(BPF_JSET));
4646 		b1->s.k = 0x08;
4647 		b1->stmts = s;
4648 
4649 		/*
4650 		 * Check addr1.
4651 		 */
4652 		b0 = gen_bcmp(cstate, OR_LINKHDR, 4, 6, eaddr);
4653 
4654 		/*
4655 		 * AND that with the check of addr1.
4656 		 */
4657 		gen_and(b1, b0);
4658 		return (b0);
4659 
4660 	case Q_TA:
4661 		/*
4662 		 * Not present in management frames; addr2, if present,
4663 		 * in other frames.
4664 		 */
4665 
4666 		/*
4667 		 * Not present in CTS or ACK control frames.
4668 		 */
4669 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_TYPE_CTL,
4670 			IEEE80211_FC0_TYPE_MASK);
4671 		gen_not(b0);
4672 		b1 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_CTS,
4673 			IEEE80211_FC0_SUBTYPE_MASK);
4674 		gen_not(b1);
4675 		b2 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, IEEE80211_FC0_SUBTYPE_ACK,
4676 			IEEE80211_FC0_SUBTYPE_MASK);
4677 		gen_not(b2);
4678 		gen_and(b1, b2);
4679 		gen_or(b0, b2);
4680 
4681 		/*
4682 		 * If the high-order bit of the type value is 0, this
4683 		 * is a management frame.
4684 		 * I.e, check "(link[0] & 0x08)".
4685 		 */
4686 		s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
4687 		b1 = new_block(cstate, JMP(BPF_JSET));
4688 		b1->s.k = 0x08;
4689 		b1->stmts = s;
4690 
4691 		/*
4692 		 * AND that with the check for frames other than
4693 		 * CTS and ACK frames.
4694 		 */
4695 		gen_and(b1, b2);
4696 
4697 		/*
4698 		 * Check addr2.
4699 		 */
4700 		b1 = gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4701 		gen_and(b2, b1);
4702 		return b1;
4703 	}
4704 	abort();
4705 	/*NOTREACHED*/
4706 }
4707 
4708 /*
4709  * Like gen_ehostop, but for RFC 2625 IP-over-Fibre-Channel.
4710  * (We assume that the addresses are IEEE 48-bit MAC addresses,
4711  * as the RFC states.)
4712  */
4713 static struct block *
gen_ipfchostop(compiler_state_t * cstate,const u_char * eaddr,int dir)4714 gen_ipfchostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
4715 {
4716 	register struct block *b0, *b1;
4717 
4718 	switch (dir) {
4719 	case Q_SRC:
4720 		return gen_bcmp(cstate, OR_LINKHDR, 10, 6, eaddr);
4721 
4722 	case Q_DST:
4723 		return gen_bcmp(cstate, OR_LINKHDR, 2, 6, eaddr);
4724 
4725 	case Q_AND:
4726 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4727 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4728 		gen_and(b0, b1);
4729 		return b1;
4730 
4731 	case Q_DEFAULT:
4732 	case Q_OR:
4733 		b0 = gen_ipfchostop(cstate, eaddr, Q_SRC);
4734 		b1 = gen_ipfchostop(cstate, eaddr, Q_DST);
4735 		gen_or(b0, b1);
4736 		return b1;
4737 
4738 	case Q_ADDR1:
4739 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
4740 		/*NOTREACHED*/
4741 
4742 	case Q_ADDR2:
4743 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
4744 		/*NOTREACHED*/
4745 
4746 	case Q_ADDR3:
4747 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
4748 		/*NOTREACHED*/
4749 
4750 	case Q_ADDR4:
4751 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
4752 		/*NOTREACHED*/
4753 
4754 	case Q_RA:
4755 		bpf_error(cstate, "'ra' is only supported on 802.11");
4756 		/*NOTREACHED*/
4757 
4758 	case Q_TA:
4759 		bpf_error(cstate, "'ta' is only supported on 802.11");
4760 		/*NOTREACHED*/
4761 	}
4762 	abort();
4763 	/*NOTREACHED*/
4764 }
4765 
4766 /*
4767  * This is quite tricky because there may be pad bytes in front of the
4768  * DECNET header, and then there are two possible data packet formats that
4769  * carry both src and dst addresses, plus 5 packet types in a format that
4770  * carries only the src node, plus 2 types that use a different format and
4771  * also carry just the src node.
4772  *
4773  * Yuck.
4774  *
4775  * Instead of doing those all right, we just look for data packets with
4776  * 0 or 1 bytes of padding.  If you want to look at other packets, that
4777  * will require a lot more hacking.
4778  *
4779  * To add support for filtering on DECNET "areas" (network numbers)
4780  * one would want to add a "mask" argument to this routine.  That would
4781  * make the filter even more inefficient, although one could be clever
4782  * and not generate masking instructions if the mask is 0xFFFF.
4783  */
4784 static struct block *
gen_dnhostop(compiler_state_t * cstate,bpf_u_int32 addr,int dir)4785 gen_dnhostop(compiler_state_t *cstate, bpf_u_int32 addr, int dir)
4786 {
4787 	struct block *b0, *b1, *b2, *tmp;
4788 	u_int offset_lh;	/* offset if long header is received */
4789 	u_int offset_sh;	/* offset if short header is received */
4790 
4791 	switch (dir) {
4792 
4793 	case Q_DST:
4794 		offset_sh = 1;	/* follows flags */
4795 		offset_lh = 7;	/* flgs,darea,dsubarea,HIORD */
4796 		break;
4797 
4798 	case Q_SRC:
4799 		offset_sh = 3;	/* follows flags, dstnode */
4800 		offset_lh = 15;	/* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
4801 		break;
4802 
4803 	case Q_AND:
4804 		/* Inefficient because we do our Calvinball dance twice */
4805 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4806 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4807 		gen_and(b0, b1);
4808 		return b1;
4809 
4810 	case Q_DEFAULT:
4811 	case Q_OR:
4812 		/* Inefficient because we do our Calvinball dance twice */
4813 		b0 = gen_dnhostop(cstate, addr, Q_SRC);
4814 		b1 = gen_dnhostop(cstate, addr, Q_DST);
4815 		gen_or(b0, b1);
4816 		return b1;
4817 
4818 	case Q_ADDR1:
4819 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4820 		/*NOTREACHED*/
4821 
4822 	case Q_ADDR2:
4823 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4824 		/*NOTREACHED*/
4825 
4826 	case Q_ADDR3:
4827 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4828 		/*NOTREACHED*/
4829 
4830 	case Q_ADDR4:
4831 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for addresses other than 802.11 MAC addresses");
4832 		/*NOTREACHED*/
4833 
4834 	case Q_RA:
4835 		bpf_error(cstate, "'ra' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4836 		/*NOTREACHED*/
4837 
4838 	case Q_TA:
4839 		bpf_error(cstate, "'ta' is not a valid qualifier for addresses other than 802.11 MAC addresses");
4840 		/*NOTREACHED*/
4841 
4842 	default:
4843 		abort();
4844 		/*NOTREACHED*/
4845 	}
4846 	b0 = gen_linktype(cstate, ETHERTYPE_DN);
4847 	/* Check for pad = 1, long header case */
4848 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4849 	    (bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
4850 	b1 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_lh,
4851 	    BPF_H, (bpf_int32)ntohs((u_short)addr));
4852 	gen_and(tmp, b1);
4853 	/* Check for pad = 0, long header case */
4854 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
4855 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_lh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4856 	gen_and(tmp, b2);
4857 	gen_or(b2, b1);
4858 	/* Check for pad = 1, short header case */
4859 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_H,
4860 	    (bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
4861 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + 1 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4862 	gen_and(tmp, b2);
4863 	gen_or(b2, b1);
4864 	/* Check for pad = 0, short header case */
4865 	tmp = gen_mcmp(cstate, OR_LINKPL, 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
4866 	b2 = gen_cmp(cstate, OR_LINKPL, 2 + offset_sh, BPF_H, (bpf_int32)ntohs((u_short)addr));
4867 	gen_and(tmp, b2);
4868 	gen_or(b2, b1);
4869 
4870 	/* Combine with test for cstate->linktype */
4871 	gen_and(b0, b1);
4872 	return b1;
4873 }
4874 
4875 /*
4876  * Generate a check for IPv4 or IPv6 for MPLS-encapsulated packets;
4877  * test the bottom-of-stack bit, and then check the version number
4878  * field in the IP header.
4879  */
4880 static struct block *
gen_mpls_linktype(compiler_state_t * cstate,int proto)4881 gen_mpls_linktype(compiler_state_t *cstate, int proto)
4882 {
4883 	struct block *b0, *b1;
4884 
4885         switch (proto) {
4886 
4887         case Q_IP:
4888                 /* match the bottom-of-stack bit */
4889                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4890                 /* match the IPv4 version number */
4891                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x40, 0xf0);
4892                 gen_and(b0, b1);
4893                 return b1;
4894 
4895        case Q_IPV6:
4896                 /* match the bottom-of-stack bit */
4897                 b0 = gen_mcmp(cstate, OR_LINKPL, (u_int)-2, BPF_B, 0x01, 0x01);
4898                 /* match the IPv4 version number */
4899                 b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_B, 0x60, 0xf0);
4900                 gen_and(b0, b1);
4901                 return b1;
4902 
4903        default:
4904                 abort();
4905         }
4906 }
4907 
4908 static struct block *
gen_host(compiler_state_t * cstate,bpf_u_int32 addr,bpf_u_int32 mask,int proto,int dir,int type)4909 gen_host(compiler_state_t *cstate, bpf_u_int32 addr, bpf_u_int32 mask,
4910     int proto, int dir, int type)
4911 {
4912 	struct block *b0, *b1;
4913 	const char *typestr;
4914 
4915 	if (type == Q_NET)
4916 		typestr = "net";
4917 	else
4918 		typestr = "host";
4919 
4920 	switch (proto) {
4921 
4922 	case Q_DEFAULT:
4923 		b0 = gen_host(cstate, addr, mask, Q_IP, dir, type);
4924 		/*
4925 		 * Only check for non-IPv4 addresses if we're not
4926 		 * checking MPLS-encapsulated packets.
4927 		 */
4928 		if (cstate->label_stack_depth == 0) {
4929 			b1 = gen_host(cstate, addr, mask, Q_ARP, dir, type);
4930 			gen_or(b0, b1);
4931 			b0 = gen_host(cstate, addr, mask, Q_RARP, dir, type);
4932 			gen_or(b1, b0);
4933 		}
4934 		return b0;
4935 
4936 	case Q_LINK:
4937 		bpf_error(cstate, "link-layer modifier applied to %s", typestr);
4938 
4939 	case Q_IP:
4940 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_IP, 12, 16);
4941 
4942 	case Q_RARP:
4943 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_REVARP, 14, 24);
4944 
4945 	case Q_ARP:
4946 		return gen_hostop(cstate, addr, mask, dir, ETHERTYPE_ARP, 14, 24);
4947 
4948 	case Q_SCTP:
4949 		bpf_error(cstate, "'sctp' modifier applied to %s", typestr);
4950 
4951 	case Q_TCP:
4952 		bpf_error(cstate, "'tcp' modifier applied to %s", typestr);
4953 
4954 	case Q_UDP:
4955 		bpf_error(cstate, "'udp' modifier applied to %s", typestr);
4956 
4957 	case Q_ICMP:
4958 		bpf_error(cstate, "'icmp' modifier applied to %s", typestr);
4959 
4960 	case Q_IGMP:
4961 		bpf_error(cstate, "'igmp' modifier applied to %s", typestr);
4962 
4963 	case Q_IGRP:
4964 		bpf_error(cstate, "'igrp' modifier applied to %s", typestr);
4965 
4966 	case Q_ATALK:
4967 		bpf_error(cstate, "AppleTalk host filtering not implemented");
4968 
4969 	case Q_DECNET:
4970 		return gen_dnhostop(cstate, addr, dir);
4971 
4972 	case Q_LAT:
4973 		bpf_error(cstate, "LAT host filtering not implemented");
4974 
4975 	case Q_SCA:
4976 		bpf_error(cstate, "SCA host filtering not implemented");
4977 
4978 	case Q_MOPRC:
4979 		bpf_error(cstate, "MOPRC host filtering not implemented");
4980 
4981 	case Q_MOPDL:
4982 		bpf_error(cstate, "MOPDL host filtering not implemented");
4983 
4984 	case Q_IPV6:
4985 		bpf_error(cstate, "'ip6' modifier applied to ip host");
4986 
4987 	case Q_ICMPV6:
4988 		bpf_error(cstate, "'icmp6' modifier applied to %s", typestr);
4989 
4990 	case Q_AH:
4991 		bpf_error(cstate, "'ah' modifier applied to %s", typestr);
4992 
4993 	case Q_ESP:
4994 		bpf_error(cstate, "'esp' modifier applied to %s", typestr);
4995 
4996 	case Q_PIM:
4997 		bpf_error(cstate, "'pim' modifier applied to %s", typestr);
4998 
4999 	case Q_VRRP:
5000 		bpf_error(cstate, "'vrrp' modifier applied to %s", typestr);
5001 
5002 	case Q_AARP:
5003 		bpf_error(cstate, "AARP host filtering not implemented");
5004 
5005 	case Q_ISO:
5006 		bpf_error(cstate, "ISO host filtering not implemented");
5007 
5008 	case Q_ESIS:
5009 		bpf_error(cstate, "'esis' modifier applied to %s", typestr);
5010 
5011 	case Q_ISIS:
5012 		bpf_error(cstate, "'isis' modifier applied to %s", typestr);
5013 
5014 	case Q_CLNP:
5015 		bpf_error(cstate, "'clnp' modifier applied to %s", typestr);
5016 
5017 	case Q_STP:
5018 		bpf_error(cstate, "'stp' modifier applied to %s", typestr);
5019 
5020 	case Q_IPX:
5021 		bpf_error(cstate, "IPX host filtering not implemented");
5022 
5023 	case Q_NETBEUI:
5024 		bpf_error(cstate, "'netbeui' modifier applied to %s", typestr);
5025 
5026 	case Q_ISIS_L1:
5027 		bpf_error(cstate, "'l1' modifier applied to %s", typestr);
5028 
5029 	case Q_ISIS_L2:
5030 		bpf_error(cstate, "'l2' modifier applied to %s", typestr);
5031 
5032 	case Q_ISIS_IIH:
5033 		bpf_error(cstate, "'iih' modifier applied to %s", typestr);
5034 
5035 	case Q_ISIS_SNP:
5036 		bpf_error(cstate, "'snp' modifier applied to %s", typestr);
5037 
5038 	case Q_ISIS_CSNP:
5039 		bpf_error(cstate, "'csnp' modifier applied to %s", typestr);
5040 
5041 	case Q_ISIS_PSNP:
5042 		bpf_error(cstate, "'psnp' modifier applied to %s", typestr);
5043 
5044 	case Q_ISIS_LSP:
5045 		bpf_error(cstate, "'lsp' modifier applied to %s", typestr);
5046 
5047 	case Q_RADIO:
5048 		bpf_error(cstate, "'radio' modifier applied to %s", typestr);
5049 
5050 	case Q_CARP:
5051 		bpf_error(cstate, "'carp' modifier applied to %s", typestr);
5052 
5053 	default:
5054 		abort();
5055 	}
5056 	/*NOTREACHED*/
5057 }
5058 
5059 #ifdef INET6
5060 static struct block *
gen_host6(compiler_state_t * cstate,struct in6_addr * addr,struct in6_addr * mask,int proto,int dir,int type)5061 gen_host6(compiler_state_t *cstate, struct in6_addr *addr,
5062     struct in6_addr *mask, int proto, int dir, int type)
5063 {
5064 	const char *typestr;
5065 
5066 	if (type == Q_NET)
5067 		typestr = "net";
5068 	else
5069 		typestr = "host";
5070 
5071 	switch (proto) {
5072 
5073 	case Q_DEFAULT:
5074 		return gen_host6(cstate, addr, mask, Q_IPV6, dir, type);
5075 
5076 	case Q_LINK:
5077 		bpf_error(cstate, "link-layer modifier applied to ip6 %s", typestr);
5078 
5079 	case Q_IP:
5080 		bpf_error(cstate, "'ip' modifier applied to ip6 %s", typestr);
5081 
5082 	case Q_RARP:
5083 		bpf_error(cstate, "'rarp' modifier applied to ip6 %s", typestr);
5084 
5085 	case Q_ARP:
5086 		bpf_error(cstate, "'arp' modifier applied to ip6 %s", typestr);
5087 
5088 	case Q_SCTP:
5089 		bpf_error(cstate, "'sctp' modifier applied to ip6 %s", typestr);
5090 
5091 	case Q_TCP:
5092 		bpf_error(cstate, "'tcp' modifier applied to ip6 %s", typestr);
5093 
5094 	case Q_UDP:
5095 		bpf_error(cstate, "'udp' modifier applied to ip6 %s", typestr);
5096 
5097 	case Q_ICMP:
5098 		bpf_error(cstate, "'icmp' modifier applied to ip6 %s", typestr);
5099 
5100 	case Q_IGMP:
5101 		bpf_error(cstate, "'igmp' modifier applied to ip6 %s", typestr);
5102 
5103 	case Q_IGRP:
5104 		bpf_error(cstate, "'igrp' modifier applied to ip6 %s", typestr);
5105 
5106 	case Q_ATALK:
5107 		bpf_error(cstate, "AppleTalk modifier applied to ip6 %s", typestr);
5108 
5109 	case Q_DECNET:
5110 		bpf_error(cstate, "'decnet' modifier applied to ip6 %s", typestr);
5111 
5112 	case Q_LAT:
5113 		bpf_error(cstate, "'lat' modifier applied to ip6 %s", typestr);
5114 
5115 	case Q_SCA:
5116 		bpf_error(cstate, "'sca' modifier applied to ip6 %s", typestr);
5117 
5118 	case Q_MOPRC:
5119 		bpf_error(cstate, "'moprc' modifier applied to ip6 %s", typestr);
5120 
5121 	case Q_MOPDL:
5122 		bpf_error(cstate, "'mopdl' modifier applied to ip6 %s", typestr);
5123 
5124 	case Q_IPV6:
5125 		return gen_hostop6(cstate, addr, mask, dir, ETHERTYPE_IPV6, 8, 24);
5126 
5127 	case Q_ICMPV6:
5128 		bpf_error(cstate, "'icmp6' modifier applied to ip6 %s", typestr);
5129 
5130 	case Q_AH:
5131 		bpf_error(cstate, "'ah' modifier applied to ip6 %s", typestr);
5132 
5133 	case Q_ESP:
5134 		bpf_error(cstate, "'esp' modifier applied to ip6 %s", typestr);
5135 
5136 	case Q_PIM:
5137 		bpf_error(cstate, "'pim' modifier applied to ip6 %s", typestr);
5138 
5139 	case Q_VRRP:
5140 		bpf_error(cstate, "'vrrp' modifier applied to ip6 %s", typestr);
5141 
5142 	case Q_AARP:
5143 		bpf_error(cstate, "'aarp' modifier applied to ip6 %s", typestr);
5144 
5145 	case Q_ISO:
5146 		bpf_error(cstate, "'iso' modifier applied to ip6 %s", typestr);
5147 
5148 	case Q_ESIS:
5149 		bpf_error(cstate, "'esis' modifier applied to ip6 %s", typestr);
5150 
5151 	case Q_ISIS:
5152 		bpf_error(cstate, "'isis' modifier applied to ip6 %s", typestr);
5153 
5154 	case Q_CLNP:
5155 		bpf_error(cstate, "'clnp' modifier applied to ip6 %s", typestr);
5156 
5157 	case Q_STP:
5158 		bpf_error(cstate, "'stp' modifier applied to ip6 %s", typestr);
5159 
5160 	case Q_IPX:
5161 		bpf_error(cstate, "'ipx' modifier applied to ip6 %s", typestr);
5162 
5163 	case Q_NETBEUI:
5164 		bpf_error(cstate, "'netbeui' modifier applied to ip6 %s", typestr);
5165 
5166 	case Q_ISIS_L1:
5167 		bpf_error(cstate, "'l1' modifier applied to ip6 %s", typestr);
5168 
5169 	case Q_ISIS_L2:
5170 		bpf_error(cstate, "'l2' modifier applied to ip6 %s", typestr);
5171 
5172 	case Q_ISIS_IIH:
5173 		bpf_error(cstate, "'iih' modifier applied to ip6 %s", typestr);
5174 
5175 	case Q_ISIS_SNP:
5176 		bpf_error(cstate, "'snp' modifier applied to ip6 %s", typestr);
5177 
5178 	case Q_ISIS_CSNP:
5179 		bpf_error(cstate, "'csnp' modifier applied to ip6 %s", typestr);
5180 
5181 	case Q_ISIS_PSNP:
5182 		bpf_error(cstate, "'psnp' modifier applied to ip6 %s", typestr);
5183 
5184 	case Q_ISIS_LSP:
5185 		bpf_error(cstate, "'lsp' modifier applied to ip6 %s", typestr);
5186 
5187 	case Q_RADIO:
5188 		bpf_error(cstate, "'radio' modifier applied to ip6 %s", typestr);
5189 
5190 	case Q_CARP:
5191 		bpf_error(cstate, "'carp' modifier applied to ip6 %s", typestr);
5192 
5193 	default:
5194 		abort();
5195 	}
5196 	/*NOTREACHED*/
5197 }
5198 #endif
5199 
5200 #ifndef INET6
5201 static struct block *
gen_gateway(compiler_state_t * cstate,const u_char * eaddr,struct addrinfo * alist,int proto,int dir)5202 gen_gateway(compiler_state_t *cstate, const u_char *eaddr,
5203     struct addrinfo *alist, int proto, int dir)
5204 {
5205 	struct block *b0, *b1, *tmp;
5206 	struct addrinfo *ai;
5207 	struct sockaddr_in *sin;
5208 
5209 	if (dir != 0)
5210 		bpf_error(cstate, "direction applied to 'gateway'");
5211 
5212 	switch (proto) {
5213 	case Q_DEFAULT:
5214 	case Q_IP:
5215 	case Q_ARP:
5216 	case Q_RARP:
5217 		switch (cstate->linktype) {
5218 		case DLT_EN10MB:
5219 		case DLT_NETANALYZER:
5220 		case DLT_NETANALYZER_TRANSPARENT:
5221 			b1 = gen_prevlinkhdr_check(cstate);
5222 			b0 = gen_ehostop(cstate, eaddr, Q_OR);
5223 			if (b1 != NULL)
5224 				gen_and(b1, b0);
5225 			break;
5226 		case DLT_FDDI:
5227 			b0 = gen_fhostop(cstate, eaddr, Q_OR);
5228 			break;
5229 		case DLT_IEEE802:
5230 			b0 = gen_thostop(cstate, eaddr, Q_OR);
5231 			break;
5232 		case DLT_IEEE802_11:
5233 		case DLT_PRISM_HEADER:
5234 		case DLT_IEEE802_11_RADIO_AVS:
5235 		case DLT_IEEE802_11_RADIO:
5236 		case DLT_PPI:
5237 			b0 = gen_wlanhostop(cstate, eaddr, Q_OR);
5238 			break;
5239 		case DLT_SUNATM:
5240 			/*
5241 			 * This is LLC-multiplexed traffic; if it were
5242 			 * LANE, cstate->linktype would have been set to
5243 			 * DLT_EN10MB.
5244 			 */
5245 			bpf_error(cstate,
5246 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5247 			break;
5248 		case DLT_IP_OVER_FC:
5249 			b0 = gen_ipfchostop(cstate, eaddr, Q_OR);
5250 			break;
5251 		default:
5252 			bpf_error(cstate,
5253 			    "'gateway' supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
5254 		}
5255 		b1 = NULL;
5256 		for (ai = alist; ai != NULL; ai = ai->ai_next) {
5257 			/*
5258 			 * Does it have an address?
5259 			 */
5260 			if (ai->ai_addr != NULL) {
5261 				/*
5262 				 * Yes.  Is it an IPv4 address?
5263 				 */
5264 				if (ai->ai_addr->sa_family == AF_INET) {
5265 					/*
5266 					 * Generate an entry for it.
5267 					 */
5268 					sin = (struct sockaddr_in *)ai->ai_addr;
5269 					tmp = gen_host(cstate,
5270 					    ntohl(sin->sin_addr.s_addr),
5271 					    0xffffffff, proto, Q_OR, Q_HOST);
5272 					/*
5273 					 * Is it the *first* IPv4 address?
5274 					 */
5275 					if (b1 == NULL) {
5276 						/*
5277 						 * Yes, so start with it.
5278 						 */
5279 						b1 = tmp;
5280 					} else {
5281 						/*
5282 						 * No, so OR it into the
5283 						 * existing set of
5284 						 * addresses.
5285 						 */
5286 						gen_or(b1, tmp);
5287 						b1 = tmp;
5288 					}
5289 				}
5290 			}
5291 		}
5292 		if (b1 == NULL) {
5293 			/*
5294 			 * No IPv4 addresses found.
5295 			 */
5296 			return (NULL);
5297 		}
5298 		gen_not(b1);
5299 		gen_and(b0, b1);
5300 		return b1;
5301 	}
5302 	bpf_error(cstate, "illegal modifier of 'gateway'");
5303 	/*NOTREACHED*/
5304 }
5305 #endif
5306 
5307 static struct block *
gen_proto_abbrev_internal(compiler_state_t * cstate,int proto)5308 gen_proto_abbrev_internal(compiler_state_t *cstate, int proto)
5309 {
5310 	struct block *b0;
5311 	struct block *b1;
5312 
5313 	switch (proto) {
5314 
5315 	case Q_SCTP:
5316 		b1 = gen_proto(cstate, IPPROTO_SCTP, Q_IP, Q_DEFAULT);
5317 		b0 = gen_proto(cstate, IPPROTO_SCTP, Q_IPV6, Q_DEFAULT);
5318 		gen_or(b0, b1);
5319 		break;
5320 
5321 	case Q_TCP:
5322 		b1 = gen_proto(cstate, IPPROTO_TCP, Q_IP, Q_DEFAULT);
5323 		b0 = gen_proto(cstate, IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
5324 		gen_or(b0, b1);
5325 		break;
5326 
5327 	case Q_UDP:
5328 		b1 = gen_proto(cstate, IPPROTO_UDP, Q_IP, Q_DEFAULT);
5329 		b0 = gen_proto(cstate, IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
5330 		gen_or(b0, b1);
5331 		break;
5332 
5333 	case Q_ICMP:
5334 		b1 = gen_proto(cstate, IPPROTO_ICMP, Q_IP, Q_DEFAULT);
5335 		break;
5336 
5337 #ifndef	IPPROTO_IGMP
5338 #define	IPPROTO_IGMP	2
5339 #endif
5340 
5341 	case Q_IGMP:
5342 		b1 = gen_proto(cstate, IPPROTO_IGMP, Q_IP, Q_DEFAULT);
5343 		break;
5344 
5345 #ifndef	IPPROTO_IGRP
5346 #define	IPPROTO_IGRP	9
5347 #endif
5348 	case Q_IGRP:
5349 		b1 = gen_proto(cstate, IPPROTO_IGRP, Q_IP, Q_DEFAULT);
5350 		break;
5351 
5352 #ifndef IPPROTO_PIM
5353 #define IPPROTO_PIM	103
5354 #endif
5355 
5356 	case Q_PIM:
5357 		b1 = gen_proto(cstate, IPPROTO_PIM, Q_IP, Q_DEFAULT);
5358 		b0 = gen_proto(cstate, IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
5359 		gen_or(b0, b1);
5360 		break;
5361 
5362 #ifndef IPPROTO_VRRP
5363 #define IPPROTO_VRRP	112
5364 #endif
5365 
5366 	case Q_VRRP:
5367 		b1 = gen_proto(cstate, IPPROTO_VRRP, Q_IP, Q_DEFAULT);
5368 		break;
5369 
5370 #ifndef IPPROTO_CARP
5371 #define IPPROTO_CARP	112
5372 #endif
5373 
5374 	case Q_CARP:
5375 		b1 = gen_proto(cstate, IPPROTO_CARP, Q_IP, Q_DEFAULT);
5376 		break;
5377 
5378 	case Q_IP:
5379 		b1 = gen_linktype(cstate, ETHERTYPE_IP);
5380 		break;
5381 
5382 	case Q_ARP:
5383 		b1 = gen_linktype(cstate, ETHERTYPE_ARP);
5384 		break;
5385 
5386 	case Q_RARP:
5387 		b1 = gen_linktype(cstate, ETHERTYPE_REVARP);
5388 		break;
5389 
5390 	case Q_LINK:
5391 		bpf_error(cstate, "link layer applied in wrong context");
5392 
5393 	case Q_ATALK:
5394 		b1 = gen_linktype(cstate, ETHERTYPE_ATALK);
5395 		break;
5396 
5397 	case Q_AARP:
5398 		b1 = gen_linktype(cstate, ETHERTYPE_AARP);
5399 		break;
5400 
5401 	case Q_DECNET:
5402 		b1 = gen_linktype(cstate, ETHERTYPE_DN);
5403 		break;
5404 
5405 	case Q_SCA:
5406 		b1 = gen_linktype(cstate, ETHERTYPE_SCA);
5407 		break;
5408 
5409 	case Q_LAT:
5410 		b1 = gen_linktype(cstate, ETHERTYPE_LAT);
5411 		break;
5412 
5413 	case Q_MOPDL:
5414 		b1 = gen_linktype(cstate, ETHERTYPE_MOPDL);
5415 		break;
5416 
5417 	case Q_MOPRC:
5418 		b1 = gen_linktype(cstate, ETHERTYPE_MOPRC);
5419 		break;
5420 
5421 	case Q_IPV6:
5422 		b1 = gen_linktype(cstate, ETHERTYPE_IPV6);
5423 		break;
5424 
5425 #ifndef IPPROTO_ICMPV6
5426 #define IPPROTO_ICMPV6	58
5427 #endif
5428 	case Q_ICMPV6:
5429 		b1 = gen_proto(cstate, IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
5430 		break;
5431 
5432 #ifndef IPPROTO_AH
5433 #define IPPROTO_AH	51
5434 #endif
5435 	case Q_AH:
5436 		b1 = gen_proto(cstate, IPPROTO_AH, Q_IP, Q_DEFAULT);
5437 		b0 = gen_proto(cstate, IPPROTO_AH, Q_IPV6, Q_DEFAULT);
5438 		gen_or(b0, b1);
5439 		break;
5440 
5441 #ifndef IPPROTO_ESP
5442 #define IPPROTO_ESP	50
5443 #endif
5444 	case Q_ESP:
5445 		b1 = gen_proto(cstate, IPPROTO_ESP, Q_IP, Q_DEFAULT);
5446 		b0 = gen_proto(cstate, IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
5447 		gen_or(b0, b1);
5448 		break;
5449 
5450 	case Q_ISO:
5451 		b1 = gen_linktype(cstate, LLCSAP_ISONS);
5452 		break;
5453 
5454 	case Q_ESIS:
5455 		b1 = gen_proto(cstate, ISO9542_ESIS, Q_ISO, Q_DEFAULT);
5456 		break;
5457 
5458 	case Q_ISIS:
5459 		b1 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
5460 		break;
5461 
5462 	case Q_ISIS_L1: /* all IS-IS Level1 PDU-Types */
5463 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5464 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5465 		gen_or(b0, b1);
5466 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5467 		gen_or(b0, b1);
5468 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5469 		gen_or(b0, b1);
5470 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5471 		gen_or(b0, b1);
5472 		break;
5473 
5474 	case Q_ISIS_L2: /* all IS-IS Level2 PDU-Types */
5475 		b0 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5476 		b1 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT); /* FIXME extract the circuit-type bits */
5477 		gen_or(b0, b1);
5478 		b0 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5479 		gen_or(b0, b1);
5480 		b0 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5481 		gen_or(b0, b1);
5482 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5483 		gen_or(b0, b1);
5484 		break;
5485 
5486 	case Q_ISIS_IIH: /* all IS-IS Hello PDU-Types */
5487 		b0 = gen_proto(cstate, ISIS_L1_LAN_IIH, Q_ISIS, Q_DEFAULT);
5488 		b1 = gen_proto(cstate, ISIS_L2_LAN_IIH, Q_ISIS, Q_DEFAULT);
5489 		gen_or(b0, b1);
5490 		b0 = gen_proto(cstate, ISIS_PTP_IIH, Q_ISIS, Q_DEFAULT);
5491 		gen_or(b0, b1);
5492 		break;
5493 
5494 	case Q_ISIS_LSP:
5495 		b0 = gen_proto(cstate, ISIS_L1_LSP, Q_ISIS, Q_DEFAULT);
5496 		b1 = gen_proto(cstate, ISIS_L2_LSP, Q_ISIS, Q_DEFAULT);
5497 		gen_or(b0, b1);
5498 		break;
5499 
5500 	case Q_ISIS_SNP:
5501 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5502 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5503 		gen_or(b0, b1);
5504 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5505 		gen_or(b0, b1);
5506 		b0 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5507 		gen_or(b0, b1);
5508 		break;
5509 
5510 	case Q_ISIS_CSNP:
5511 		b0 = gen_proto(cstate, ISIS_L1_CSNP, Q_ISIS, Q_DEFAULT);
5512 		b1 = gen_proto(cstate, ISIS_L2_CSNP, Q_ISIS, Q_DEFAULT);
5513 		gen_or(b0, b1);
5514 		break;
5515 
5516 	case Q_ISIS_PSNP:
5517 		b0 = gen_proto(cstate, ISIS_L1_PSNP, Q_ISIS, Q_DEFAULT);
5518 		b1 = gen_proto(cstate, ISIS_L2_PSNP, Q_ISIS, Q_DEFAULT);
5519 		gen_or(b0, b1);
5520 		break;
5521 
5522 	case Q_CLNP:
5523 		b1 = gen_proto(cstate, ISO8473_CLNP, Q_ISO, Q_DEFAULT);
5524 		break;
5525 
5526 	case Q_STP:
5527 		b1 = gen_linktype(cstate, LLCSAP_8021D);
5528 		break;
5529 
5530 	case Q_IPX:
5531 		b1 = gen_linktype(cstate, LLCSAP_IPX);
5532 		break;
5533 
5534 	case Q_NETBEUI:
5535 		b1 = gen_linktype(cstate, LLCSAP_NETBEUI);
5536 		break;
5537 
5538 	case Q_RADIO:
5539 		bpf_error(cstate, "'radio' is not a valid protocol type");
5540 
5541 	default:
5542 		abort();
5543 	}
5544 	return b1;
5545 }
5546 
5547 struct block *
gen_proto_abbrev(compiler_state_t * cstate,int proto)5548 gen_proto_abbrev(compiler_state_t *cstate, int proto)
5549 {
5550 	/*
5551 	 * Catch errors reported by us and routines below us, and return NULL
5552 	 * on an error.
5553 	 */
5554 	if (setjmp(cstate->top_ctx))
5555 		return (NULL);
5556 
5557 	return gen_proto_abbrev_internal(cstate, proto);
5558 }
5559 
5560 static struct block *
gen_ipfrag(compiler_state_t * cstate)5561 gen_ipfrag(compiler_state_t *cstate)
5562 {
5563 	struct slist *s;
5564 	struct block *b;
5565 
5566 	/* not IPv4 frag other than the first frag */
5567 	s = gen_load_a(cstate, OR_LINKPL, 6, BPF_H);
5568 	b = new_block(cstate, JMP(BPF_JSET));
5569 	b->s.k = 0x1fff;
5570 	b->stmts = s;
5571 	gen_not(b);
5572 
5573 	return b;
5574 }
5575 
5576 /*
5577  * Generate a comparison to a port value in the transport-layer header
5578  * at the specified offset from the beginning of that header.
5579  *
5580  * XXX - this handles a variable-length prefix preceding the link-layer
5581  * header, such as the radiotap or AVS radio prefix, but doesn't handle
5582  * variable-length link-layer headers (such as Token Ring or 802.11
5583  * headers).
5584  */
5585 static struct block *
gen_portatom(compiler_state_t * cstate,int off,bpf_int32 v)5586 gen_portatom(compiler_state_t *cstate, int off, bpf_int32 v)
5587 {
5588 	return gen_cmp(cstate, OR_TRAN_IPV4, off, BPF_H, v);
5589 }
5590 
5591 static struct block *
gen_portatom6(compiler_state_t * cstate,int off,bpf_int32 v)5592 gen_portatom6(compiler_state_t *cstate, int off, bpf_int32 v)
5593 {
5594 	return gen_cmp(cstate, OR_TRAN_IPV6, off, BPF_H, v);
5595 }
5596 
5597 struct block *
gen_portop(compiler_state_t * cstate,int port,int proto,int dir)5598 gen_portop(compiler_state_t *cstate, int port, int proto, int dir)
5599 {
5600 	struct block *b0, *b1, *tmp;
5601 
5602 	/* ip proto 'proto' and not a fragment other than the first fragment */
5603 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5604 	b0 = gen_ipfrag(cstate);
5605 	gen_and(tmp, b0);
5606 
5607 	switch (dir) {
5608 	case Q_SRC:
5609 		b1 = gen_portatom(cstate, 0, (bpf_int32)port);
5610 		break;
5611 
5612 	case Q_DST:
5613 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5614 		break;
5615 
5616 	case Q_AND:
5617 		tmp = gen_portatom(cstate, 0, (bpf_int32)port);
5618 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5619 		gen_and(tmp, b1);
5620 		break;
5621 
5622 	case Q_DEFAULT:
5623 	case Q_OR:
5624 		tmp = gen_portatom(cstate, 0, (bpf_int32)port);
5625 		b1 = gen_portatom(cstate, 2, (bpf_int32)port);
5626 		gen_or(tmp, b1);
5627 		break;
5628 
5629 	case Q_ADDR1:
5630 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for ports");
5631 		/*NOTREACHED*/
5632 
5633 	case Q_ADDR2:
5634 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for ports");
5635 		/*NOTREACHED*/
5636 
5637 	case Q_ADDR3:
5638 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for ports");
5639 		/*NOTREACHED*/
5640 
5641 	case Q_ADDR4:
5642 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for ports");
5643 		/*NOTREACHED*/
5644 
5645 	case Q_RA:
5646 		bpf_error(cstate, "'ra' is not a valid qualifier for ports");
5647 		/*NOTREACHED*/
5648 
5649 	case Q_TA:
5650 		bpf_error(cstate, "'ta' is not a valid qualifier for ports");
5651 		/*NOTREACHED*/
5652 
5653 	default:
5654 		abort();
5655 		/*NOTREACHED*/
5656 	}
5657 	gen_and(b0, b1);
5658 
5659 	return b1;
5660 }
5661 
5662 static struct block *
gen_port(compiler_state_t * cstate,int port,int ip_proto,int dir)5663 gen_port(compiler_state_t *cstate, int port, int ip_proto, int dir)
5664 {
5665 	struct block *b0, *b1, *tmp;
5666 
5667 	/*
5668 	 * ether proto ip
5669 	 *
5670 	 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
5671 	 * not LLC encapsulation with LLCSAP_IP.
5672 	 *
5673 	 * For IEEE 802 networks - which includes 802.5 token ring
5674 	 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
5675 	 * says that SNAP encapsulation is used, not LLC encapsulation
5676 	 * with LLCSAP_IP.
5677 	 *
5678 	 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
5679 	 * RFC 2225 say that SNAP encapsulation is used, not LLC
5680 	 * encapsulation with LLCSAP_IP.
5681 	 *
5682 	 * So we always check for ETHERTYPE_IP.
5683 	 */
5684 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5685 
5686 	switch (ip_proto) {
5687 	case IPPROTO_UDP:
5688 	case IPPROTO_TCP:
5689 	case IPPROTO_SCTP:
5690 		b1 = gen_portop(cstate, port, ip_proto, dir);
5691 		break;
5692 
5693 	case PROTO_UNDEF:
5694 		tmp = gen_portop(cstate, port, IPPROTO_TCP, dir);
5695 		b1 = gen_portop(cstate, port, IPPROTO_UDP, dir);
5696 		gen_or(tmp, b1);
5697 		tmp = gen_portop(cstate, port, IPPROTO_SCTP, dir);
5698 		gen_or(tmp, b1);
5699 		break;
5700 
5701 	default:
5702 		abort();
5703 	}
5704 	gen_and(b0, b1);
5705 	return b1;
5706 }
5707 
5708 struct block *
gen_portop6(compiler_state_t * cstate,int port,int proto,int dir)5709 gen_portop6(compiler_state_t *cstate, int port, int proto, int dir)
5710 {
5711 	struct block *b0, *b1, *tmp;
5712 
5713 	/* ip6 proto 'proto' */
5714 	/* XXX - catch the first fragment of a fragmented packet? */
5715 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5716 
5717 	switch (dir) {
5718 	case Q_SRC:
5719 		b1 = gen_portatom6(cstate, 0, (bpf_int32)port);
5720 		break;
5721 
5722 	case Q_DST:
5723 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5724 		break;
5725 
5726 	case Q_AND:
5727 		tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
5728 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5729 		gen_and(tmp, b1);
5730 		break;
5731 
5732 	case Q_DEFAULT:
5733 	case Q_OR:
5734 		tmp = gen_portatom6(cstate, 0, (bpf_int32)port);
5735 		b1 = gen_portatom6(cstate, 2, (bpf_int32)port);
5736 		gen_or(tmp, b1);
5737 		break;
5738 
5739 	default:
5740 		abort();
5741 	}
5742 	gen_and(b0, b1);
5743 
5744 	return b1;
5745 }
5746 
5747 static struct block *
gen_port6(compiler_state_t * cstate,int port,int ip_proto,int dir)5748 gen_port6(compiler_state_t *cstate, int port, int ip_proto, int dir)
5749 {
5750 	struct block *b0, *b1, *tmp;
5751 
5752 	/* link proto ip6 */
5753 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5754 
5755 	switch (ip_proto) {
5756 	case IPPROTO_UDP:
5757 	case IPPROTO_TCP:
5758 	case IPPROTO_SCTP:
5759 		b1 = gen_portop6(cstate, port, ip_proto, dir);
5760 		break;
5761 
5762 	case PROTO_UNDEF:
5763 		tmp = gen_portop6(cstate, port, IPPROTO_TCP, dir);
5764 		b1 = gen_portop6(cstate, port, IPPROTO_UDP, dir);
5765 		gen_or(tmp, b1);
5766 		tmp = gen_portop6(cstate, port, IPPROTO_SCTP, dir);
5767 		gen_or(tmp, b1);
5768 		break;
5769 
5770 	default:
5771 		abort();
5772 	}
5773 	gen_and(b0, b1);
5774 	return b1;
5775 }
5776 
5777 /* gen_portrange code */
5778 static struct block *
gen_portrangeatom(compiler_state_t * cstate,int off,bpf_int32 v1,bpf_int32 v2)5779 gen_portrangeatom(compiler_state_t *cstate, int off, bpf_int32 v1,
5780     bpf_int32 v2)
5781 {
5782 	struct block *b1, *b2;
5783 
5784 	if (v1 > v2) {
5785 		/*
5786 		 * Reverse the order of the ports, so v1 is the lower one.
5787 		 */
5788 		bpf_int32 vtemp;
5789 
5790 		vtemp = v1;
5791 		v1 = v2;
5792 		v2 = vtemp;
5793 	}
5794 
5795 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV4, off, BPF_H, v1);
5796 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV4, off, BPF_H, v2);
5797 
5798 	gen_and(b1, b2);
5799 
5800 	return b2;
5801 }
5802 
5803 struct block *
gen_portrangeop(compiler_state_t * cstate,int port1,int port2,int proto,int dir)5804 gen_portrangeop(compiler_state_t *cstate, int port1, int port2, int proto,
5805     int dir)
5806 {
5807 	struct block *b0, *b1, *tmp;
5808 
5809 	/* ip proto 'proto' and not a fragment other than the first fragment */
5810 	tmp = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)proto);
5811 	b0 = gen_ipfrag(cstate);
5812 	gen_and(tmp, b0);
5813 
5814 	switch (dir) {
5815 	case Q_SRC:
5816 		b1 = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5817 		break;
5818 
5819 	case Q_DST:
5820 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5821 		break;
5822 
5823 	case Q_AND:
5824 		tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5825 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5826 		gen_and(tmp, b1);
5827 		break;
5828 
5829 	case Q_DEFAULT:
5830 	case Q_OR:
5831 		tmp = gen_portrangeatom(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5832 		b1 = gen_portrangeatom(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5833 		gen_or(tmp, b1);
5834 		break;
5835 
5836 	case Q_ADDR1:
5837 		bpf_error(cstate, "'addr1' and 'address1' are not valid qualifiers for port ranges");
5838 		/*NOTREACHED*/
5839 
5840 	case Q_ADDR2:
5841 		bpf_error(cstate, "'addr2' and 'address2' are not valid qualifiers for port ranges");
5842 		/*NOTREACHED*/
5843 
5844 	case Q_ADDR3:
5845 		bpf_error(cstate, "'addr3' and 'address3' are not valid qualifiers for port ranges");
5846 		/*NOTREACHED*/
5847 
5848 	case Q_ADDR4:
5849 		bpf_error(cstate, "'addr4' and 'address4' are not valid qualifiers for port ranges");
5850 		/*NOTREACHED*/
5851 
5852 	case Q_RA:
5853 		bpf_error(cstate, "'ra' is not a valid qualifier for port ranges");
5854 		/*NOTREACHED*/
5855 
5856 	case Q_TA:
5857 		bpf_error(cstate, "'ta' is not a valid qualifier for port ranges");
5858 		/*NOTREACHED*/
5859 
5860 	default:
5861 		abort();
5862 		/*NOTREACHED*/
5863 	}
5864 	gen_and(b0, b1);
5865 
5866 	return b1;
5867 }
5868 
5869 static struct block *
gen_portrange(compiler_state_t * cstate,int port1,int port2,int ip_proto,int dir)5870 gen_portrange(compiler_state_t *cstate, int port1, int port2, int ip_proto,
5871     int dir)
5872 {
5873 	struct block *b0, *b1, *tmp;
5874 
5875 	/* link proto ip */
5876 	b0 = gen_linktype(cstate, ETHERTYPE_IP);
5877 
5878 	switch (ip_proto) {
5879 	case IPPROTO_UDP:
5880 	case IPPROTO_TCP:
5881 	case IPPROTO_SCTP:
5882 		b1 = gen_portrangeop(cstate, port1, port2, ip_proto, dir);
5883 		break;
5884 
5885 	case PROTO_UNDEF:
5886 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_TCP, dir);
5887 		b1 = gen_portrangeop(cstate, port1, port2, IPPROTO_UDP, dir);
5888 		gen_or(tmp, b1);
5889 		tmp = gen_portrangeop(cstate, port1, port2, IPPROTO_SCTP, dir);
5890 		gen_or(tmp, b1);
5891 		break;
5892 
5893 	default:
5894 		abort();
5895 	}
5896 	gen_and(b0, b1);
5897 	return b1;
5898 }
5899 
5900 static struct block *
gen_portrangeatom6(compiler_state_t * cstate,int off,bpf_int32 v1,bpf_int32 v2)5901 gen_portrangeatom6(compiler_state_t *cstate, int off, bpf_int32 v1,
5902     bpf_int32 v2)
5903 {
5904 	struct block *b1, *b2;
5905 
5906 	if (v1 > v2) {
5907 		/*
5908 		 * Reverse the order of the ports, so v1 is the lower one.
5909 		 */
5910 		bpf_int32 vtemp;
5911 
5912 		vtemp = v1;
5913 		v1 = v2;
5914 		v2 = vtemp;
5915 	}
5916 
5917 	b1 = gen_cmp_ge(cstate, OR_TRAN_IPV6, off, BPF_H, v1);
5918 	b2 = gen_cmp_le(cstate, OR_TRAN_IPV6, off, BPF_H, v2);
5919 
5920 	gen_and(b1, b2);
5921 
5922 	return b2;
5923 }
5924 
5925 struct block *
gen_portrangeop6(compiler_state_t * cstate,int port1,int port2,int proto,int dir)5926 gen_portrangeop6(compiler_state_t *cstate, int port1, int port2, int proto,
5927     int dir)
5928 {
5929 	struct block *b0, *b1, *tmp;
5930 
5931 	/* ip6 proto 'proto' */
5932 	/* XXX - catch the first fragment of a fragmented packet? */
5933 	b0 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)proto);
5934 
5935 	switch (dir) {
5936 	case Q_SRC:
5937 		b1 = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5938 		break;
5939 
5940 	case Q_DST:
5941 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5942 		break;
5943 
5944 	case Q_AND:
5945 		tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5946 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5947 		gen_and(tmp, b1);
5948 		break;
5949 
5950 	case Q_DEFAULT:
5951 	case Q_OR:
5952 		tmp = gen_portrangeatom6(cstate, 0, (bpf_int32)port1, (bpf_int32)port2);
5953 		b1 = gen_portrangeatom6(cstate, 2, (bpf_int32)port1, (bpf_int32)port2);
5954 		gen_or(tmp, b1);
5955 		break;
5956 
5957 	default:
5958 		abort();
5959 	}
5960 	gen_and(b0, b1);
5961 
5962 	return b1;
5963 }
5964 
5965 static struct block *
gen_portrange6(compiler_state_t * cstate,int port1,int port2,int ip_proto,int dir)5966 gen_portrange6(compiler_state_t *cstate, int port1, int port2, int ip_proto,
5967     int dir)
5968 {
5969 	struct block *b0, *b1, *tmp;
5970 
5971 	/* link proto ip6 */
5972 	b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
5973 
5974 	switch (ip_proto) {
5975 	case IPPROTO_UDP:
5976 	case IPPROTO_TCP:
5977 	case IPPROTO_SCTP:
5978 		b1 = gen_portrangeop6(cstate, port1, port2, ip_proto, dir);
5979 		break;
5980 
5981 	case PROTO_UNDEF:
5982 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_TCP, dir);
5983 		b1 = gen_portrangeop6(cstate, port1, port2, IPPROTO_UDP, dir);
5984 		gen_or(tmp, b1);
5985 		tmp = gen_portrangeop6(cstate, port1, port2, IPPROTO_SCTP, dir);
5986 		gen_or(tmp, b1);
5987 		break;
5988 
5989 	default:
5990 		abort();
5991 	}
5992 	gen_and(b0, b1);
5993 	return b1;
5994 }
5995 
5996 static int
lookup_proto(compiler_state_t * cstate,const char * name,int proto)5997 lookup_proto(compiler_state_t *cstate, const char *name, int proto)
5998 {
5999 	register int v;
6000 
6001 	switch (proto) {
6002 
6003 	case Q_DEFAULT:
6004 	case Q_IP:
6005 	case Q_IPV6:
6006 		v = pcap_nametoproto(name);
6007 		if (v == PROTO_UNDEF)
6008 			bpf_error(cstate, "unknown ip proto '%s'", name);
6009 		break;
6010 
6011 	case Q_LINK:
6012 		/* XXX should look up h/w protocol type based on cstate->linktype */
6013 		v = pcap_nametoeproto(name);
6014 		if (v == PROTO_UNDEF) {
6015 			v = pcap_nametollc(name);
6016 			if (v == PROTO_UNDEF)
6017 				bpf_error(cstate, "unknown ether proto '%s'", name);
6018 		}
6019 		break;
6020 
6021 	case Q_ISO:
6022 		if (strcmp(name, "esis") == 0)
6023 			v = ISO9542_ESIS;
6024 		else if (strcmp(name, "isis") == 0)
6025 			v = ISO10589_ISIS;
6026 		else if (strcmp(name, "clnp") == 0)
6027 			v = ISO8473_CLNP;
6028 		else
6029 			bpf_error(cstate, "unknown osi proto '%s'", name);
6030 		break;
6031 
6032 	default:
6033 		v = PROTO_UNDEF;
6034 		break;
6035 	}
6036 	return v;
6037 }
6038 
6039 #if 0
6040 struct stmt *
6041 gen_joinsp(struct stmt **s, int n)
6042 {
6043 	return NULL;
6044 }
6045 #endif
6046 
6047 static struct block *
gen_protochain(compiler_state_t * cstate,int v,int proto,int dir)6048 gen_protochain(compiler_state_t *cstate, int v, int proto, int dir)
6049 {
6050 #ifdef NO_PROTOCHAIN
6051 	return gen_proto(cstate, v, proto, dir);
6052 #else
6053 	struct block *b0, *b;
6054 	struct slist *s[100];
6055 	int fix2, fix3, fix4, fix5;
6056 	int ahcheck, again, end;
6057 	int i, max;
6058 	int reg2 = alloc_reg(cstate);
6059 
6060 	memset(s, 0, sizeof(s));
6061 	fix3 = fix4 = fix5 = 0;
6062 
6063 	switch (proto) {
6064 	case Q_IP:
6065 	case Q_IPV6:
6066 		break;
6067 	case Q_DEFAULT:
6068 		b0 = gen_protochain(cstate, v, Q_IP, dir);
6069 		b = gen_protochain(cstate, v, Q_IPV6, dir);
6070 		gen_or(b0, b);
6071 		return b;
6072 	default:
6073 		bpf_error(cstate, "bad protocol applied for 'protochain'");
6074 		/*NOTREACHED*/
6075 	}
6076 
6077 	/*
6078 	 * We don't handle variable-length prefixes before the link-layer
6079 	 * header, or variable-length link-layer headers, here yet.
6080 	 * We might want to add BPF instructions to do the protochain
6081 	 * work, to simplify that and, on platforms that have a BPF
6082 	 * interpreter with the new instructions, let the filtering
6083 	 * be done in the kernel.  (We already require a modified BPF
6084 	 * engine to do the protochain stuff, to support backward
6085 	 * branches, and backward branch support is unlikely to appear
6086 	 * in kernel BPF engines.)
6087 	 */
6088 	if (cstate->off_linkpl.is_variable)
6089 		bpf_error(cstate, "'protochain' not supported with variable length headers");
6090 
6091 	cstate->no_optimize = 1; /* this code is not compatible with optimizer yet */
6092 
6093 	/*
6094 	 * s[0] is a dummy entry to protect other BPF insn from damage
6095 	 * by s[fix] = foo with uninitialized variable "fix".  It is somewhat
6096 	 * hard to find interdependency made by jump table fixup.
6097 	 */
6098 	i = 0;
6099 	s[i] = new_stmt(cstate, 0);	/*dummy*/
6100 	i++;
6101 
6102 	switch (proto) {
6103 	case Q_IP:
6104 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6105 
6106 		/* A = ip->ip_p */
6107 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6108 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 9;
6109 		i++;
6110 		/* X = ip->ip_hl << 2 */
6111 		s[i] = new_stmt(cstate, BPF_LDX|BPF_MSH|BPF_B);
6112 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6113 		i++;
6114 		break;
6115 
6116 	case Q_IPV6:
6117 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6118 
6119 		/* A = ip6->ip_nxt */
6120 		s[i] = new_stmt(cstate, BPF_LD|BPF_ABS|BPF_B);
6121 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 6;
6122 		i++;
6123 		/* X = sizeof(struct ip6_hdr) */
6124 		s[i] = new_stmt(cstate, BPF_LDX|BPF_IMM);
6125 		s[i]->s.k = 40;
6126 		i++;
6127 		break;
6128 
6129 	default:
6130 		bpf_error(cstate, "unsupported proto to gen_protochain");
6131 		/*NOTREACHED*/
6132 	}
6133 
6134 	/* again: if (A == v) goto end; else fall through; */
6135 	again = i;
6136 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6137 	s[i]->s.k = v;
6138 	s[i]->s.jt = NULL;		/*later*/
6139 	s[i]->s.jf = NULL;		/*update in next stmt*/
6140 	fix5 = i;
6141 	i++;
6142 
6143 #ifndef IPPROTO_NONE
6144 #define IPPROTO_NONE	59
6145 #endif
6146 	/* if (A == IPPROTO_NONE) goto end */
6147 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6148 	s[i]->s.jt = NULL;	/*later*/
6149 	s[i]->s.jf = NULL;	/*update in next stmt*/
6150 	s[i]->s.k = IPPROTO_NONE;
6151 	s[fix5]->s.jf = s[i];
6152 	fix2 = i;
6153 	i++;
6154 
6155 	if (proto == Q_IPV6) {
6156 		int v6start, v6end, v6advance, j;
6157 
6158 		v6start = i;
6159 		/* if (A == IPPROTO_HOPOPTS) goto v6advance */
6160 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6161 		s[i]->s.jt = NULL;	/*later*/
6162 		s[i]->s.jf = NULL;	/*update in next stmt*/
6163 		s[i]->s.k = IPPROTO_HOPOPTS;
6164 		s[fix2]->s.jf = s[i];
6165 		i++;
6166 		/* if (A == IPPROTO_DSTOPTS) goto v6advance */
6167 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6168 		s[i]->s.jt = NULL;	/*later*/
6169 		s[i]->s.jf = NULL;	/*update in next stmt*/
6170 		s[i]->s.k = IPPROTO_DSTOPTS;
6171 		i++;
6172 		/* if (A == IPPROTO_ROUTING) goto v6advance */
6173 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6174 		s[i]->s.jt = NULL;	/*later*/
6175 		s[i]->s.jf = NULL;	/*update in next stmt*/
6176 		s[i]->s.k = IPPROTO_ROUTING;
6177 		i++;
6178 		/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
6179 		s[i - 1]->s.jf = s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6180 		s[i]->s.jt = NULL;	/*later*/
6181 		s[i]->s.jf = NULL;	/*later*/
6182 		s[i]->s.k = IPPROTO_FRAGMENT;
6183 		fix3 = i;
6184 		v6end = i;
6185 		i++;
6186 
6187 		/* v6advance: */
6188 		v6advance = i;
6189 
6190 		/*
6191 		 * in short,
6192 		 * A = P[X + packet head];
6193 		 * X = X + (P[X + packet head + 1] + 1) * 8;
6194 		 */
6195 		/* A = P[X + packet head] */
6196 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6197 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6198 		i++;
6199 		/* MEM[reg2] = A */
6200 		s[i] = new_stmt(cstate, BPF_ST);
6201 		s[i]->s.k = reg2;
6202 		i++;
6203 		/* A = P[X + packet head + 1]; */
6204 		s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6205 		s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 1;
6206 		i++;
6207 		/* A += 1 */
6208 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6209 		s[i]->s.k = 1;
6210 		i++;
6211 		/* A *= 8 */
6212 		s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6213 		s[i]->s.k = 8;
6214 		i++;
6215 		/* A += X */
6216 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
6217 		s[i]->s.k = 0;
6218 		i++;
6219 		/* X = A; */
6220 		s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6221 		i++;
6222 		/* A = MEM[reg2] */
6223 		s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6224 		s[i]->s.k = reg2;
6225 		i++;
6226 
6227 		/* goto again; (must use BPF_JA for backward jump) */
6228 		s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6229 		s[i]->s.k = again - i - 1;
6230 		s[i - 1]->s.jf = s[i];
6231 		i++;
6232 
6233 		/* fixup */
6234 		for (j = v6start; j <= v6end; j++)
6235 			s[j]->s.jt = s[v6advance];
6236 	} else {
6237 		/* nop */
6238 		s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6239 		s[i]->s.k = 0;
6240 		s[fix2]->s.jf = s[i];
6241 		i++;
6242 	}
6243 
6244 	/* ahcheck: */
6245 	ahcheck = i;
6246 	/* if (A == IPPROTO_AH) then fall through; else goto end; */
6247 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JEQ|BPF_K);
6248 	s[i]->s.jt = NULL;	/*later*/
6249 	s[i]->s.jf = NULL;	/*later*/
6250 	s[i]->s.k = IPPROTO_AH;
6251 	if (fix3)
6252 		s[fix3]->s.jf = s[ahcheck];
6253 	fix4 = i;
6254 	i++;
6255 
6256 	/*
6257 	 * in short,
6258 	 * A = P[X];
6259 	 * X = X + (P[X + 1] + 2) * 4;
6260 	 */
6261 	/* A = X */
6262 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6263 	i++;
6264 	/* A = P[X + packet head]; */
6265 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6266 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6267 	i++;
6268 	/* MEM[reg2] = A */
6269 	s[i] = new_stmt(cstate, BPF_ST);
6270 	s[i]->s.k = reg2;
6271 	i++;
6272 	/* A = X */
6273 	s[i - 1]->s.jt = s[i] = new_stmt(cstate, BPF_MISC|BPF_TXA);
6274 	i++;
6275 	/* A += 1 */
6276 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6277 	s[i]->s.k = 1;
6278 	i++;
6279 	/* X = A */
6280 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6281 	i++;
6282 	/* A = P[X + packet head] */
6283 	s[i] = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
6284 	s[i]->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
6285 	i++;
6286 	/* A += 2 */
6287 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6288 	s[i]->s.k = 2;
6289 	i++;
6290 	/* A *= 4 */
6291 	s[i] = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
6292 	s[i]->s.k = 4;
6293 	i++;
6294 	/* X = A; */
6295 	s[i] = new_stmt(cstate, BPF_MISC|BPF_TAX);
6296 	i++;
6297 	/* A = MEM[reg2] */
6298 	s[i] = new_stmt(cstate, BPF_LD|BPF_MEM);
6299 	s[i]->s.k = reg2;
6300 	i++;
6301 
6302 	/* goto again; (must use BPF_JA for backward jump) */
6303 	s[i] = new_stmt(cstate, BPF_JMP|BPF_JA);
6304 	s[i]->s.k = again - i - 1;
6305 	i++;
6306 
6307 	/* end: nop */
6308 	end = i;
6309 	s[i] = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
6310 	s[i]->s.k = 0;
6311 	s[fix2]->s.jt = s[end];
6312 	s[fix4]->s.jf = s[end];
6313 	s[fix5]->s.jt = s[end];
6314 	i++;
6315 
6316 	/*
6317 	 * make slist chain
6318 	 */
6319 	max = i;
6320 	for (i = 0; i < max - 1; i++)
6321 		s[i]->next = s[i + 1];
6322 	s[max - 1]->next = NULL;
6323 
6324 	/*
6325 	 * emit final check
6326 	 */
6327 	b = new_block(cstate, JMP(BPF_JEQ));
6328 	b->stmts = s[1];	/*remember, s[0] is dummy*/
6329 	b->s.k = v;
6330 
6331 	free_reg(cstate, reg2);
6332 
6333 	gen_and(b0, b);
6334 	return b;
6335 #endif
6336 }
6337 
6338 static struct block *
gen_check_802_11_data_frame(compiler_state_t * cstate)6339 gen_check_802_11_data_frame(compiler_state_t *cstate)
6340 {
6341 	struct slist *s;
6342 	struct block *b0, *b1;
6343 
6344 	/*
6345 	 * A data frame has the 0x08 bit (b3) in the frame control field set
6346 	 * and the 0x04 bit (b2) clear.
6347 	 */
6348 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6349 	b0 = new_block(cstate, JMP(BPF_JSET));
6350 	b0->s.k = 0x08;
6351 	b0->stmts = s;
6352 
6353 	s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
6354 	b1 = new_block(cstate, JMP(BPF_JSET));
6355 	b1->s.k = 0x04;
6356 	b1->stmts = s;
6357 	gen_not(b1);
6358 
6359 	gen_and(b1, b0);
6360 
6361 	return b0;
6362 }
6363 
6364 /*
6365  * Generate code that checks whether the packet is a packet for protocol
6366  * <proto> and whether the type field in that protocol's header has
6367  * the value <v>, e.g. if <proto> is Q_IP, it checks whether it's an
6368  * IP packet and checks the protocol number in the IP header against <v>.
6369  *
6370  * If <proto> is Q_DEFAULT, i.e. just "proto" was specified, it checks
6371  * against Q_IP and Q_IPV6.
6372  */
6373 static struct block *
gen_proto(compiler_state_t * cstate,int v,int proto,int dir)6374 gen_proto(compiler_state_t *cstate, int v, int proto, int dir)
6375 {
6376 	struct block *b0, *b1;
6377 #ifndef CHASE_CHAIN
6378 	struct block *b2;
6379 #endif
6380 
6381 	if (dir != Q_DEFAULT)
6382 		bpf_error(cstate, "direction applied to 'proto'");
6383 
6384 	switch (proto) {
6385 	case Q_DEFAULT:
6386 		b0 = gen_proto(cstate, v, Q_IP, dir);
6387 		b1 = gen_proto(cstate, v, Q_IPV6, dir);
6388 		gen_or(b0, b1);
6389 		return b1;
6390 
6391 	case Q_LINK:
6392 		return gen_linktype(cstate, v);
6393 
6394 	case Q_IP:
6395 		/*
6396 		 * For FDDI, RFC 1188 says that SNAP encapsulation is used,
6397 		 * not LLC encapsulation with LLCSAP_IP.
6398 		 *
6399 		 * For IEEE 802 networks - which includes 802.5 token ring
6400 		 * (which is what DLT_IEEE802 means) and 802.11 - RFC 1042
6401 		 * says that SNAP encapsulation is used, not LLC encapsulation
6402 		 * with LLCSAP_IP.
6403 		 *
6404 		 * For LLC-encapsulated ATM/"Classical IP", RFC 1483 and
6405 		 * RFC 2225 say that SNAP encapsulation is used, not LLC
6406 		 * encapsulation with LLCSAP_IP.
6407 		 *
6408 		 * So we always check for ETHERTYPE_IP.
6409 		 */
6410 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
6411 #ifndef CHASE_CHAIN
6412 		b1 = gen_cmp(cstate, OR_LINKPL, 9, BPF_B, (bpf_int32)v);
6413 #else
6414 		b1 = gen_protochain(cstate, v, Q_IP);
6415 #endif
6416 		gen_and(b0, b1);
6417 		return b1;
6418 
6419 	case Q_ARP:
6420 		bpf_error(cstate, "arp does not encapsulate another protocol");
6421 		/*NOTREACHED*/
6422 
6423 	case Q_RARP:
6424 		bpf_error(cstate, "rarp does not encapsulate another protocol");
6425 		/*NOTREACHED*/
6426 
6427 	case Q_SCTP:
6428 		bpf_error(cstate, "'sctp proto' is bogus");
6429 		/*NOTREACHED*/
6430 
6431 	case Q_TCP:
6432 		bpf_error(cstate, "'tcp proto' is bogus");
6433 		/*NOTREACHED*/
6434 
6435 	case Q_UDP:
6436 		bpf_error(cstate, "'udp proto' is bogus");
6437 		/*NOTREACHED*/
6438 
6439 	case Q_ICMP:
6440 		bpf_error(cstate, "'icmp proto' is bogus");
6441 		/*NOTREACHED*/
6442 
6443 	case Q_IGMP:
6444 		bpf_error(cstate, "'igmp proto' is bogus");
6445 		/*NOTREACHED*/
6446 
6447 	case Q_IGRP:
6448 		bpf_error(cstate, "'igrp proto' is bogus");
6449 		/*NOTREACHED*/
6450 
6451 	case Q_ATALK:
6452 		bpf_error(cstate, "AppleTalk encapsulation is not specifiable");
6453 		/*NOTREACHED*/
6454 
6455 	case Q_DECNET:
6456 		bpf_error(cstate, "DECNET encapsulation is not specifiable");
6457 		/*NOTREACHED*/
6458 
6459 	case Q_LAT:
6460 		bpf_error(cstate, "LAT does not encapsulate another protocol");
6461 		/*NOTREACHED*/
6462 
6463 	case Q_SCA:
6464 		bpf_error(cstate, "SCA does not encapsulate another protocol");
6465 		/*NOTREACHED*/
6466 
6467 	case Q_MOPRC:
6468 		bpf_error(cstate, "MOPRC does not encapsulate another protocol");
6469 		/*NOTREACHED*/
6470 
6471 	case Q_MOPDL:
6472 		bpf_error(cstate, "MOPDL does not encapsulate another protocol");
6473 		/*NOTREACHED*/
6474 
6475 	case Q_IPV6:
6476 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
6477 #ifndef CHASE_CHAIN
6478 		/*
6479 		 * Also check for a fragment header before the final
6480 		 * header.
6481 		 */
6482 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, IPPROTO_FRAGMENT);
6483 		b1 = gen_cmp(cstate, OR_LINKPL, 40, BPF_B, (bpf_int32)v);
6484 		gen_and(b2, b1);
6485 		b2 = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, (bpf_int32)v);
6486 		gen_or(b2, b1);
6487 #else
6488 		b1 = gen_protochain(cstate, v, Q_IPV6);
6489 #endif
6490 		gen_and(b0, b1);
6491 		return b1;
6492 
6493 	case Q_ICMPV6:
6494 		bpf_error(cstate, "'icmp6 proto' is bogus");
6495 		/*NOTREACHED*/
6496 
6497 	case Q_AH:
6498 		bpf_error(cstate, "'ah proto' is bogus");
6499 		/*NOTREACHED*/
6500 
6501 	case Q_ESP:
6502 		bpf_error(cstate, "'ah proto' is bogus");
6503 		/*NOTREACHED*/
6504 
6505 	case Q_PIM:
6506 		bpf_error(cstate, "'pim proto' is bogus");
6507 		/*NOTREACHED*/
6508 
6509 	case Q_VRRP:
6510 		bpf_error(cstate, "'vrrp proto' is bogus");
6511 		/*NOTREACHED*/
6512 
6513 	case Q_AARP:
6514 		bpf_error(cstate, "'aarp proto' is bogus");
6515 		/*NOTREACHED*/
6516 
6517 	case Q_ISO:
6518 		switch (cstate->linktype) {
6519 
6520 		case DLT_FRELAY:
6521 			/*
6522 			 * Frame Relay packets typically have an OSI
6523 			 * NLPID at the beginning; "gen_linktype(cstate, LLCSAP_ISONS)"
6524 			 * generates code to check for all the OSI
6525 			 * NLPIDs, so calling it and then adding a check
6526 			 * for the particular NLPID for which we're
6527 			 * looking is bogus, as we can just check for
6528 			 * the NLPID.
6529 			 *
6530 			 * What we check for is the NLPID and a frame
6531 			 * control field value of UI, i.e. 0x03 followed
6532 			 * by the NLPID.
6533 			 *
6534 			 * XXX - assumes a 2-byte Frame Relay header with
6535 			 * DLCI and flags.  What if the address is longer?
6536 			 *
6537 			 * XXX - what about SNAP-encapsulated frames?
6538 			 */
6539 			return gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, (0x03<<8) | v);
6540 			/*NOTREACHED*/
6541 
6542 		case DLT_C_HDLC:
6543 			/*
6544 			 * Cisco uses an Ethertype lookalike - for OSI,
6545 			 * it's 0xfefe.
6546 			 */
6547 			b0 = gen_linktype(cstate, LLCSAP_ISONS<<8 | LLCSAP_ISONS);
6548 			/* OSI in C-HDLC is stuffed with a fudge byte */
6549 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 1, BPF_B, (long)v);
6550 			gen_and(b0, b1);
6551 			return b1;
6552 
6553 		default:
6554 			b0 = gen_linktype(cstate, LLCSAP_ISONS);
6555 			b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 0, BPF_B, (long)v);
6556 			gen_and(b0, b1);
6557 			return b1;
6558 		}
6559 
6560 	case Q_ESIS:
6561 		bpf_error(cstate, "'esis proto' is bogus");
6562 		/*NOTREACHED*/
6563 
6564 	case Q_ISIS:
6565 		b0 = gen_proto(cstate, ISO10589_ISIS, Q_ISO, Q_DEFAULT);
6566 		/*
6567 		 * 4 is the offset of the PDU type relative to the IS-IS
6568 		 * header.
6569 		 */
6570 		b1 = gen_cmp(cstate, OR_LINKPL_NOSNAP, 4, BPF_B, (long)v);
6571 		gen_and(b0, b1);
6572 		return b1;
6573 
6574 	case Q_CLNP:
6575 		bpf_error(cstate, "'clnp proto' is not supported");
6576 		/*NOTREACHED*/
6577 
6578 	case Q_STP:
6579 		bpf_error(cstate, "'stp proto' is bogus");
6580 		/*NOTREACHED*/
6581 
6582 	case Q_IPX:
6583 		bpf_error(cstate, "'ipx proto' is bogus");
6584 		/*NOTREACHED*/
6585 
6586 	case Q_NETBEUI:
6587 		bpf_error(cstate, "'netbeui proto' is bogus");
6588 		/*NOTREACHED*/
6589 
6590 	case Q_ISIS_L1:
6591 		bpf_error(cstate, "'l1 proto' is bogus");
6592 		/*NOTREACHED*/
6593 
6594 	case Q_ISIS_L2:
6595 		bpf_error(cstate, "'l2 proto' is bogus");
6596 		/*NOTREACHED*/
6597 
6598 	case Q_ISIS_IIH:
6599 		bpf_error(cstate, "'iih proto' is bogus");
6600 		/*NOTREACHED*/
6601 
6602 	case Q_ISIS_SNP:
6603 		bpf_error(cstate, "'snp proto' is bogus");
6604 		/*NOTREACHED*/
6605 
6606 	case Q_ISIS_CSNP:
6607 		bpf_error(cstate, "'csnp proto' is bogus");
6608 		/*NOTREACHED*/
6609 
6610 	case Q_ISIS_PSNP:
6611 		bpf_error(cstate, "'psnp proto' is bogus");
6612 		/*NOTREACHED*/
6613 
6614 	case Q_ISIS_LSP:
6615 		bpf_error(cstate, "'lsp proto' is bogus");
6616 		/*NOTREACHED*/
6617 
6618 	case Q_RADIO:
6619 		bpf_error(cstate, "'radio proto' is bogus");
6620 		/*NOTREACHED*/
6621 
6622 	case Q_CARP:
6623 		bpf_error(cstate, "'carp proto' is bogus");
6624 		/*NOTREACHED*/
6625 
6626 	default:
6627 		abort();
6628 		/*NOTREACHED*/
6629 	}
6630 	/*NOTREACHED*/
6631 }
6632 
6633 struct block *
gen_scode(compiler_state_t * cstate,const char * name,struct qual q)6634 gen_scode(compiler_state_t *cstate, const char *name, struct qual q)
6635 {
6636 	int proto = q.proto;
6637 	int dir = q.dir;
6638 	int tproto;
6639 	u_char *eaddr;
6640 	bpf_u_int32 mask, addr;
6641 	struct addrinfo *res, *res0;
6642 	struct sockaddr_in *sin4;
6643 #ifdef INET6
6644 	int tproto6;
6645 	struct sockaddr_in6 *sin6;
6646 	struct in6_addr mask128;
6647 #endif /*INET6*/
6648 	struct block *b, *tmp;
6649 	int port, real_proto;
6650 	int port1, port2;
6651 
6652 	/*
6653 	 * Catch errors reported by us and routines below us, and return NULL
6654 	 * on an error.
6655 	 */
6656 	if (setjmp(cstate->top_ctx))
6657 		return (NULL);
6658 
6659 	switch (q.addr) {
6660 
6661 	case Q_NET:
6662 		addr = pcap_nametonetaddr(name);
6663 		if (addr == 0)
6664 			bpf_error(cstate, "unknown network '%s'", name);
6665 		/* Left justify network addr and calculate its network mask */
6666 		mask = 0xffffffff;
6667 		while (addr && (addr & 0xff000000) == 0) {
6668 			addr <<= 8;
6669 			mask <<= 8;
6670 		}
6671 		return gen_host(cstate, addr, mask, proto, dir, q.addr);
6672 
6673 	case Q_DEFAULT:
6674 	case Q_HOST:
6675 		if (proto == Q_LINK) {
6676 			switch (cstate->linktype) {
6677 
6678 			case DLT_EN10MB:
6679 			case DLT_NETANALYZER:
6680 			case DLT_NETANALYZER_TRANSPARENT:
6681 				eaddr = pcap_ether_hostton(name);
6682 				if (eaddr == NULL)
6683 					bpf_error(cstate,
6684 					    "unknown ether host '%s'", name);
6685 				tmp = gen_prevlinkhdr_check(cstate);
6686 				b = gen_ehostop(cstate, eaddr, dir);
6687 				if (tmp != NULL)
6688 					gen_and(tmp, b);
6689 				free(eaddr);
6690 				return b;
6691 
6692 			case DLT_FDDI:
6693 				eaddr = pcap_ether_hostton(name);
6694 				if (eaddr == NULL)
6695 					bpf_error(cstate,
6696 					    "unknown FDDI host '%s'", name);
6697 				b = gen_fhostop(cstate, eaddr, dir);
6698 				free(eaddr);
6699 				return b;
6700 
6701 			case DLT_IEEE802:
6702 				eaddr = pcap_ether_hostton(name);
6703 				if (eaddr == NULL)
6704 					bpf_error(cstate,
6705 					    "unknown token ring host '%s'", name);
6706 				b = gen_thostop(cstate, eaddr, dir);
6707 				free(eaddr);
6708 				return b;
6709 
6710 			case DLT_IEEE802_11:
6711 			case DLT_PRISM_HEADER:
6712 			case DLT_IEEE802_11_RADIO_AVS:
6713 			case DLT_IEEE802_11_RADIO:
6714 			case DLT_PPI:
6715 				eaddr = pcap_ether_hostton(name);
6716 				if (eaddr == NULL)
6717 					bpf_error(cstate,
6718 					    "unknown 802.11 host '%s'", name);
6719 				b = gen_wlanhostop(cstate, eaddr, dir);
6720 				free(eaddr);
6721 				return b;
6722 
6723 			case DLT_IP_OVER_FC:
6724 				eaddr = pcap_ether_hostton(name);
6725 				if (eaddr == NULL)
6726 					bpf_error(cstate,
6727 					    "unknown Fibre Channel host '%s'", name);
6728 				b = gen_ipfchostop(cstate, eaddr, dir);
6729 				free(eaddr);
6730 				return b;
6731 			}
6732 
6733 			bpf_error(cstate, "only ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel supports link-level host name");
6734 		} else if (proto == Q_DECNET) {
6735 			unsigned short dn_addr;
6736 
6737 			if (!__pcap_nametodnaddr(name, &dn_addr)) {
6738 #ifdef	DECNETLIB
6739 				bpf_error(cstate, "unknown decnet host name '%s'\n", name);
6740 #else
6741 				bpf_error(cstate, "decnet name support not included, '%s' cannot be translated\n",
6742 					name);
6743 #endif
6744 			}
6745 			/*
6746 			 * I don't think DECNET hosts can be multihomed, so
6747 			 * there is no need to build up a list of addresses
6748 			 */
6749 			return (gen_host(cstate, dn_addr, 0, proto, dir, q.addr));
6750 		} else {
6751 #ifdef INET6
6752 			memset(&mask128, 0xff, sizeof(mask128));
6753 #endif
6754 			res0 = res = pcap_nametoaddrinfo(name);
6755 			if (res == NULL)
6756 				bpf_error(cstate, "unknown host '%s'", name);
6757 			cstate->ai = res;
6758 			b = tmp = NULL;
6759 			tproto = proto;
6760 #ifdef INET6
6761 			tproto6 = proto;
6762 #endif
6763 			if (cstate->off_linktype.constant_part == OFFSET_NOT_SET &&
6764 			    tproto == Q_DEFAULT) {
6765 				tproto = Q_IP;
6766 #ifdef INET6
6767 				tproto6 = Q_IPV6;
6768 #endif
6769 			}
6770 			for (res = res0; res; res = res->ai_next) {
6771 				switch (res->ai_family) {
6772 				case AF_INET:
6773 #ifdef INET6
6774 					if (tproto == Q_IPV6)
6775 						continue;
6776 #endif
6777 
6778 					sin4 = (struct sockaddr_in *)
6779 						res->ai_addr;
6780 					tmp = gen_host(cstate, ntohl(sin4->sin_addr.s_addr),
6781 						0xffffffff, tproto, dir, q.addr);
6782 					break;
6783 #ifdef INET6
6784 				case AF_INET6:
6785 					if (tproto6 == Q_IP)
6786 						continue;
6787 
6788 					sin6 = (struct sockaddr_in6 *)
6789 						res->ai_addr;
6790 					tmp = gen_host6(cstate, &sin6->sin6_addr,
6791 						&mask128, tproto6, dir, q.addr);
6792 					break;
6793 #endif
6794 				default:
6795 					continue;
6796 				}
6797 				if (b)
6798 					gen_or(b, tmp);
6799 				b = tmp;
6800 			}
6801 			cstate->ai = NULL;
6802 			freeaddrinfo(res0);
6803 			if (b == NULL) {
6804 				bpf_error(cstate, "unknown host '%s'%s", name,
6805 				    (proto == Q_DEFAULT)
6806 					? ""
6807 					: " for specified address family");
6808 			}
6809 			return b;
6810 		}
6811 
6812 	case Q_PORT:
6813 		if (proto != Q_DEFAULT &&
6814 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6815 			bpf_error(cstate, "illegal qualifier of 'port'");
6816 		if (pcap_nametoport(name, &port, &real_proto) == 0)
6817 			bpf_error(cstate, "unknown port '%s'", name);
6818 		if (proto == Q_UDP) {
6819 			if (real_proto == IPPROTO_TCP)
6820 				bpf_error(cstate, "port '%s' is tcp", name);
6821 			else if (real_proto == IPPROTO_SCTP)
6822 				bpf_error(cstate, "port '%s' is sctp", name);
6823 			else
6824 				/* override PROTO_UNDEF */
6825 				real_proto = IPPROTO_UDP;
6826 		}
6827 		if (proto == Q_TCP) {
6828 			if (real_proto == IPPROTO_UDP)
6829 				bpf_error(cstate, "port '%s' is udp", name);
6830 
6831 			else if (real_proto == IPPROTO_SCTP)
6832 				bpf_error(cstate, "port '%s' is sctp", name);
6833 			else
6834 				/* override PROTO_UNDEF */
6835 				real_proto = IPPROTO_TCP;
6836 		}
6837 		if (proto == Q_SCTP) {
6838 			if (real_proto == IPPROTO_UDP)
6839 				bpf_error(cstate, "port '%s' is udp", name);
6840 
6841 			else if (real_proto == IPPROTO_TCP)
6842 				bpf_error(cstate, "port '%s' is tcp", name);
6843 			else
6844 				/* override PROTO_UNDEF */
6845 				real_proto = IPPROTO_SCTP;
6846 		}
6847 		if (port < 0)
6848 			bpf_error(cstate, "illegal port number %d < 0", port);
6849 		if (port > 65535)
6850 			bpf_error(cstate, "illegal port number %d > 65535", port);
6851 		b = gen_port(cstate, port, real_proto, dir);
6852 		gen_or(gen_port6(cstate, port, real_proto, dir), b);
6853 		return b;
6854 
6855 	case Q_PORTRANGE:
6856 		if (proto != Q_DEFAULT &&
6857 		    proto != Q_UDP && proto != Q_TCP && proto != Q_SCTP)
6858 			bpf_error(cstate, "illegal qualifier of 'portrange'");
6859 		if (pcap_nametoportrange(name, &port1, &port2, &real_proto) == 0)
6860 			bpf_error(cstate, "unknown port in range '%s'", name);
6861 		if (proto == Q_UDP) {
6862 			if (real_proto == IPPROTO_TCP)
6863 				bpf_error(cstate, "port in range '%s' is tcp", name);
6864 			else if (real_proto == IPPROTO_SCTP)
6865 				bpf_error(cstate, "port in range '%s' is sctp", name);
6866 			else
6867 				/* override PROTO_UNDEF */
6868 				real_proto = IPPROTO_UDP;
6869 		}
6870 		if (proto == Q_TCP) {
6871 			if (real_proto == IPPROTO_UDP)
6872 				bpf_error(cstate, "port in range '%s' is udp", name);
6873 			else if (real_proto == IPPROTO_SCTP)
6874 				bpf_error(cstate, "port in range '%s' is sctp", name);
6875 			else
6876 				/* override PROTO_UNDEF */
6877 				real_proto = IPPROTO_TCP;
6878 		}
6879 		if (proto == Q_SCTP) {
6880 			if (real_proto == IPPROTO_UDP)
6881 				bpf_error(cstate, "port in range '%s' is udp", name);
6882 			else if (real_proto == IPPROTO_TCP)
6883 				bpf_error(cstate, "port in range '%s' is tcp", name);
6884 			else
6885 				/* override PROTO_UNDEF */
6886 				real_proto = IPPROTO_SCTP;
6887 		}
6888 		if (port1 < 0)
6889 			bpf_error(cstate, "illegal port number %d < 0", port1);
6890 		if (port1 > 65535)
6891 			bpf_error(cstate, "illegal port number %d > 65535", port1);
6892 		if (port2 < 0)
6893 			bpf_error(cstate, "illegal port number %d < 0", port2);
6894 		if (port2 > 65535)
6895 			bpf_error(cstate, "illegal port number %d > 65535", port2);
6896 
6897 		b = gen_portrange(cstate, port1, port2, real_proto, dir);
6898 		gen_or(gen_portrange6(cstate, port1, port2, real_proto, dir), b);
6899 		return b;
6900 
6901 	case Q_GATEWAY:
6902 #ifndef INET6
6903 		eaddr = pcap_ether_hostton(name);
6904 		if (eaddr == NULL)
6905 			bpf_error(cstate, "unknown ether host: %s", name);
6906 
6907 		res = pcap_nametoaddrinfo(name);
6908 		cstate->ai = res;
6909 		if (res == NULL)
6910 			bpf_error(cstate, "unknown host '%s'", name);
6911 		b = gen_gateway(cstate, eaddr, res, proto, dir);
6912 		cstate->ai = NULL;
6913 		freeaddrinfo(res);
6914 		if (b == NULL)
6915 			bpf_error(cstate, "unknown host '%s'", name);
6916 		return b;
6917 #else
6918 		bpf_error(cstate, "'gateway' not supported in this configuration");
6919 #endif /*INET6*/
6920 
6921 	case Q_PROTO:
6922 		real_proto = lookup_proto(cstate, name, proto);
6923 		if (real_proto >= 0)
6924 			return gen_proto(cstate, real_proto, proto, dir);
6925 		else
6926 			bpf_error(cstate, "unknown protocol: %s", name);
6927 
6928 	case Q_PROTOCHAIN:
6929 		real_proto = lookup_proto(cstate, name, proto);
6930 		if (real_proto >= 0)
6931 			return gen_protochain(cstate, real_proto, proto, dir);
6932 		else
6933 			bpf_error(cstate, "unknown protocol: %s", name);
6934 
6935 	case Q_UNDEF:
6936 		syntax(cstate);
6937 		/*NOTREACHED*/
6938 	}
6939 	abort();
6940 	/*NOTREACHED*/
6941 }
6942 
6943 struct block *
gen_mcode(compiler_state_t * cstate,const char * s1,const char * s2,unsigned int masklen,struct qual q)6944 gen_mcode(compiler_state_t *cstate, const char *s1, const char *s2,
6945     unsigned int masklen, struct qual q)
6946 {
6947 	register int nlen, mlen;
6948 	bpf_u_int32 n, m;
6949 
6950 	/*
6951 	 * Catch errors reported by us and routines below us, and return NULL
6952 	 * on an error.
6953 	 */
6954 	if (setjmp(cstate->top_ctx))
6955 		return (NULL);
6956 
6957 	nlen = __pcap_atoin(s1, &n);
6958 	/* Promote short ipaddr */
6959 	n <<= 32 - nlen;
6960 
6961 	if (s2 != NULL) {
6962 		mlen = __pcap_atoin(s2, &m);
6963 		/* Promote short ipaddr */
6964 		m <<= 32 - mlen;
6965 		if ((n & ~m) != 0)
6966 			bpf_error(cstate, "non-network bits set in \"%s mask %s\"",
6967 			    s1, s2);
6968 	} else {
6969 		/* Convert mask len to mask */
6970 		if (masklen > 32)
6971 			bpf_error(cstate, "mask length must be <= 32");
6972 		if (masklen == 0) {
6973 			/*
6974 			 * X << 32 is not guaranteed by C to be 0; it's
6975 			 * undefined.
6976 			 */
6977 			m = 0;
6978 		} else
6979 			m = 0xffffffff << (32 - masklen);
6980 		if ((n & ~m) != 0)
6981 			bpf_error(cstate, "non-network bits set in \"%s/%d\"",
6982 			    s1, masklen);
6983 	}
6984 
6985 	switch (q.addr) {
6986 
6987 	case Q_NET:
6988 		return gen_host(cstate, n, m, q.proto, q.dir, q.addr);
6989 
6990 	default:
6991 		bpf_error(cstate, "Mask syntax for networks only");
6992 		/*NOTREACHED*/
6993 	}
6994 	/*NOTREACHED*/
6995 }
6996 
6997 struct block *
gen_ncode(compiler_state_t * cstate,const char * s,bpf_u_int32 v,struct qual q)6998 gen_ncode(compiler_state_t *cstate, const char *s, bpf_u_int32 v, struct qual q)
6999 {
7000 	bpf_u_int32 mask;
7001 	int proto;
7002 	int dir;
7003 	register int vlen;
7004 
7005 	/*
7006 	 * Catch errors reported by us and routines below us, and return NULL
7007 	 * on an error.
7008 	 */
7009 	if (setjmp(cstate->top_ctx))
7010 		return (NULL);
7011 
7012 	proto = q.proto;
7013 	dir = q.dir;
7014 	if (s == NULL)
7015 		vlen = 32;
7016 	else if (q.proto == Q_DECNET) {
7017 		vlen = __pcap_atodn(s, &v);
7018 		if (vlen == 0)
7019 			bpf_error(cstate, "malformed decnet address '%s'", s);
7020 	} else
7021 		vlen = __pcap_atoin(s, &v);
7022 
7023 	switch (q.addr) {
7024 
7025 	case Q_DEFAULT:
7026 	case Q_HOST:
7027 	case Q_NET:
7028 		if (proto == Q_DECNET)
7029 			return gen_host(cstate, v, 0, proto, dir, q.addr);
7030 		else if (proto == Q_LINK) {
7031 			bpf_error(cstate, "illegal link layer address");
7032 		} else {
7033 			mask = 0xffffffff;
7034 			if (s == NULL && q.addr == Q_NET) {
7035 				/* Promote short net number */
7036 				while (v && (v & 0xff000000) == 0) {
7037 					v <<= 8;
7038 					mask <<= 8;
7039 				}
7040 			} else {
7041 				/* Promote short ipaddr */
7042 				v <<= 32 - vlen;
7043 				mask <<= 32 - vlen ;
7044 			}
7045 			return gen_host(cstate, v, mask, proto, dir, q.addr);
7046 		}
7047 
7048 	case Q_PORT:
7049 		if (proto == Q_UDP)
7050 			proto = IPPROTO_UDP;
7051 		else if (proto == Q_TCP)
7052 			proto = IPPROTO_TCP;
7053 		else if (proto == Q_SCTP)
7054 			proto = IPPROTO_SCTP;
7055 		else if (proto == Q_DEFAULT)
7056 			proto = PROTO_UNDEF;
7057 		else
7058 			bpf_error(cstate, "illegal qualifier of 'port'");
7059 
7060 		if (v > 65535)
7061 			bpf_error(cstate, "illegal port number %u > 65535", v);
7062 
7063 	    {
7064 		struct block *b;
7065 		b = gen_port(cstate, (int)v, proto, dir);
7066 		gen_or(gen_port6(cstate, (int)v, proto, dir), b);
7067 		return b;
7068 	    }
7069 
7070 	case Q_PORTRANGE:
7071 		if (proto == Q_UDP)
7072 			proto = IPPROTO_UDP;
7073 		else if (proto == Q_TCP)
7074 			proto = IPPROTO_TCP;
7075 		else if (proto == Q_SCTP)
7076 			proto = IPPROTO_SCTP;
7077 		else if (proto == Q_DEFAULT)
7078 			proto = PROTO_UNDEF;
7079 		else
7080 			bpf_error(cstate, "illegal qualifier of 'portrange'");
7081 
7082 		if (v > 65535)
7083 			bpf_error(cstate, "illegal port number %u > 65535", v);
7084 
7085 	    {
7086 		struct block *b;
7087 		b = gen_portrange(cstate, (int)v, (int)v, proto, dir);
7088 		gen_or(gen_portrange6(cstate, (int)v, (int)v, proto, dir), b);
7089 		return b;
7090 	    }
7091 
7092 	case Q_GATEWAY:
7093 		bpf_error(cstate, "'gateway' requires a name");
7094 		/*NOTREACHED*/
7095 
7096 	case Q_PROTO:
7097 		return gen_proto(cstate, (int)v, proto, dir);
7098 
7099 	case Q_PROTOCHAIN:
7100 		return gen_protochain(cstate, (int)v, proto, dir);
7101 
7102 	case Q_UNDEF:
7103 		syntax(cstate);
7104 		/*NOTREACHED*/
7105 
7106 	default:
7107 		abort();
7108 		/*NOTREACHED*/
7109 	}
7110 	/*NOTREACHED*/
7111 }
7112 
7113 #ifdef INET6
7114 struct block *
gen_mcode6(compiler_state_t * cstate,const char * s1,const char * s2,unsigned int masklen,struct qual q)7115 gen_mcode6(compiler_state_t *cstate, const char *s1, const char *s2,
7116     unsigned int masklen, struct qual q)
7117 {
7118 	struct addrinfo *res;
7119 	struct in6_addr *addr;
7120 	struct in6_addr mask;
7121 	struct block *b;
7122 	uint32_t *a, *m;
7123 
7124 	/*
7125 	 * Catch errors reported by us and routines below us, and return NULL
7126 	 * on an error.
7127 	 */
7128 	if (setjmp(cstate->top_ctx))
7129 		return (NULL);
7130 
7131 	if (s2)
7132 		bpf_error(cstate, "no mask %s supported", s2);
7133 
7134 	res = pcap_nametoaddrinfo(s1);
7135 	if (!res)
7136 		bpf_error(cstate, "invalid ip6 address %s", s1);
7137 	cstate->ai = res;
7138 	if (res->ai_next)
7139 		bpf_error(cstate, "%s resolved to multiple address", s1);
7140 	addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
7141 
7142 	if (sizeof(mask) * 8 < masklen)
7143 		bpf_error(cstate, "mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
7144 	memset(&mask, 0, sizeof(mask));
7145 	memset(&mask, 0xff, masklen / 8);
7146 	if (masklen % 8) {
7147 		mask.s6_addr[masklen / 8] =
7148 			(0xff << (8 - masklen % 8)) & 0xff;
7149 	}
7150 
7151 	a = (uint32_t *)addr;
7152 	m = (uint32_t *)&mask;
7153 	if ((a[0] & ~m[0]) || (a[1] & ~m[1])
7154 	 || (a[2] & ~m[2]) || (a[3] & ~m[3])) {
7155 		bpf_error(cstate, "non-network bits set in \"%s/%d\"", s1, masklen);
7156 	}
7157 
7158 	switch (q.addr) {
7159 
7160 	case Q_DEFAULT:
7161 	case Q_HOST:
7162 		if (masklen != 128)
7163 			bpf_error(cstate, "Mask syntax for networks only");
7164 		/* FALLTHROUGH */
7165 
7166 	case Q_NET:
7167 		b = gen_host6(cstate, addr, &mask, q.proto, q.dir, q.addr);
7168 		cstate->ai = NULL;
7169 		freeaddrinfo(res);
7170 		return b;
7171 
7172 	default:
7173 		bpf_error(cstate, "invalid qualifier against IPv6 address");
7174 		/*NOTREACHED*/
7175 	}
7176 }
7177 #endif /*INET6*/
7178 
7179 struct block *
gen_ecode(compiler_state_t * cstate,const char * s,struct qual q)7180 gen_ecode(compiler_state_t *cstate, const char *s, struct qual q)
7181 {
7182 	struct block *b, *tmp;
7183 
7184 	/*
7185 	 * Catch errors reported by us and routines below us, and return NULL
7186 	 * on an error.
7187 	 */
7188 	if (setjmp(cstate->top_ctx))
7189 		return (NULL);
7190 
7191 	if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
7192 		cstate->e = pcap_ether_aton(s);
7193 		if (cstate->e == NULL)
7194 			bpf_error(cstate, "malloc");
7195 		switch (cstate->linktype) {
7196 		case DLT_EN10MB:
7197 		case DLT_NETANALYZER:
7198 		case DLT_NETANALYZER_TRANSPARENT:
7199 			tmp = gen_prevlinkhdr_check(cstate);
7200 			b = gen_ehostop(cstate, cstate->e, (int)q.dir);
7201 			if (tmp != NULL)
7202 				gen_and(tmp, b);
7203 			break;
7204 		case DLT_FDDI:
7205 			b = gen_fhostop(cstate, cstate->e, (int)q.dir);
7206 			break;
7207 		case DLT_IEEE802:
7208 			b = gen_thostop(cstate, cstate->e, (int)q.dir);
7209 			break;
7210 		case DLT_IEEE802_11:
7211 		case DLT_PRISM_HEADER:
7212 		case DLT_IEEE802_11_RADIO_AVS:
7213 		case DLT_IEEE802_11_RADIO:
7214 		case DLT_PPI:
7215 			b = gen_wlanhostop(cstate, cstate->e, (int)q.dir);
7216 			break;
7217 		case DLT_IP_OVER_FC:
7218 			b = gen_ipfchostop(cstate, cstate->e, (int)q.dir);
7219 			break;
7220 		default:
7221 			free(cstate->e);
7222 			cstate->e = NULL;
7223 			bpf_error(cstate, "ethernet addresses supported only on ethernet/FDDI/token ring/802.11/ATM LANE/Fibre Channel");
7224 			/*NOTREACHED*/
7225 		}
7226 		free(cstate->e);
7227 		cstate->e = NULL;
7228 		return (b);
7229 	}
7230 	bpf_error(cstate, "ethernet address used in non-ether expression");
7231 	/*NOTREACHED*/
7232 }
7233 
7234 void
sappend(struct slist * s0,struct slist * s1)7235 sappend(struct slist *s0, struct slist *s1)
7236 {
7237 	/*
7238 	 * This is definitely not the best way to do this, but the
7239 	 * lists will rarely get long.
7240 	 */
7241 	while (s0->next)
7242 		s0 = s0->next;
7243 	s0->next = s1;
7244 }
7245 
7246 static struct slist *
xfer_to_x(compiler_state_t * cstate,struct arth * a)7247 xfer_to_x(compiler_state_t *cstate, struct arth *a)
7248 {
7249 	struct slist *s;
7250 
7251 	s = new_stmt(cstate, BPF_LDX|BPF_MEM);
7252 	s->s.k = a->regno;
7253 	return s;
7254 }
7255 
7256 static struct slist *
xfer_to_a(compiler_state_t * cstate,struct arth * a)7257 xfer_to_a(compiler_state_t *cstate, struct arth *a)
7258 {
7259 	struct slist *s;
7260 
7261 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
7262 	s->s.k = a->regno;
7263 	return s;
7264 }
7265 
7266 /*
7267  * Modify "index" to use the value stored into its register as an
7268  * offset relative to the beginning of the header for the protocol
7269  * "proto", and allocate a register and put an item "size" bytes long
7270  * (1, 2, or 4) at that offset into that register, making it the register
7271  * for "index".
7272  */
7273 static struct arth *
gen_load_internal(compiler_state_t * cstate,int proto,struct arth * inst,int size)7274 gen_load_internal(compiler_state_t *cstate, int proto, struct arth *inst, int size)
7275 {
7276 	struct slist *s, *tmp;
7277 	struct block *b;
7278 	int regno = alloc_reg(cstate);
7279 
7280 	free_reg(cstate, inst->regno);
7281 	switch (size) {
7282 
7283 	default:
7284 		bpf_error(cstate, "data size must be 1, 2, or 4");
7285 
7286 	case 1:
7287 		size = BPF_B;
7288 		break;
7289 
7290 	case 2:
7291 		size = BPF_H;
7292 		break;
7293 
7294 	case 4:
7295 		size = BPF_W;
7296 		break;
7297 	}
7298 	switch (proto) {
7299 	default:
7300 		bpf_error(cstate, "unsupported index operation");
7301 
7302 	case Q_RADIO:
7303 		/*
7304 		 * The offset is relative to the beginning of the packet
7305 		 * data, if we have a radio header.  (If we don't, this
7306 		 * is an error.)
7307 		 */
7308 		if (cstate->linktype != DLT_IEEE802_11_RADIO_AVS &&
7309 		    cstate->linktype != DLT_IEEE802_11_RADIO &&
7310 		    cstate->linktype != DLT_PRISM_HEADER)
7311 			bpf_error(cstate, "radio information not present in capture");
7312 
7313 		/*
7314 		 * Load into the X register the offset computed into the
7315 		 * register specified by "index".
7316 		 */
7317 		s = xfer_to_x(cstate, inst);
7318 
7319 		/*
7320 		 * Load the item at that offset.
7321 		 */
7322 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
7323 		sappend(s, tmp);
7324 		sappend(inst->s, s);
7325 		break;
7326 
7327 	case Q_LINK:
7328 		/*
7329 		 * The offset is relative to the beginning of
7330 		 * the link-layer header.
7331 		 *
7332 		 * XXX - what about ATM LANE?  Should the index be
7333 		 * relative to the beginning of the AAL5 frame, so
7334 		 * that 0 refers to the beginning of the LE Control
7335 		 * field, or relative to the beginning of the LAN
7336 		 * frame, so that 0 refers, for Ethernet LANE, to
7337 		 * the beginning of the destination address?
7338 		 */
7339 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkhdr);
7340 
7341 		/*
7342 		 * If "s" is non-null, it has code to arrange that the
7343 		 * X register contains the length of the prefix preceding
7344 		 * the link-layer header.  Add to it the offset computed
7345 		 * into the register specified by "index", and move that
7346 		 * into the X register.  Otherwise, just load into the X
7347 		 * register the offset computed into the register specified
7348 		 * by "index".
7349 		 */
7350 		if (s != NULL) {
7351 			sappend(s, xfer_to_a(cstate, inst));
7352 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7353 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7354 		} else
7355 			s = xfer_to_x(cstate, inst);
7356 
7357 		/*
7358 		 * Load the item at the sum of the offset we've put in the
7359 		 * X register and the offset of the start of the link
7360 		 * layer header (which is 0 if the radio header is
7361 		 * variable-length; that header length is what we put
7362 		 * into the X register and then added to the index).
7363 		 */
7364 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
7365 		tmp->s.k = cstate->off_linkhdr.constant_part;
7366 		sappend(s, tmp);
7367 		sappend(inst->s, s);
7368 		break;
7369 
7370 	case Q_IP:
7371 	case Q_ARP:
7372 	case Q_RARP:
7373 	case Q_ATALK:
7374 	case Q_DECNET:
7375 	case Q_SCA:
7376 	case Q_LAT:
7377 	case Q_MOPRC:
7378 	case Q_MOPDL:
7379 	case Q_IPV6:
7380 		/*
7381 		 * The offset is relative to the beginning of
7382 		 * the network-layer header.
7383 		 * XXX - are there any cases where we want
7384 		 * cstate->off_nl_nosnap?
7385 		 */
7386 		s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7387 
7388 		/*
7389 		 * If "s" is non-null, it has code to arrange that the
7390 		 * X register contains the variable part of the offset
7391 		 * of the link-layer payload.  Add to it the offset
7392 		 * computed into the register specified by "index",
7393 		 * and move that into the X register.  Otherwise, just
7394 		 * load into the X register the offset computed into
7395 		 * the register specified by "index".
7396 		 */
7397 		if (s != NULL) {
7398 			sappend(s, xfer_to_a(cstate, inst));
7399 			sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7400 			sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7401 		} else
7402 			s = xfer_to_x(cstate, inst);
7403 
7404 		/*
7405 		 * Load the item at the sum of the offset we've put in the
7406 		 * X register, the offset of the start of the network
7407 		 * layer header from the beginning of the link-layer
7408 		 * payload, and the constant part of the offset of the
7409 		 * start of the link-layer payload.
7410 		 */
7411 		tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
7412 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7413 		sappend(s, tmp);
7414 		sappend(inst->s, s);
7415 
7416 		/*
7417 		 * Do the computation only if the packet contains
7418 		 * the protocol in question.
7419 		 */
7420 		b = gen_proto_abbrev_internal(cstate, proto);
7421 		if (inst->b)
7422 			gen_and(inst->b, b);
7423 		inst->b = b;
7424 		break;
7425 
7426 	case Q_SCTP:
7427 	case Q_TCP:
7428 	case Q_UDP:
7429 	case Q_ICMP:
7430 	case Q_IGMP:
7431 	case Q_IGRP:
7432 	case Q_PIM:
7433 	case Q_VRRP:
7434 	case Q_CARP:
7435 		/*
7436 		 * The offset is relative to the beginning of
7437 		 * the transport-layer header.
7438 		 *
7439 		 * Load the X register with the length of the IPv4 header
7440 		 * (plus the offset of the link-layer header, if it's
7441 		 * a variable-length header), in bytes.
7442 		 *
7443 		 * XXX - are there any cases where we want
7444 		 * cstate->off_nl_nosnap?
7445 		 * XXX - we should, if we're built with
7446 		 * IPv6 support, generate code to load either
7447 		 * IPv4, IPv6, or both, as appropriate.
7448 		 */
7449 		s = gen_loadx_iphdrlen(cstate);
7450 
7451 		/*
7452 		 * The X register now contains the sum of the variable
7453 		 * part of the offset of the link-layer payload and the
7454 		 * length of the network-layer header.
7455 		 *
7456 		 * Load into the A register the offset relative to
7457 		 * the beginning of the transport layer header,
7458 		 * add the X register to that, move that to the
7459 		 * X register, and load with an offset from the
7460 		 * X register equal to the sum of the constant part of
7461 		 * the offset of the link-layer payload and the offset,
7462 		 * relative to the beginning of the link-layer payload,
7463 		 * of the network-layer header.
7464 		 */
7465 		sappend(s, xfer_to_a(cstate, inst));
7466 		sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7467 		sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7468 		sappend(s, tmp = new_stmt(cstate, BPF_LD|BPF_IND|size));
7469 		tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl;
7470 		sappend(inst->s, s);
7471 
7472 		/*
7473 		 * Do the computation only if the packet contains
7474 		 * the protocol in question - which is true only
7475 		 * if this is an IP datagram and is the first or
7476 		 * only fragment of that datagram.
7477 		 */
7478 		gen_and(gen_proto_abbrev_internal(cstate, proto), b = gen_ipfrag(cstate));
7479 		if (inst->b)
7480 			gen_and(inst->b, b);
7481 		gen_and(gen_proto_abbrev_internal(cstate, Q_IP), b);
7482 		inst->b = b;
7483 		break;
7484 	case Q_ICMPV6:
7485         /*
7486         * Do the computation only if the packet contains
7487         * the protocol in question.
7488         */
7489         b = gen_proto_abbrev_internal(cstate, Q_IPV6);
7490         if (inst->b) {
7491             gen_and(inst->b, b);
7492         }
7493         inst->b = b;
7494 
7495         /*
7496         * Check if we have an icmp6 next header
7497         */
7498         b = gen_cmp(cstate, OR_LINKPL, 6, BPF_B, 58);
7499         if (inst->b) {
7500             gen_and(inst->b, b);
7501         }
7502         inst->b = b;
7503 
7504 
7505         s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
7506         /*
7507         * If "s" is non-null, it has code to arrange that the
7508         * X register contains the variable part of the offset
7509         * of the link-layer payload.  Add to it the offset
7510         * computed into the register specified by "index",
7511         * and move that into the X register.  Otherwise, just
7512         * load into the X register the offset computed into
7513         * the register specified by "index".
7514         */
7515         if (s != NULL) {
7516             sappend(s, xfer_to_a(cstate, inst));
7517             sappend(s, new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X));
7518             sappend(s, new_stmt(cstate, BPF_MISC|BPF_TAX));
7519         } else {
7520             s = xfer_to_x(cstate, inst);
7521         }
7522 
7523         /*
7524         * Load the item at the sum of the offset we've put in the
7525         * X register, the offset of the start of the network
7526         * layer header from the beginning of the link-layer
7527         * payload, and the constant part of the offset of the
7528         * start of the link-layer payload.
7529         */
7530         tmp = new_stmt(cstate, BPF_LD|BPF_IND|size);
7531         tmp->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 40;
7532 
7533         sappend(s, tmp);
7534         sappend(inst->s, s);
7535 
7536         break;
7537 	}
7538 	inst->regno = regno;
7539 	s = new_stmt(cstate, BPF_ST);
7540 	s->s.k = regno;
7541 	sappend(inst->s, s);
7542 
7543 	return inst;
7544 }
7545 
7546 struct arth *
gen_load(compiler_state_t * cstate,int proto,struct arth * inst,int size)7547 gen_load(compiler_state_t *cstate, int proto, struct arth *inst, int size)
7548 {
7549 	/*
7550 	 * Catch errors reported by us and routines below us, and return NULL
7551 	 * on an error.
7552 	 */
7553 	if (setjmp(cstate->top_ctx))
7554 		return (NULL);
7555 
7556 	return gen_load_internal(cstate, proto, inst, size);
7557 }
7558 
7559 static struct block *
gen_relation_internal(compiler_state_t * cstate,int code,struct arth * a0,struct arth * a1,int reversed)7560 gen_relation_internal(compiler_state_t *cstate, int code, struct arth *a0,
7561     struct arth *a1, int reversed)
7562 {
7563 	struct slist *s0, *s1, *s2;
7564 	struct block *b, *tmp;
7565 
7566 	s0 = xfer_to_x(cstate, a1);
7567 	s1 = xfer_to_a(cstate, a0);
7568 	if (code == BPF_JEQ) {
7569 		s2 = new_stmt(cstate, BPF_ALU|BPF_SUB|BPF_X);
7570 		b = new_block(cstate, JMP(code));
7571 		sappend(s1, s2);
7572 	}
7573 	else
7574 		b = new_block(cstate, BPF_JMP|code|BPF_X);
7575 	if (reversed)
7576 		gen_not(b);
7577 
7578 	sappend(s0, s1);
7579 	sappend(a1->s, s0);
7580 	sappend(a0->s, a1->s);
7581 
7582 	b->stmts = a0->s;
7583 
7584 	free_reg(cstate, a0->regno);
7585 	free_reg(cstate, a1->regno);
7586 
7587 	/* 'and' together protocol checks */
7588 	if (a0->b) {
7589 		if (a1->b) {
7590 			gen_and(a0->b, tmp = a1->b);
7591 		}
7592 		else
7593 			tmp = a0->b;
7594 	} else
7595 		tmp = a1->b;
7596 
7597 	if (tmp)
7598 		gen_and(tmp, b);
7599 
7600 	return b;
7601 }
7602 
7603 struct block *
gen_relation(compiler_state_t * cstate,int code,struct arth * a0,struct arth * a1,int reversed)7604 gen_relation(compiler_state_t *cstate, int code, struct arth *a0,
7605     struct arth *a1, int reversed)
7606 {
7607 	/*
7608 	 * Catch errors reported by us and routines below us, and return NULL
7609 	 * on an error.
7610 	 */
7611 	if (setjmp(cstate->top_ctx))
7612 		return (NULL);
7613 
7614 	return gen_relation_internal(cstate, code, a0, a1, reversed);
7615 }
7616 
7617 struct arth *
gen_loadlen(compiler_state_t * cstate)7618 gen_loadlen(compiler_state_t *cstate)
7619 {
7620 	int regno;
7621 	struct arth *a;
7622 	struct slist *s;
7623 
7624 	/*
7625 	 * Catch errors reported by us and routines below us, and return NULL
7626 	 * on an error.
7627 	 */
7628 	if (setjmp(cstate->top_ctx))
7629 		return (NULL);
7630 
7631 	regno = alloc_reg(cstate);
7632 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7633 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7634 	s->next = new_stmt(cstate, BPF_ST);
7635 	s->next->s.k = regno;
7636 	a->s = s;
7637 	a->regno = regno;
7638 
7639 	return a;
7640 }
7641 
7642 static struct arth *
gen_loadi_internal(compiler_state_t * cstate,int val)7643 gen_loadi_internal(compiler_state_t *cstate, int val)
7644 {
7645 	struct arth *a;
7646 	struct slist *s;
7647 	int reg;
7648 
7649 	a = (struct arth *)newchunk(cstate, sizeof(*a));
7650 
7651 	reg = alloc_reg(cstate);
7652 
7653 	s = new_stmt(cstate, BPF_LD|BPF_IMM);
7654 	s->s.k = val;
7655 	s->next = new_stmt(cstate, BPF_ST);
7656 	s->next->s.k = reg;
7657 	a->s = s;
7658 	a->regno = reg;
7659 
7660 	return a;
7661 }
7662 
7663 struct arth *
gen_loadi(compiler_state_t * cstate,int val)7664 gen_loadi(compiler_state_t *cstate, int val)
7665 {
7666 	/*
7667 	 * Catch errors reported by us and routines below us, and return NULL
7668 	 * on an error.
7669 	 */
7670 	if (setjmp(cstate->top_ctx))
7671 		return (NULL);
7672 
7673 	return gen_loadi_internal(cstate, val);
7674 }
7675 
7676 /*
7677  * The a_arg dance is to avoid annoying whining by compilers that
7678  * a might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7679  * It's not *used* after setjmp returns.
7680  */
7681 struct arth *
gen_neg(compiler_state_t * cstate,struct arth * a_arg)7682 gen_neg(compiler_state_t *cstate, struct arth *a_arg)
7683 {
7684 	struct arth *a = a_arg;
7685 	struct slist *s;
7686 
7687 	/*
7688 	 * Catch errors reported by us and routines below us, and return NULL
7689 	 * on an error.
7690 	 */
7691 	if (setjmp(cstate->top_ctx))
7692 		return (NULL);
7693 
7694 	s = xfer_to_a(cstate, a);
7695 	sappend(a->s, s);
7696 	s = new_stmt(cstate, BPF_ALU|BPF_NEG);
7697 	s->s.k = 0;
7698 	sappend(a->s, s);
7699 	s = new_stmt(cstate, BPF_ST);
7700 	s->s.k = a->regno;
7701 	sappend(a->s, s);
7702 
7703 	return a;
7704 }
7705 
7706 /*
7707  * The a0_arg dance is to avoid annoying whining by compilers that
7708  * a0 might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
7709  * It's not *used* after setjmp returns.
7710  */
7711 struct arth *
gen_arth(compiler_state_t * cstate,int code,struct arth * a0_arg,struct arth * a1)7712 gen_arth(compiler_state_t *cstate, int code, struct arth *a0_arg,
7713     struct arth *a1)
7714 {
7715 	struct arth *a0 = a0_arg;
7716 	struct slist *s0, *s1, *s2;
7717 
7718 	/*
7719 	 * Catch errors reported by us and routines below us, and return NULL
7720 	 * on an error.
7721 	 */
7722 	if (setjmp(cstate->top_ctx))
7723 		return (NULL);
7724 
7725 	/*
7726 	 * Disallow division by, or modulus by, zero; we do this here
7727 	 * so that it gets done even if the optimizer is disabled.
7728 	 *
7729 	 * Also disallow shifts by a value greater than 31; we do this
7730 	 * here, for the same reason.
7731 	 */
7732 	if (code == BPF_DIV) {
7733 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7734 			bpf_error(cstate, "division by zero");
7735 	} else if (code == BPF_MOD) {
7736 		if (a1->s->s.code == (BPF_LD|BPF_IMM) && a1->s->s.k == 0)
7737 			bpf_error(cstate, "modulus by zero");
7738 	} else if (code == BPF_LSH || code == BPF_RSH) {
7739 		/*
7740 		 * XXX - we need to make up our minds as to what integers
7741 		 * are signed and what integers are unsigned in BPF programs
7742 		 * and in our IR.
7743 		 */
7744 		if (a1->s->s.code == (BPF_LD|BPF_IMM) &&
7745 		    (a1->s->s.k < 0 || a1->s->s.k > 31))
7746 			bpf_error(cstate, "shift by more than 31 bits");
7747 	}
7748 	s0 = xfer_to_x(cstate, a1);
7749 	s1 = xfer_to_a(cstate, a0);
7750 	s2 = new_stmt(cstate, BPF_ALU|BPF_X|code);
7751 
7752 	sappend(s1, s2);
7753 	sappend(s0, s1);
7754 	sappend(a1->s, s0);
7755 	sappend(a0->s, a1->s);
7756 
7757 	free_reg(cstate, a0->regno);
7758 	free_reg(cstate, a1->regno);
7759 
7760 	s0 = new_stmt(cstate, BPF_ST);
7761 	a0->regno = s0->s.k = alloc_reg(cstate);
7762 	sappend(a0->s, s0);
7763 
7764 	return a0;
7765 }
7766 
7767 /*
7768  * Initialize the table of used registers and the current register.
7769  */
7770 static void
init_regs(compiler_state_t * cstate)7771 init_regs(compiler_state_t *cstate)
7772 {
7773 	cstate->curreg = 0;
7774 	memset(cstate->regused, 0, sizeof cstate->regused);
7775 }
7776 
7777 /*
7778  * Return the next free register.
7779  */
7780 static int
alloc_reg(compiler_state_t * cstate)7781 alloc_reg(compiler_state_t *cstate)
7782 {
7783 	int n = BPF_MEMWORDS;
7784 
7785 	while (--n >= 0) {
7786 		if (cstate->regused[cstate->curreg])
7787 			cstate->curreg = (cstate->curreg + 1) % BPF_MEMWORDS;
7788 		else {
7789 			cstate->regused[cstate->curreg] = 1;
7790 			return cstate->curreg;
7791 		}
7792 	}
7793 	bpf_error(cstate, "too many registers needed to evaluate expression");
7794 	/*NOTREACHED*/
7795 }
7796 
7797 /*
7798  * Return a register to the table so it can
7799  * be used later.
7800  */
7801 static void
free_reg(compiler_state_t * cstate,int n)7802 free_reg(compiler_state_t *cstate, int n)
7803 {
7804 	cstate->regused[n] = 0;
7805 }
7806 
7807 static struct block *
gen_len(compiler_state_t * cstate,int jmp,int n)7808 gen_len(compiler_state_t *cstate, int jmp, int n)
7809 {
7810 	struct slist *s;
7811 	struct block *b;
7812 
7813 	s = new_stmt(cstate, BPF_LD|BPF_LEN);
7814 	b = new_block(cstate, JMP(jmp));
7815 	b->stmts = s;
7816 	b->s.k = n;
7817 
7818 	return b;
7819 }
7820 
7821 struct block *
gen_greater(compiler_state_t * cstate,int n)7822 gen_greater(compiler_state_t *cstate, int n)
7823 {
7824 	/*
7825 	 * Catch errors reported by us and routines below us, and return NULL
7826 	 * on an error.
7827 	 */
7828 	if (setjmp(cstate->top_ctx))
7829 		return (NULL);
7830 
7831 	return gen_len(cstate, BPF_JGE, n);
7832 }
7833 
7834 /*
7835  * Actually, this is less than or equal.
7836  */
7837 struct block *
gen_less(compiler_state_t * cstate,int n)7838 gen_less(compiler_state_t *cstate, int n)
7839 {
7840 	struct block *b;
7841 
7842 	/*
7843 	 * Catch errors reported by us and routines below us, and return NULL
7844 	 * on an error.
7845 	 */
7846 	if (setjmp(cstate->top_ctx))
7847 		return (NULL);
7848 
7849 	b = gen_len(cstate, BPF_JGT, n);
7850 	gen_not(b);
7851 
7852 	return b;
7853 }
7854 
7855 /*
7856  * This is for "byte {idx} {op} {val}"; "idx" is treated as relative to
7857  * the beginning of the link-layer header.
7858  * XXX - that means you can't test values in the radiotap header, but
7859  * as that header is difficult if not impossible to parse generally
7860  * without a loop, that might not be a severe problem.  A new keyword
7861  * "radio" could be added for that, although what you'd really want
7862  * would be a way of testing particular radio header values, which
7863  * would generate code appropriate to the radio header in question.
7864  */
7865 struct block *
gen_byteop(compiler_state_t * cstate,int op,int idx,int val)7866 gen_byteop(compiler_state_t *cstate, int op, int idx, int val)
7867 {
7868 	struct block *b;
7869 	struct slist *s;
7870 
7871 	/*
7872 	 * Catch errors reported by us and routines below us, and return NULL
7873 	 * on an error.
7874 	 */
7875 	if (setjmp(cstate->top_ctx))
7876 		return (NULL);
7877 
7878 	switch (op) {
7879 	default:
7880 		abort();
7881 
7882 	case '=':
7883 		return gen_cmp(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7884 
7885 	case '<':
7886 		b = gen_cmp_lt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7887 		return b;
7888 
7889 	case '>':
7890 		b = gen_cmp_gt(cstate, OR_LINKHDR, (u_int)idx, BPF_B, (bpf_int32)val);
7891 		return b;
7892 
7893 	case '|':
7894 		s = new_stmt(cstate, BPF_ALU|BPF_OR|BPF_K);
7895 		break;
7896 
7897 	case '&':
7898 		s = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
7899 		break;
7900 	}
7901 	s->s.k = val;
7902 	b = new_block(cstate, JMP(BPF_JEQ));
7903 	b->stmts = s;
7904 	gen_not(b);
7905 
7906 	return b;
7907 }
7908 
7909 static const u_char abroadcast[] = { 0x0 };
7910 
7911 struct block *
gen_broadcast(compiler_state_t * cstate,int proto)7912 gen_broadcast(compiler_state_t *cstate, int proto)
7913 {
7914 	bpf_u_int32 hostmask;
7915 	struct block *b0, *b1, *b2;
7916 	static const u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
7917 
7918 	/*
7919 	 * Catch errors reported by us and routines below us, and return NULL
7920 	 * on an error.
7921 	 */
7922 	if (setjmp(cstate->top_ctx))
7923 		return (NULL);
7924 
7925 	switch (proto) {
7926 
7927 	case Q_DEFAULT:
7928 	case Q_LINK:
7929 		switch (cstate->linktype) {
7930 		case DLT_ARCNET:
7931 		case DLT_ARCNET_LINUX:
7932 			return gen_ahostop(cstate, abroadcast, Q_DST);
7933 		case DLT_EN10MB:
7934 		case DLT_NETANALYZER:
7935 		case DLT_NETANALYZER_TRANSPARENT:
7936 			b1 = gen_prevlinkhdr_check(cstate);
7937 			b0 = gen_ehostop(cstate, ebroadcast, Q_DST);
7938 			if (b1 != NULL)
7939 				gen_and(b1, b0);
7940 			return b0;
7941 		case DLT_FDDI:
7942 			return gen_fhostop(cstate, ebroadcast, Q_DST);
7943 		case DLT_IEEE802:
7944 			return gen_thostop(cstate, ebroadcast, Q_DST);
7945 		case DLT_IEEE802_11:
7946 		case DLT_PRISM_HEADER:
7947 		case DLT_IEEE802_11_RADIO_AVS:
7948 		case DLT_IEEE802_11_RADIO:
7949 		case DLT_PPI:
7950 			return gen_wlanhostop(cstate, ebroadcast, Q_DST);
7951 		case DLT_IP_OVER_FC:
7952 			return gen_ipfchostop(cstate, ebroadcast, Q_DST);
7953 		default:
7954 			bpf_error(cstate, "not a broadcast link");
7955 		}
7956  		/*NOTREACHED*/
7957 
7958 	case Q_IP:
7959 		/*
7960 		 * We treat a netmask of PCAP_NETMASK_UNKNOWN (0xffffffff)
7961 		 * as an indication that we don't know the netmask, and fail
7962 		 * in that case.
7963 		 */
7964 		if (cstate->netmask == PCAP_NETMASK_UNKNOWN)
7965 			bpf_error(cstate, "netmask not known, so 'ip broadcast' not supported");
7966 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
7967 		hostmask = ~cstate->netmask;
7968 		b1 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W, (bpf_int32)0, hostmask);
7969 		b2 = gen_mcmp(cstate, OR_LINKPL, 16, BPF_W,
7970 			      (bpf_int32)(~0 & hostmask), hostmask);
7971 		gen_or(b1, b2);
7972 		gen_and(b0, b2);
7973 		return b2;
7974 	}
7975 	bpf_error(cstate, "only link-layer/IP broadcast filters supported");
7976 	/*NOTREACHED*/
7977 }
7978 
7979 /*
7980  * Generate code to test the low-order bit of a MAC address (that's
7981  * the bottom bit of the *first* byte).
7982  */
7983 static struct block *
gen_mac_multicast(compiler_state_t * cstate,int offset)7984 gen_mac_multicast(compiler_state_t *cstate, int offset)
7985 {
7986 	register struct block *b0;
7987 	register struct slist *s;
7988 
7989 	/* link[offset] & 1 != 0 */
7990 	s = gen_load_a(cstate, OR_LINKHDR, offset, BPF_B);
7991 	b0 = new_block(cstate, JMP(BPF_JSET));
7992 	b0->s.k = 1;
7993 	b0->stmts = s;
7994 	return b0;
7995 }
7996 
7997 struct block *
gen_multicast(compiler_state_t * cstate,int proto)7998 gen_multicast(compiler_state_t *cstate, int proto)
7999 {
8000 	register struct block *b0, *b1, *b2;
8001 	register struct slist *s;
8002 
8003 	/*
8004 	 * Catch errors reported by us and routines below us, and return NULL
8005 	 * on an error.
8006 	 */
8007 	if (setjmp(cstate->top_ctx))
8008 		return (NULL);
8009 
8010 	switch (proto) {
8011 
8012 	case Q_DEFAULT:
8013 	case Q_LINK:
8014 		switch (cstate->linktype) {
8015 		case DLT_ARCNET:
8016 		case DLT_ARCNET_LINUX:
8017 			/* all ARCnet multicasts use the same address */
8018 			return gen_ahostop(cstate, abroadcast, Q_DST);
8019 		case DLT_EN10MB:
8020 		case DLT_NETANALYZER:
8021 		case DLT_NETANALYZER_TRANSPARENT:
8022 			b1 = gen_prevlinkhdr_check(cstate);
8023 			/* ether[0] & 1 != 0 */
8024 			b0 = gen_mac_multicast(cstate, 0);
8025 			if (b1 != NULL)
8026 				gen_and(b1, b0);
8027 			return b0;
8028 		case DLT_FDDI:
8029 			/*
8030 			 * XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX
8031 			 *
8032 			 * XXX - was that referring to bit-order issues?
8033 			 */
8034 			/* fddi[1] & 1 != 0 */
8035 			return gen_mac_multicast(cstate, 1);
8036 		case DLT_IEEE802:
8037 			/* tr[2] & 1 != 0 */
8038 			return gen_mac_multicast(cstate, 2);
8039 		case DLT_IEEE802_11:
8040 		case DLT_PRISM_HEADER:
8041 		case DLT_IEEE802_11_RADIO_AVS:
8042 		case DLT_IEEE802_11_RADIO:
8043 		case DLT_PPI:
8044 			/*
8045 			 * Oh, yuk.
8046 			 *
8047 			 *	For control frames, there is no DA.
8048 			 *
8049 			 *	For management frames, DA is at an
8050 			 *	offset of 4 from the beginning of
8051 			 *	the packet.
8052 			 *
8053 			 *	For data frames, DA is at an offset
8054 			 *	of 4 from the beginning of the packet
8055 			 *	if To DS is clear and at an offset of
8056 			 *	16 from the beginning of the packet
8057 			 *	if To DS is set.
8058 			 */
8059 
8060 			/*
8061 			 * Generate the tests to be done for data frames.
8062 			 *
8063 			 * First, check for To DS set, i.e. "link[1] & 0x01".
8064 			 */
8065 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8066 			b1 = new_block(cstate, JMP(BPF_JSET));
8067 			b1->s.k = 0x01;	/* To DS */
8068 			b1->stmts = s;
8069 
8070 			/*
8071 			 * If To DS is set, the DA is at 16.
8072 			 */
8073 			b0 = gen_mac_multicast(cstate, 16);
8074 			gen_and(b1, b0);
8075 
8076 			/*
8077 			 * Now, check for To DS not set, i.e. check
8078 			 * "!(link[1] & 0x01)".
8079 			 */
8080 			s = gen_load_a(cstate, OR_LINKHDR, 1, BPF_B);
8081 			b2 = new_block(cstate, JMP(BPF_JSET));
8082 			b2->s.k = 0x01;	/* To DS */
8083 			b2->stmts = s;
8084 			gen_not(b2);
8085 
8086 			/*
8087 			 * If To DS is not set, the DA is at 4.
8088 			 */
8089 			b1 = gen_mac_multicast(cstate, 4);
8090 			gen_and(b2, b1);
8091 
8092 			/*
8093 			 * Now OR together the last two checks.  That gives
8094 			 * the complete set of checks for data frames.
8095 			 */
8096 			gen_or(b1, b0);
8097 
8098 			/*
8099 			 * Now check for a data frame.
8100 			 * I.e, check "link[0] & 0x08".
8101 			 */
8102 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8103 			b1 = new_block(cstate, JMP(BPF_JSET));
8104 			b1->s.k = 0x08;
8105 			b1->stmts = s;
8106 
8107 			/*
8108 			 * AND that with the checks done for data frames.
8109 			 */
8110 			gen_and(b1, b0);
8111 
8112 			/*
8113 			 * If the high-order bit of the type value is 0, this
8114 			 * is a management frame.
8115 			 * I.e, check "!(link[0] & 0x08)".
8116 			 */
8117 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8118 			b2 = new_block(cstate, JMP(BPF_JSET));
8119 			b2->s.k = 0x08;
8120 			b2->stmts = s;
8121 			gen_not(b2);
8122 
8123 			/*
8124 			 * For management frames, the DA is at 4.
8125 			 */
8126 			b1 = gen_mac_multicast(cstate, 4);
8127 			gen_and(b2, b1);
8128 
8129 			/*
8130 			 * OR that with the checks done for data frames.
8131 			 * That gives the checks done for management and
8132 			 * data frames.
8133 			 */
8134 			gen_or(b1, b0);
8135 
8136 			/*
8137 			 * If the low-order bit of the type value is 1,
8138 			 * this is either a control frame or a frame
8139 			 * with a reserved type, and thus not a
8140 			 * frame with an SA.
8141 			 *
8142 			 * I.e., check "!(link[0] & 0x04)".
8143 			 */
8144 			s = gen_load_a(cstate, OR_LINKHDR, 0, BPF_B);
8145 			b1 = new_block(cstate, JMP(BPF_JSET));
8146 			b1->s.k = 0x04;
8147 			b1->stmts = s;
8148 			gen_not(b1);
8149 
8150 			/*
8151 			 * AND that with the checks for data and management
8152 			 * frames.
8153 			 */
8154 			gen_and(b1, b0);
8155 			return b0;
8156 		case DLT_IP_OVER_FC:
8157 			b0 = gen_mac_multicast(cstate, 2);
8158 			return b0;
8159 		default:
8160 			break;
8161 		}
8162 		/* Link not known to support multicasts */
8163 		break;
8164 
8165 	case Q_IP:
8166 		b0 = gen_linktype(cstate, ETHERTYPE_IP);
8167 		b1 = gen_cmp_ge(cstate, OR_LINKPL, 16, BPF_B, (bpf_int32)224);
8168 		gen_and(b0, b1);
8169 		return b1;
8170 
8171 	case Q_IPV6:
8172 		b0 = gen_linktype(cstate, ETHERTYPE_IPV6);
8173 		b1 = gen_cmp(cstate, OR_LINKPL, 24, BPF_B, (bpf_int32)255);
8174 		gen_and(b0, b1);
8175 		return b1;
8176 	}
8177 	bpf_error(cstate, "link-layer multicast filters supported only on ethernet/FDDI/token ring/ARCNET/802.11/ATM LANE/Fibre Channel");
8178 	/*NOTREACHED*/
8179 }
8180 
8181 /*
8182  * Filter on inbound (dir == 0) or outbound (dir == 1) traffic.
8183  * Outbound traffic is sent by this machine, while inbound traffic is
8184  * sent by a remote machine (and may include packets destined for a
8185  * unicast or multicast link-layer address we are not subscribing to).
8186  * These are the same definitions implemented by pcap_setdirection().
8187  * Capturing only unicast traffic destined for this host is probably
8188  * better accomplished using a higher-layer filter.
8189  */
8190 struct block *
gen_inbound(compiler_state_t * cstate,int dir)8191 gen_inbound(compiler_state_t *cstate, int dir)
8192 {
8193 	register struct block *b0;
8194 
8195 	/*
8196 	 * Catch errors reported by us and routines below us, and return NULL
8197 	 * on an error.
8198 	 */
8199 	if (setjmp(cstate->top_ctx))
8200 		return (NULL);
8201 
8202 	/*
8203 	 * Only some data link types support inbound/outbound qualifiers.
8204 	 */
8205 	switch (cstate->linktype) {
8206 	case DLT_SLIP:
8207 		b0 = gen_relation_internal(cstate, BPF_JEQ,
8208 			  gen_load_internal(cstate, Q_LINK, gen_loadi_internal(cstate, 0), 1),
8209 			  gen_loadi_internal(cstate, 0),
8210 			  dir);
8211 		break;
8212 
8213 	case DLT_IPNET:
8214 		if (dir) {
8215 			/* match outgoing packets */
8216 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_OUTBOUND);
8217 		} else {
8218 			/* match incoming packets */
8219 			b0 = gen_cmp(cstate, OR_LINKHDR, 2, BPF_H, IPNET_INBOUND);
8220 		}
8221 		break;
8222 
8223 	case DLT_LINUX_SLL:
8224 		/* match outgoing packets */
8225 		b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_H, LINUX_SLL_OUTGOING);
8226 		if (!dir) {
8227 			/* to filter on inbound traffic, invert the match */
8228 			gen_not(b0);
8229 		}
8230 		break;
8231 
8232 	case DLT_LINUX_SLL2:
8233 		/* match outgoing packets */
8234 		b0 = gen_cmp(cstate, OR_LINKHDR, 10, BPF_B, LINUX_SLL_OUTGOING);
8235 		if (!dir) {
8236 			/* to filter on inbound traffic, invert the match */
8237 			gen_not(b0);
8238 		}
8239 		break;
8240 
8241 #ifdef HAVE_NET_PFVAR_H
8242 	case DLT_PFLOG:
8243 		b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, dir), BPF_B,
8244 		    (bpf_int32)((dir == 0) ? PF_IN : PF_OUT));
8245 		break;
8246 #endif
8247 
8248 	case DLT_PPP_PPPD:
8249 		if (dir) {
8250 			/* match outgoing packets */
8251 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_OUT);
8252 		} else {
8253 			/* match incoming packets */
8254 			b0 = gen_cmp(cstate, OR_LINKHDR, 0, BPF_B, PPP_PPPD_IN);
8255 		}
8256 		break;
8257 
8258         case DLT_JUNIPER_MFR:
8259         case DLT_JUNIPER_MLFR:
8260         case DLT_JUNIPER_MLPPP:
8261 	case DLT_JUNIPER_ATM1:
8262 	case DLT_JUNIPER_ATM2:
8263 	case DLT_JUNIPER_PPPOE:
8264 	case DLT_JUNIPER_PPPOE_ATM:
8265         case DLT_JUNIPER_GGSN:
8266         case DLT_JUNIPER_ES:
8267         case DLT_JUNIPER_MONITOR:
8268         case DLT_JUNIPER_SERVICES:
8269         case DLT_JUNIPER_ETHER:
8270         case DLT_JUNIPER_PPP:
8271         case DLT_JUNIPER_FRELAY:
8272         case DLT_JUNIPER_CHDLC:
8273         case DLT_JUNIPER_VP:
8274         case DLT_JUNIPER_ST:
8275         case DLT_JUNIPER_ISM:
8276         case DLT_JUNIPER_VS:
8277         case DLT_JUNIPER_SRX_E2E:
8278         case DLT_JUNIPER_FIBRECHANNEL:
8279 	case DLT_JUNIPER_ATM_CEMIC:
8280 
8281 		/* juniper flags (including direction) are stored
8282 		 * the byte after the 3-byte magic number */
8283 		if (dir) {
8284 			/* match outgoing packets */
8285 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 0, 0x01);
8286 		} else {
8287 			/* match incoming packets */
8288 			b0 = gen_mcmp(cstate, OR_LINKHDR, 3, BPF_B, 1, 0x01);
8289 		}
8290 		break;
8291 
8292 	default:
8293 		/*
8294 		 * If we have packet meta-data indicating a direction,
8295 		 * and that metadata can be checked by BPF code, check
8296 		 * it.  Otherwise, give up, as this link-layer type has
8297 		 * nothing in the packet data.
8298 		 *
8299 		 * Currently, the only platform where a BPF filter can
8300 		 * check that metadata is Linux with the in-kernel
8301 		 * BPF interpreter.  If other packet capture mechanisms
8302 		 * and BPF filters also supported this, it would be
8303 		 * nice.  It would be even better if they made that
8304 		 * metadata available so that we could provide it
8305 		 * with newer capture APIs, allowing it to be saved
8306 		 * in pcapng files.
8307 		 */
8308 #if defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER)
8309 		/*
8310 		 * This is Linux with PF_PACKET support.
8311 		 * If this is a *live* capture, we can look at
8312 		 * special meta-data in the filter expression;
8313 		 * if it's a savefile, we can't.
8314 		 */
8315 		if (cstate->bpf_pcap->rfile != NULL) {
8316 			/* We have a FILE *, so this is a savefile */
8317 			bpf_error(cstate, "inbound/outbound not supported on %s when reading savefiles",
8318 			    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8319 			b0 = NULL;
8320 			/*NOTREACHED*/
8321 		}
8322 		/* match outgoing packets */
8323 		b0 = gen_cmp(cstate, OR_LINKHDR, SKF_AD_OFF + SKF_AD_PKTTYPE, BPF_H,
8324 		             PACKET_OUTGOING);
8325 		if (!dir) {
8326 			/* to filter on inbound traffic, invert the match */
8327 			gen_not(b0);
8328 		}
8329 #else /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
8330 		bpf_error(cstate, "inbound/outbound not supported on %s",
8331 		    pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8332 		/*NOTREACHED*/
8333 #endif /* defined(linux) && defined(PF_PACKET) && defined(SO_ATTACH_FILTER) */
8334 	}
8335 	return (b0);
8336 }
8337 
8338 #ifdef HAVE_NET_PFVAR_H
8339 /* PF firewall log matched interface */
8340 struct block *
gen_pf_ifname(compiler_state_t * cstate,const char * ifname)8341 gen_pf_ifname(compiler_state_t *cstate, const char *ifname)
8342 {
8343 	struct block *b0;
8344 	u_int len, off;
8345 
8346 	/*
8347 	 * Catch errors reported by us and routines below us, and return NULL
8348 	 * on an error.
8349 	 */
8350 	if (setjmp(cstate->top_ctx))
8351 		return (NULL);
8352 
8353 	if (cstate->linktype != DLT_PFLOG) {
8354 		bpf_error(cstate, "ifname supported only on PF linktype");
8355 		/*NOTREACHED*/
8356 	}
8357 	len = sizeof(((struct pfloghdr *)0)->ifname);
8358 	off = offsetof(struct pfloghdr, ifname);
8359 	if (strlen(ifname) >= len) {
8360 		bpf_error(cstate, "ifname interface names can only be %d characters",
8361 		    len-1);
8362 		/*NOTREACHED*/
8363 	}
8364 	b0 = gen_bcmp(cstate, OR_LINKHDR, off, (u_int)strlen(ifname),
8365 	    (const u_char *)ifname);
8366 	return (b0);
8367 }
8368 
8369 /* PF firewall log ruleset name */
8370 struct block *
gen_pf_ruleset(compiler_state_t * cstate,char * ruleset)8371 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset)
8372 {
8373 	struct block *b0;
8374 
8375 	/*
8376 	 * Catch errors reported by us and routines below us, and return NULL
8377 	 * on an error.
8378 	 */
8379 	if (setjmp(cstate->top_ctx))
8380 		return (NULL);
8381 
8382 	if (cstate->linktype != DLT_PFLOG) {
8383 		bpf_error(cstate, "ruleset supported only on PF linktype");
8384 		/*NOTREACHED*/
8385 	}
8386 
8387 	if (strlen(ruleset) >= sizeof(((struct pfloghdr *)0)->ruleset)) {
8388 		bpf_error(cstate, "ruleset names can only be %ld characters",
8389 		    (long)(sizeof(((struct pfloghdr *)0)->ruleset) - 1));
8390 		/*NOTREACHED*/
8391 	}
8392 
8393 	b0 = gen_bcmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, ruleset),
8394 	    (u_int)strlen(ruleset), (const u_char *)ruleset);
8395 	return (b0);
8396 }
8397 
8398 /* PF firewall log rule number */
8399 struct block *
gen_pf_rnr(compiler_state_t * cstate,int rnr)8400 gen_pf_rnr(compiler_state_t *cstate, int rnr)
8401 {
8402 	struct block *b0;
8403 
8404 	/*
8405 	 * Catch errors reported by us and routines below us, and return NULL
8406 	 * on an error.
8407 	 */
8408 	if (setjmp(cstate->top_ctx))
8409 		return (NULL);
8410 
8411 	if (cstate->linktype != DLT_PFLOG) {
8412 		bpf_error(cstate, "rnr supported only on PF linktype");
8413 		/*NOTREACHED*/
8414 	}
8415 
8416 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, rulenr), BPF_W,
8417 		 (bpf_int32)rnr);
8418 	return (b0);
8419 }
8420 
8421 /* PF firewall log sub-rule number */
8422 struct block *
gen_pf_srnr(compiler_state_t * cstate,int srnr)8423 gen_pf_srnr(compiler_state_t *cstate, int srnr)
8424 {
8425 	struct block *b0;
8426 
8427 	/*
8428 	 * Catch errors reported by us and routines below us, and return NULL
8429 	 * on an error.
8430 	 */
8431 	if (setjmp(cstate->top_ctx))
8432 		return (NULL);
8433 
8434 	if (cstate->linktype != DLT_PFLOG) {
8435 		bpf_error(cstate, "srnr supported only on PF linktype");
8436 		/*NOTREACHED*/
8437 	}
8438 
8439 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, subrulenr), BPF_W,
8440 	    (bpf_int32)srnr);
8441 	return (b0);
8442 }
8443 
8444 /* PF firewall log reason code */
8445 struct block *
gen_pf_reason(compiler_state_t * cstate,int reason)8446 gen_pf_reason(compiler_state_t *cstate, int reason)
8447 {
8448 	struct block *b0;
8449 
8450 	/*
8451 	 * Catch errors reported by us and routines below us, and return NULL
8452 	 * on an error.
8453 	 */
8454 	if (setjmp(cstate->top_ctx))
8455 		return (NULL);
8456 
8457 	if (cstate->linktype != DLT_PFLOG) {
8458 		bpf_error(cstate, "reason supported only on PF linktype");
8459 		/*NOTREACHED*/
8460 	}
8461 
8462 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, reason), BPF_B,
8463 	    (bpf_int32)reason);
8464 	return (b0);
8465 }
8466 
8467 /* PF firewall log action */
8468 struct block *
gen_pf_action(compiler_state_t * cstate,int action)8469 gen_pf_action(compiler_state_t *cstate, int action)
8470 {
8471 	struct block *b0;
8472 
8473 	/*
8474 	 * Catch errors reported by us and routines below us, and return NULL
8475 	 * on an error.
8476 	 */
8477 	if (setjmp(cstate->top_ctx))
8478 		return (NULL);
8479 
8480 	if (cstate->linktype != DLT_PFLOG) {
8481 		bpf_error(cstate, "action supported only on PF linktype");
8482 		/*NOTREACHED*/
8483 	}
8484 
8485 	b0 = gen_cmp(cstate, OR_LINKHDR, offsetof(struct pfloghdr, action), BPF_B,
8486 	    (bpf_int32)action);
8487 	return (b0);
8488 }
8489 #else /* !HAVE_NET_PFVAR_H */
8490 struct block *
gen_pf_ifname(compiler_state_t * cstate,const char * ifname _U_)8491 gen_pf_ifname(compiler_state_t *cstate, const char *ifname _U_)
8492 {
8493 	/*
8494 	 * Catch errors reported by us and routines below us, and return NULL
8495 	 * on an error.
8496 	 */
8497 	if (setjmp(cstate->top_ctx))
8498 		return (NULL);
8499 
8500 	bpf_error(cstate, "libpcap was compiled without pf support");
8501 	/*NOTREACHED*/
8502 }
8503 
8504 struct block *
gen_pf_ruleset(compiler_state_t * cstate,char * ruleset _U_)8505 gen_pf_ruleset(compiler_state_t *cstate, char *ruleset _U_)
8506 {
8507 	/*
8508 	 * Catch errors reported by us and routines below us, and return NULL
8509 	 * on an error.
8510 	 */
8511 	if (setjmp(cstate->top_ctx))
8512 		return (NULL);
8513 
8514 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8515 	/*NOTREACHED*/
8516 }
8517 
8518 struct block *
gen_pf_rnr(compiler_state_t * cstate,int rnr _U_)8519 gen_pf_rnr(compiler_state_t *cstate, int rnr _U_)
8520 {
8521 	/*
8522 	 * Catch errors reported by us and routines below us, and return NULL
8523 	 * on an error.
8524 	 */
8525 	if (setjmp(cstate->top_ctx))
8526 		return (NULL);
8527 
8528 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8529 	/*NOTREACHED*/
8530 }
8531 
8532 struct block *
gen_pf_srnr(compiler_state_t * cstate,int srnr _U_)8533 gen_pf_srnr(compiler_state_t *cstate, int srnr _U_)
8534 {
8535 	/*
8536 	 * Catch errors reported by us and routines below us, and return NULL
8537 	 * on an error.
8538 	 */
8539 	if (setjmp(cstate->top_ctx))
8540 		return (NULL);
8541 
8542 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8543 	/*NOTREACHED*/
8544 }
8545 
8546 struct block *
gen_pf_reason(compiler_state_t * cstate,int reason _U_)8547 gen_pf_reason(compiler_state_t *cstate, int reason _U_)
8548 {
8549 	/*
8550 	 * Catch errors reported by us and routines below us, and return NULL
8551 	 * on an error.
8552 	 */
8553 	if (setjmp(cstate->top_ctx))
8554 		return (NULL);
8555 
8556 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8557 	/*NOTREACHED*/
8558 }
8559 
8560 struct block *
gen_pf_action(compiler_state_t * cstate,int action _U_)8561 gen_pf_action(compiler_state_t *cstate, int action _U_)
8562 {
8563 	/*
8564 	 * Catch errors reported by us and routines below us, and return NULL
8565 	 * on an error.
8566 	 */
8567 	if (setjmp(cstate->top_ctx))
8568 		return (NULL);
8569 
8570 	bpf_error(cstate, "libpcap was compiled on a machine without pf support");
8571 	/*NOTREACHED*/
8572 }
8573 #endif /* HAVE_NET_PFVAR_H */
8574 
8575 /* IEEE 802.11 wireless header */
8576 struct block *
gen_p80211_type(compiler_state_t * cstate,int type,int mask)8577 gen_p80211_type(compiler_state_t *cstate, int type, int mask)
8578 {
8579 	struct block *b0;
8580 
8581 	/*
8582 	 * Catch errors reported by us and routines below us, and return NULL
8583 	 * on an error.
8584 	 */
8585 	if (setjmp(cstate->top_ctx))
8586 		return (NULL);
8587 
8588 	switch (cstate->linktype) {
8589 
8590 	case DLT_IEEE802_11:
8591 	case DLT_PRISM_HEADER:
8592 	case DLT_IEEE802_11_RADIO_AVS:
8593 	case DLT_IEEE802_11_RADIO:
8594 		b0 = gen_mcmp(cstate, OR_LINKHDR, 0, BPF_B, (bpf_int32)type,
8595 		    (bpf_int32)mask);
8596 		break;
8597 
8598 	default:
8599 		bpf_error(cstate, "802.11 link-layer types supported only on 802.11");
8600 		/*NOTREACHED*/
8601 	}
8602 
8603 	return (b0);
8604 }
8605 
8606 struct block *
gen_p80211_fcdir(compiler_state_t * cstate,int fcdir)8607 gen_p80211_fcdir(compiler_state_t *cstate, int fcdir)
8608 {
8609 	struct block *b0;
8610 
8611 	/*
8612 	 * Catch errors reported by us and routines below us, and return NULL
8613 	 * on an error.
8614 	 */
8615 	if (setjmp(cstate->top_ctx))
8616 		return (NULL);
8617 
8618 	switch (cstate->linktype) {
8619 
8620 	case DLT_IEEE802_11:
8621 	case DLT_PRISM_HEADER:
8622 	case DLT_IEEE802_11_RADIO_AVS:
8623 	case DLT_IEEE802_11_RADIO:
8624 		break;
8625 
8626 	default:
8627 		bpf_error(cstate, "frame direction supported only with 802.11 headers");
8628 		/*NOTREACHED*/
8629 	}
8630 
8631 	b0 = gen_mcmp(cstate, OR_LINKHDR, 1, BPF_B, (bpf_int32)fcdir,
8632 		(bpf_u_int32)IEEE80211_FC1_DIR_MASK);
8633 
8634 	return (b0);
8635 }
8636 
8637 struct block *
gen_acode(compiler_state_t * cstate,const char * s,struct qual q)8638 gen_acode(compiler_state_t *cstate, const char *s, struct qual q)
8639 {
8640 	struct block *b;
8641 
8642 	/*
8643 	 * Catch errors reported by us and routines below us, and return NULL
8644 	 * on an error.
8645 	 */
8646 	if (setjmp(cstate->top_ctx))
8647 		return (NULL);
8648 
8649 	switch (cstate->linktype) {
8650 
8651 	case DLT_ARCNET:
8652 	case DLT_ARCNET_LINUX:
8653 		if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) &&
8654 		    q.proto == Q_LINK) {
8655 			cstate->e = pcap_ether_aton(s);
8656 			if (cstate->e == NULL)
8657 				bpf_error(cstate, "malloc");
8658 			b = gen_ahostop(cstate, cstate->e, (int)q.dir);
8659 			free(cstate->e);
8660 			cstate->e = NULL;
8661 			return (b);
8662 		} else
8663 			bpf_error(cstate, "ARCnet address used in non-arc expression");
8664  		/*NOTREACHED*/
8665 
8666 	default:
8667 		bpf_error(cstate, "aid supported only on ARCnet");
8668 		/*NOTREACHED*/
8669 	}
8670 }
8671 
8672 static struct block *
gen_ahostop(compiler_state_t * cstate,const u_char * eaddr,int dir)8673 gen_ahostop(compiler_state_t *cstate, const u_char *eaddr, int dir)
8674 {
8675 	register struct block *b0, *b1;
8676 
8677 	switch (dir) {
8678 	/* src comes first, different from Ethernet */
8679 	case Q_SRC:
8680 		return gen_bcmp(cstate, OR_LINKHDR, 0, 1, eaddr);
8681 
8682 	case Q_DST:
8683 		return gen_bcmp(cstate, OR_LINKHDR, 1, 1, eaddr);
8684 
8685 	case Q_AND:
8686 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8687 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8688 		gen_and(b0, b1);
8689 		return b1;
8690 
8691 	case Q_DEFAULT:
8692 	case Q_OR:
8693 		b0 = gen_ahostop(cstate, eaddr, Q_SRC);
8694 		b1 = gen_ahostop(cstate, eaddr, Q_DST);
8695 		gen_or(b0, b1);
8696 		return b1;
8697 
8698 	case Q_ADDR1:
8699 		bpf_error(cstate, "'addr1' and 'address1' are only supported on 802.11");
8700  		/*NOTREACHED*/
8701 
8702 	case Q_ADDR2:
8703 		bpf_error(cstate, "'addr2' and 'address2' are only supported on 802.11");
8704  		/*NOTREACHED*/
8705 
8706 	case Q_ADDR3:
8707 		bpf_error(cstate, "'addr3' and 'address3' are only supported on 802.11");
8708  		/*NOTREACHED*/
8709 
8710 	case Q_ADDR4:
8711 		bpf_error(cstate, "'addr4' and 'address4' are only supported on 802.11");
8712  		/*NOTREACHED*/
8713 
8714 	case Q_RA:
8715 		bpf_error(cstate, "'ra' is only supported on 802.11");
8716  		/*NOTREACHED*/
8717 
8718 	case Q_TA:
8719 		bpf_error(cstate, "'ta' is only supported on 802.11");
8720  		/*NOTREACHED*/
8721 	}
8722 	abort();
8723 	/*NOTREACHED*/
8724 }
8725 
8726 static struct block *
gen_vlan_tpid_test(compiler_state_t * cstate)8727 gen_vlan_tpid_test(compiler_state_t *cstate)
8728 {
8729 	struct block *b0, *b1;
8730 
8731 	/* check for VLAN, including QinQ */
8732 	b0 = gen_linktype(cstate, ETHERTYPE_8021Q);
8733 	b1 = gen_linktype(cstate, ETHERTYPE_8021AD);
8734 	gen_or(b0,b1);
8735 	b0 = b1;
8736 	b1 = gen_linktype(cstate, ETHERTYPE_8021QINQ);
8737 	gen_or(b0,b1);
8738 
8739 	return b1;
8740 }
8741 
8742 static struct block *
gen_vlan_vid_test(compiler_state_t * cstate,bpf_u_int32 vlan_num)8743 gen_vlan_vid_test(compiler_state_t *cstate, bpf_u_int32 vlan_num)
8744 {
8745 	if (vlan_num > 0x0fff) {
8746 		bpf_error(cstate, "VLAN tag %u greater than maximum %u",
8747 		    vlan_num, 0x0fff);
8748 	}
8749 	return gen_mcmp(cstate, OR_LINKPL, 0, BPF_H, (bpf_int32)vlan_num, 0x0fff);
8750 }
8751 
8752 static struct block *
gen_vlan_no_bpf_extensions(compiler_state_t * cstate,bpf_u_int32 vlan_num,int has_vlan_tag)8753 gen_vlan_no_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8754     int has_vlan_tag)
8755 {
8756 	struct block *b0, *b1;
8757 
8758 	b0 = gen_vlan_tpid_test(cstate);
8759 
8760 	if (has_vlan_tag) {
8761 		b1 = gen_vlan_vid_test(cstate, vlan_num);
8762 		gen_and(b0, b1);
8763 		b0 = b1;
8764 	}
8765 
8766 	/*
8767 	 * Both payload and link header type follow the VLAN tags so that
8768 	 * both need to be updated.
8769 	 */
8770 	cstate->off_linkpl.constant_part += 4;
8771 	cstate->off_linktype.constant_part += 4;
8772 
8773 	return b0;
8774 }
8775 
8776 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8777 /* add v to variable part of off */
8778 static void
gen_vlan_vloffset_add(compiler_state_t * cstate,bpf_abs_offset * off,int v,struct slist * s)8779 gen_vlan_vloffset_add(compiler_state_t *cstate, bpf_abs_offset *off, int v, struct slist *s)
8780 {
8781 	struct slist *s2;
8782 
8783 	if (!off->is_variable)
8784 		off->is_variable = 1;
8785 	if (off->reg == -1)
8786 		off->reg = alloc_reg(cstate);
8787 
8788 	s2 = new_stmt(cstate, BPF_LD|BPF_MEM);
8789 	s2->s.k = off->reg;
8790 	sappend(s, s2);
8791 	s2 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_IMM);
8792 	s2->s.k = v;
8793 	sappend(s, s2);
8794 	s2 = new_stmt(cstate, BPF_ST);
8795 	s2->s.k = off->reg;
8796 	sappend(s, s2);
8797 }
8798 
8799 /*
8800  * patch block b_tpid (VLAN TPID test) to update variable parts of link payload
8801  * and link type offsets first
8802  */
8803 static void
gen_vlan_patch_tpid_test(compiler_state_t * cstate,struct block * b_tpid)8804 gen_vlan_patch_tpid_test(compiler_state_t *cstate, struct block *b_tpid)
8805 {
8806 	struct slist s;
8807 
8808 	/* offset determined at run time, shift variable part */
8809 	s.next = NULL;
8810 	cstate->is_vlan_vloffset = 1;
8811 	gen_vlan_vloffset_add(cstate, &cstate->off_linkpl, 4, &s);
8812 	gen_vlan_vloffset_add(cstate, &cstate->off_linktype, 4, &s);
8813 
8814 	/* we get a pointer to a chain of or-ed blocks, patch first of them */
8815 	sappend(s.next, b_tpid->head->stmts);
8816 	b_tpid->head->stmts = s.next;
8817 }
8818 
8819 /*
8820  * patch block b_vid (VLAN id test) to load VID value either from packet
8821  * metadata (using BPF extensions) if SKF_AD_VLAN_TAG_PRESENT is true
8822  */
8823 static void
gen_vlan_patch_vid_test(compiler_state_t * cstate,struct block * b_vid)8824 gen_vlan_patch_vid_test(compiler_state_t *cstate, struct block *b_vid)
8825 {
8826 	struct slist *s, *s2, *sjeq;
8827 	unsigned cnt;
8828 
8829 	s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8830 	s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8831 
8832 	/* true -> next instructions, false -> beginning of b_vid */
8833 	sjeq = new_stmt(cstate, JMP(BPF_JEQ));
8834 	sjeq->s.k = 1;
8835 	sjeq->s.jf = b_vid->stmts;
8836 	sappend(s, sjeq);
8837 
8838 	s2 = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8839 	s2->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG;
8840 	sappend(s, s2);
8841 	sjeq->s.jt = s2;
8842 
8843 	/* Jump to the test in b_vid. We need to jump one instruction before
8844 	 * the end of the b_vid block so that we only skip loading the TCI
8845 	 * from packet data and not the 'and' instruction extractging VID.
8846 	 */
8847 	cnt = 0;
8848 	for (s2 = b_vid->stmts; s2; s2 = s2->next)
8849 		cnt++;
8850 	s2 = new_stmt(cstate, JMP(BPF_JA));
8851 	s2->s.k = cnt - 1;
8852 	sappend(s, s2);
8853 
8854 	/* insert our statements at the beginning of b_vid */
8855 	sappend(s, b_vid->stmts);
8856 	b_vid->stmts = s;
8857 }
8858 
8859 /*
8860  * Generate check for "vlan" or "vlan <id>" on systems with support for BPF
8861  * extensions.  Even if kernel supports VLAN BPF extensions, (outermost) VLAN
8862  * tag can be either in metadata or in packet data; therefore if the
8863  * SKF_AD_VLAN_TAG_PRESENT test is negative, we need to check link
8864  * header for VLAN tag. As the decision is done at run time, we need
8865  * update variable part of the offsets
8866  */
8867 static struct block *
gen_vlan_bpf_extensions(compiler_state_t * cstate,bpf_u_int32 vlan_num,int has_vlan_tag)8868 gen_vlan_bpf_extensions(compiler_state_t *cstate, bpf_u_int32 vlan_num,
8869     int has_vlan_tag)
8870 {
8871         struct block *b0, *b_tpid, *b_vid = NULL;
8872         struct slist *s;
8873 
8874         /* generate new filter code based on extracting packet
8875          * metadata */
8876         s = new_stmt(cstate, BPF_LD|BPF_B|BPF_ABS);
8877         s->s.k = SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT;
8878 
8879         b0 = new_block(cstate, JMP(BPF_JEQ));
8880         b0->stmts = s;
8881         b0->s.k = 1;
8882 
8883 	/*
8884 	 * This is tricky. We need to insert the statements updating variable
8885 	 * parts of offsets before the the traditional TPID and VID tests so
8886 	 * that they are called whenever SKF_AD_VLAN_TAG_PRESENT fails but
8887 	 * we do not want this update to affect those checks. That's why we
8888 	 * generate both test blocks first and insert the statements updating
8889 	 * variable parts of both offsets after that. This wouldn't work if
8890 	 * there already were variable length link header when entering this
8891 	 * function but gen_vlan_bpf_extensions() isn't called in that case.
8892 	 */
8893 	b_tpid = gen_vlan_tpid_test(cstate);
8894 	if (has_vlan_tag)
8895 		b_vid = gen_vlan_vid_test(cstate, vlan_num);
8896 
8897 	gen_vlan_patch_tpid_test(cstate, b_tpid);
8898 	gen_or(b0, b_tpid);
8899 	b0 = b_tpid;
8900 
8901 	if (has_vlan_tag) {
8902 		gen_vlan_patch_vid_test(cstate, b_vid);
8903 		gen_and(b0, b_vid);
8904 		b0 = b_vid;
8905 	}
8906 
8907         return b0;
8908 }
8909 #endif
8910 
8911 /*
8912  * support IEEE 802.1Q VLAN trunk over ethernet
8913  */
8914 struct block *
gen_vlan(compiler_state_t * cstate,bpf_u_int32 vlan_num,int has_vlan_tag)8915 gen_vlan(compiler_state_t *cstate, bpf_u_int32 vlan_num, int has_vlan_tag)
8916 {
8917 	struct	block	*b0;
8918 
8919 	/*
8920 	 * Catch errors reported by us and routines below us, and return NULL
8921 	 * on an error.
8922 	 */
8923 	if (setjmp(cstate->top_ctx))
8924 		return (NULL);
8925 
8926 	/* can't check for VLAN-encapsulated packets inside MPLS */
8927 	if (cstate->label_stack_depth > 0)
8928 		bpf_error(cstate, "no VLAN match after MPLS");
8929 
8930 	/*
8931 	 * Check for a VLAN packet, and then change the offsets to point
8932 	 * to the type and data fields within the VLAN packet.  Just
8933 	 * increment the offsets, so that we can support a hierarchy, e.g.
8934 	 * "vlan 300 && vlan 200" to capture VLAN 200 encapsulated within
8935 	 * VLAN 100.
8936 	 *
8937 	 * XXX - this is a bit of a kludge.  If we were to split the
8938 	 * compiler into a parser that parses an expression and
8939 	 * generates an expression tree, and a code generator that
8940 	 * takes an expression tree (which could come from our
8941 	 * parser or from some other parser) and generates BPF code,
8942 	 * we could perhaps make the offsets parameters of routines
8943 	 * and, in the handler for an "AND" node, pass to subnodes
8944 	 * other than the VLAN node the adjusted offsets.
8945 	 *
8946 	 * This would mean that "vlan" would, instead of changing the
8947 	 * behavior of *all* tests after it, change only the behavior
8948 	 * of tests ANDed with it.  That would change the documented
8949 	 * semantics of "vlan", which might break some expressions.
8950 	 * However, it would mean that "(vlan and ip) or ip" would check
8951 	 * both for VLAN-encapsulated IP and IP-over-Ethernet, rather than
8952 	 * checking only for VLAN-encapsulated IP, so that could still
8953 	 * be considered worth doing; it wouldn't break expressions
8954 	 * that are of the form "vlan and ..." or "vlan N and ...",
8955 	 * which I suspect are the most common expressions involving
8956 	 * "vlan".  "vlan or ..." doesn't necessarily do what the user
8957 	 * would really want, now, as all the "or ..." tests would
8958 	 * be done assuming a VLAN, even though the "or" could be viewed
8959 	 * as meaning "or, if this isn't a VLAN packet...".
8960 	 */
8961 	switch (cstate->linktype) {
8962 
8963 	case DLT_EN10MB:
8964 	case DLT_NETANALYZER:
8965 	case DLT_NETANALYZER_TRANSPARENT:
8966 #if defined(SKF_AD_VLAN_TAG_PRESENT)
8967 		/* Verify that this is the outer part of the packet and
8968 		 * not encapsulated somehow. */
8969 		if (cstate->vlan_stack_depth == 0 && !cstate->off_linkhdr.is_variable &&
8970 		    cstate->off_linkhdr.constant_part ==
8971 		    cstate->off_outermostlinkhdr.constant_part) {
8972 			/*
8973 			 * Do we need special VLAN handling?
8974 			 */
8975 			if (cstate->bpf_pcap->bpf_codegen_flags & BPF_SPECIAL_VLAN_HANDLING)
8976 				b0 = gen_vlan_bpf_extensions(cstate, vlan_num,
8977 				    has_vlan_tag);
8978 			else
8979 				b0 = gen_vlan_no_bpf_extensions(cstate,
8980 				    vlan_num, has_vlan_tag);
8981 		} else
8982 #endif
8983 			b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num,
8984 			    has_vlan_tag);
8985                 break;
8986 
8987 	case DLT_IEEE802_11:
8988 	case DLT_PRISM_HEADER:
8989 	case DLT_IEEE802_11_RADIO_AVS:
8990 	case DLT_IEEE802_11_RADIO:
8991 		b0 = gen_vlan_no_bpf_extensions(cstate, vlan_num, has_vlan_tag);
8992 		break;
8993 
8994 	default:
8995 		bpf_error(cstate, "no VLAN support for %s",
8996 		      pcap_datalink_val_to_description_or_dlt(cstate->linktype));
8997 		/*NOTREACHED*/
8998 	}
8999 
9000         cstate->vlan_stack_depth++;
9001 
9002 	return (b0);
9003 }
9004 
9005 /*
9006  * support for MPLS
9007  *
9008  * The label_num_arg dance is to avoid annoying whining by compilers that
9009  * label_num might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9010  * It's not *used* after setjmp returns.
9011  */
9012 struct block *
gen_mpls(compiler_state_t * cstate,bpf_u_int32 label_num_arg,int has_label_num)9013 gen_mpls(compiler_state_t *cstate, bpf_u_int32 label_num_arg,
9014     int has_label_num)
9015 {
9016 	volatile bpf_u_int32 label_num = label_num_arg;
9017 	struct	block	*b0, *b1;
9018 
9019 	/*
9020 	 * Catch errors reported by us and routines below us, and return NULL
9021 	 * on an error.
9022 	 */
9023 	if (setjmp(cstate->top_ctx))
9024 		return (NULL);
9025 
9026         if (cstate->label_stack_depth > 0) {
9027             /* just match the bottom-of-stack bit clear */
9028             b0 = gen_mcmp(cstate, OR_PREVMPLSHDR, 2, BPF_B, 0, 0x01);
9029         } else {
9030             /*
9031              * We're not in an MPLS stack yet, so check the link-layer
9032              * type against MPLS.
9033              */
9034             switch (cstate->linktype) {
9035 
9036             case DLT_C_HDLC: /* fall through */
9037             case DLT_EN10MB:
9038             case DLT_NETANALYZER:
9039             case DLT_NETANALYZER_TRANSPARENT:
9040                     b0 = gen_linktype(cstate, ETHERTYPE_MPLS);
9041                     break;
9042 
9043             case DLT_PPP:
9044                     b0 = gen_linktype(cstate, PPP_MPLS_UCAST);
9045                     break;
9046 
9047                     /* FIXME add other DLT_s ...
9048                      * for Frame-Relay/and ATM this may get messy due to SNAP headers
9049                      * leave it for now */
9050 
9051             default:
9052                     bpf_error(cstate, "no MPLS support for %s",
9053                           pcap_datalink_val_to_description_or_dlt(cstate->linktype));
9054                     /*NOTREACHED*/
9055             }
9056         }
9057 
9058 	/* If a specific MPLS label is requested, check it */
9059 	if (has_label_num) {
9060 		if (label_num > 0xFFFFF) {
9061 			bpf_error(cstate, "MPLS label %u greater than maximum %u",
9062 			    label_num, 0xFFFFF);
9063 		}
9064 		label_num = label_num << 12; /* label is shifted 12 bits on the wire */
9065 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W, (bpf_int32)label_num,
9066 		    0xfffff000); /* only compare the first 20 bits */
9067 		gen_and(b0, b1);
9068 		b0 = b1;
9069 	}
9070 
9071         /*
9072          * Change the offsets to point to the type and data fields within
9073          * the MPLS packet.  Just increment the offsets, so that we
9074          * can support a hierarchy, e.g. "mpls 100000 && mpls 1024" to
9075          * capture packets with an outer label of 100000 and an inner
9076          * label of 1024.
9077          *
9078          * Increment the MPLS stack depth as well; this indicates that
9079          * we're checking MPLS-encapsulated headers, to make sure higher
9080          * level code generators don't try to match against IP-related
9081          * protocols such as Q_ARP, Q_RARP etc.
9082          *
9083          * XXX - this is a bit of a kludge.  See comments in gen_vlan().
9084          */
9085         cstate->off_nl_nosnap += 4;
9086         cstate->off_nl += 4;
9087         cstate->label_stack_depth++;
9088 	return (b0);
9089 }
9090 
9091 /*
9092  * Support PPPOE discovery and session.
9093  */
9094 struct block *
gen_pppoed(compiler_state_t * cstate)9095 gen_pppoed(compiler_state_t *cstate)
9096 {
9097 	/*
9098 	 * Catch errors reported by us and routines below us, and return NULL
9099 	 * on an error.
9100 	 */
9101 	if (setjmp(cstate->top_ctx))
9102 		return (NULL);
9103 
9104 	/* check for PPPoE discovery */
9105 	return gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOED);
9106 }
9107 
9108 struct block *
gen_pppoes(compiler_state_t * cstate,bpf_u_int32 sess_num,int has_sess_num)9109 gen_pppoes(compiler_state_t *cstate, bpf_u_int32 sess_num, int has_sess_num)
9110 {
9111 	struct block *b0, *b1;
9112 
9113 	/*
9114 	 * Catch errors reported by us and routines below us, and return NULL
9115 	 * on an error.
9116 	 */
9117 	if (setjmp(cstate->top_ctx))
9118 		return (NULL);
9119 
9120 	/*
9121 	 * Test against the PPPoE session link-layer type.
9122 	 */
9123 	b0 = gen_linktype(cstate, (bpf_int32)ETHERTYPE_PPPOES);
9124 
9125 	/* If a specific session is requested, check PPPoE session id */
9126 	if (has_sess_num) {
9127 		if (sess_num > 0x0000ffff) {
9128 			bpf_error(cstate, "PPPoE session number %u greater than maximum %u",
9129 			    sess_num, 0x0000ffff);
9130 		}
9131 		b1 = gen_mcmp(cstate, OR_LINKPL, 0, BPF_W,
9132 		    (bpf_int32)sess_num, 0x0000ffff);
9133 		gen_and(b0, b1);
9134 		b0 = b1;
9135 	}
9136 
9137 	/*
9138 	 * Change the offsets to point to the type and data fields within
9139 	 * the PPP packet, and note that this is PPPoE rather than
9140 	 * raw PPP.
9141 	 *
9142 	 * XXX - this is a bit of a kludge.  See the comments in
9143 	 * gen_vlan().
9144 	 *
9145 	 * The "network-layer" protocol is PPPoE, which has a 6-byte
9146 	 * PPPoE header, followed by a PPP packet.
9147 	 *
9148 	 * There is no HDLC encapsulation for the PPP packet (it's
9149 	 * encapsulated in PPPoES instead), so the link-layer type
9150 	 * starts at the first byte of the PPP packet.  For PPPoE,
9151 	 * that offset is relative to the beginning of the total
9152 	 * link-layer payload, including any 802.2 LLC header, so
9153 	 * it's 6 bytes past cstate->off_nl.
9154 	 */
9155 	PUSH_LINKHDR(cstate, DLT_PPP, cstate->off_linkpl.is_variable,
9156 	    cstate->off_linkpl.constant_part + cstate->off_nl + 6, /* 6 bytes past the PPPoE header */
9157 	    cstate->off_linkpl.reg);
9158 
9159 	cstate->off_linktype = cstate->off_linkhdr;
9160 	cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 2;
9161 
9162 	cstate->off_nl = 0;
9163 	cstate->off_nl_nosnap = 0;	/* no 802.2 LLC */
9164 
9165 	return b0;
9166 }
9167 
9168 /* Check that this is Geneve and the VNI is correct if
9169  * specified. Parameterized to handle both IPv4 and IPv6. */
9170 static struct block *
gen_geneve_check(compiler_state_t * cstate,struct block * (* gen_portfn)(compiler_state_t *,int,int,int),enum e_offrel offrel,bpf_u_int32 vni,int has_vni)9171 gen_geneve_check(compiler_state_t *cstate,
9172     struct block *(*gen_portfn)(compiler_state_t *, int, int, int),
9173     enum e_offrel offrel, bpf_u_int32 vni, int has_vni)
9174 {
9175 	struct block *b0, *b1;
9176 
9177 	b0 = gen_portfn(cstate, GENEVE_PORT, IPPROTO_UDP, Q_DST);
9178 
9179 	/* Check that we are operating on version 0. Otherwise, we
9180 	 * can't decode the rest of the fields. The version is 2 bits
9181 	 * in the first byte of the Geneve header. */
9182 	b1 = gen_mcmp(cstate, offrel, 8, BPF_B, (bpf_int32)0, 0xc0);
9183 	gen_and(b0, b1);
9184 	b0 = b1;
9185 
9186 	if (has_vni) {
9187 		if (vni > 0xffffff) {
9188 			bpf_error(cstate, "Geneve VNI %u greater than maximum %u",
9189 			    vni, 0xffffff);
9190 		}
9191 		vni <<= 8; /* VNI is in the upper 3 bytes */
9192 		b1 = gen_mcmp(cstate, offrel, 12, BPF_W, (bpf_int32)vni,
9193 			      0xffffff00);
9194 		gen_and(b0, b1);
9195 		b0 = b1;
9196 	}
9197 
9198 	return b0;
9199 }
9200 
9201 /* The IPv4 and IPv6 Geneve checks need to do two things:
9202  * - Verify that this actually is Geneve with the right VNI.
9203  * - Place the IP header length (plus variable link prefix if
9204  *   needed) into register A to be used later to compute
9205  *   the inner packet offsets. */
9206 static struct block *
gen_geneve4(compiler_state_t * cstate,bpf_u_int32 vni,int has_vni)9207 gen_geneve4(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9208 {
9209 	struct block *b0, *b1;
9210 	struct slist *s, *s1;
9211 
9212 	b0 = gen_geneve_check(cstate, gen_port, OR_TRAN_IPV4, vni, has_vni);
9213 
9214 	/* Load the IP header length into A. */
9215 	s = gen_loadx_iphdrlen(cstate);
9216 
9217 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9218 	sappend(s, s1);
9219 
9220 	/* Forcibly append these statements to the true condition
9221 	 * of the protocol check by creating a new block that is
9222 	 * always true and ANDing them. */
9223 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9224 	b1->stmts = s;
9225 	b1->s.k = 0;
9226 
9227 	gen_and(b0, b1);
9228 
9229 	return b1;
9230 }
9231 
9232 static struct block *
gen_geneve6(compiler_state_t * cstate,bpf_u_int32 vni,int has_vni)9233 gen_geneve6(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9234 {
9235 	struct block *b0, *b1;
9236 	struct slist *s, *s1;
9237 
9238 	b0 = gen_geneve_check(cstate, gen_port6, OR_TRAN_IPV6, vni, has_vni);
9239 
9240 	/* Load the IP header length. We need to account for a
9241 	 * variable length link prefix if there is one. */
9242 	s = gen_abs_offset_varpart(cstate, &cstate->off_linkpl);
9243 	if (s) {
9244 		s1 = new_stmt(cstate, BPF_LD|BPF_IMM);
9245 		s1->s.k = 40;
9246 		sappend(s, s1);
9247 
9248 		s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9249 		s1->s.k = 0;
9250 		sappend(s, s1);
9251 	} else {
9252 		s = new_stmt(cstate, BPF_LD|BPF_IMM);
9253 		s->s.k = 40;
9254 	}
9255 
9256 	/* Forcibly append these statements to the true condition
9257 	 * of the protocol check by creating a new block that is
9258 	 * always true and ANDing them. */
9259 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9260 	sappend(s, s1);
9261 
9262 	b1 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9263 	b1->stmts = s;
9264 	b1->s.k = 0;
9265 
9266 	gen_and(b0, b1);
9267 
9268 	return b1;
9269 }
9270 
9271 /* We need to store three values based on the Geneve header::
9272  * - The offset of the linktype.
9273  * - The offset of the end of the Geneve header.
9274  * - The offset of the end of the encapsulated MAC header. */
9275 static struct slist *
gen_geneve_offsets(compiler_state_t * cstate)9276 gen_geneve_offsets(compiler_state_t *cstate)
9277 {
9278 	struct slist *s, *s1, *s_proto;
9279 
9280 	/* First we need to calculate the offset of the Geneve header
9281 	 * itself. This is composed of the IP header previously calculated
9282 	 * (include any variable link prefix) and stored in A plus the
9283 	 * fixed sized headers (fixed link prefix, MAC length, and UDP
9284 	 * header). */
9285 	s = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9286 	s->s.k = cstate->off_linkpl.constant_part + cstate->off_nl + 8;
9287 
9288 	/* Stash this in X since we'll need it later. */
9289 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9290 	sappend(s, s1);
9291 
9292 	/* The EtherType in Geneve is 2 bytes in. Calculate this and
9293 	 * store it. */
9294 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9295 	s1->s.k = 2;
9296 	sappend(s, s1);
9297 
9298 	cstate->off_linktype.reg = alloc_reg(cstate);
9299 	cstate->off_linktype.is_variable = 1;
9300 	cstate->off_linktype.constant_part = 0;
9301 
9302 	s1 = new_stmt(cstate, BPF_ST);
9303 	s1->s.k = cstate->off_linktype.reg;
9304 	sappend(s, s1);
9305 
9306 	/* Load the Geneve option length and mask and shift to get the
9307 	 * number of bytes. It is stored in the first byte of the Geneve
9308 	 * header. */
9309 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_B);
9310 	s1->s.k = 0;
9311 	sappend(s, s1);
9312 
9313 	s1 = new_stmt(cstate, BPF_ALU|BPF_AND|BPF_K);
9314 	s1->s.k = 0x3f;
9315 	sappend(s, s1);
9316 
9317 	s1 = new_stmt(cstate, BPF_ALU|BPF_MUL|BPF_K);
9318 	s1->s.k = 4;
9319 	sappend(s, s1);
9320 
9321 	/* Add in the rest of the Geneve base header. */
9322 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9323 	s1->s.k = 8;
9324 	sappend(s, s1);
9325 
9326 	/* Add the Geneve header length to its offset and store. */
9327 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_X);
9328 	s1->s.k = 0;
9329 	sappend(s, s1);
9330 
9331 	/* Set the encapsulated type as Ethernet. Even though we may
9332 	 * not actually have Ethernet inside there are two reasons this
9333 	 * is useful:
9334 	 * - The linktype field is always in EtherType format regardless
9335 	 *   of whether it is in Geneve or an inner Ethernet frame.
9336 	 * - The only link layer that we have specific support for is
9337 	 *   Ethernet. We will confirm that the packet actually is
9338 	 *   Ethernet at runtime before executing these checks. */
9339 	PUSH_LINKHDR(cstate, DLT_EN10MB, 1, 0, alloc_reg(cstate));
9340 
9341 	s1 = new_stmt(cstate, BPF_ST);
9342 	s1->s.k = cstate->off_linkhdr.reg;
9343 	sappend(s, s1);
9344 
9345 	/* Calculate whether we have an Ethernet header or just raw IP/
9346 	 * MPLS/etc. If we have Ethernet, advance the end of the MAC offset
9347 	 * and linktype by 14 bytes so that the network header can be found
9348 	 * seamlessly. Otherwise, keep what we've calculated already. */
9349 
9350 	/* We have a bare jmp so we can't use the optimizer. */
9351 	cstate->no_optimize = 1;
9352 
9353 	/* Load the EtherType in the Geneve header, 2 bytes in. */
9354 	s1 = new_stmt(cstate, BPF_LD|BPF_IND|BPF_H);
9355 	s1->s.k = 2;
9356 	sappend(s, s1);
9357 
9358 	/* Load X with the end of the Geneve header. */
9359 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9360 	s1->s.k = cstate->off_linkhdr.reg;
9361 	sappend(s, s1);
9362 
9363 	/* Check if the EtherType is Transparent Ethernet Bridging. At the
9364 	 * end of this check, we should have the total length in X. In
9365 	 * the non-Ethernet case, it's already there. */
9366 	s_proto = new_stmt(cstate, JMP(BPF_JEQ));
9367 	s_proto->s.k = ETHERTYPE_TEB;
9368 	sappend(s, s_proto);
9369 
9370 	s1 = new_stmt(cstate, BPF_MISC|BPF_TXA);
9371 	sappend(s, s1);
9372 	s_proto->s.jt = s1;
9373 
9374 	/* Since this is Ethernet, use the EtherType of the payload
9375 	 * directly as the linktype. Overwrite what we already have. */
9376 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9377 	s1->s.k = 12;
9378 	sappend(s, s1);
9379 
9380 	s1 = new_stmt(cstate, BPF_ST);
9381 	s1->s.k = cstate->off_linktype.reg;
9382 	sappend(s, s1);
9383 
9384 	/* Advance two bytes further to get the end of the Ethernet
9385 	 * header. */
9386 	s1 = new_stmt(cstate, BPF_ALU|BPF_ADD|BPF_K);
9387 	s1->s.k = 2;
9388 	sappend(s, s1);
9389 
9390 	/* Move the result to X. */
9391 	s1 = new_stmt(cstate, BPF_MISC|BPF_TAX);
9392 	sappend(s, s1);
9393 
9394 	/* Store the final result of our linkpl calculation. */
9395 	cstate->off_linkpl.reg = alloc_reg(cstate);
9396 	cstate->off_linkpl.is_variable = 1;
9397 	cstate->off_linkpl.constant_part = 0;
9398 
9399 	s1 = new_stmt(cstate, BPF_STX);
9400 	s1->s.k = cstate->off_linkpl.reg;
9401 	sappend(s, s1);
9402 	s_proto->s.jf = s1;
9403 
9404 	cstate->off_nl = 0;
9405 
9406 	return s;
9407 }
9408 
9409 /* Check to see if this is a Geneve packet. */
9410 struct block *
gen_geneve(compiler_state_t * cstate,bpf_u_int32 vni,int has_vni)9411 gen_geneve(compiler_state_t *cstate, bpf_u_int32 vni, int has_vni)
9412 {
9413 	struct block *b0, *b1;
9414 	struct slist *s;
9415 
9416 	/*
9417 	 * Catch errors reported by us and routines below us, and return NULL
9418 	 * on an error.
9419 	 */
9420 	if (setjmp(cstate->top_ctx))
9421 		return (NULL);
9422 
9423 	b0 = gen_geneve4(cstate, vni, has_vni);
9424 	b1 = gen_geneve6(cstate, vni, has_vni);
9425 
9426 	gen_or(b0, b1);
9427 	b0 = b1;
9428 
9429 	/* Later filters should act on the payload of the Geneve frame,
9430 	 * update all of the header pointers. Attach this code so that
9431 	 * it gets executed in the event that the Geneve filter matches. */
9432 	s = gen_geneve_offsets(cstate);
9433 
9434 	b1 = gen_true(cstate);
9435 	sappend(s, b1->stmts);
9436 	b1->stmts = s;
9437 
9438 	gen_and(b0, b1);
9439 
9440 	cstate->is_geneve = 1;
9441 
9442 	return b1;
9443 }
9444 
9445 /* Check that the encapsulated frame has a link layer header
9446  * for Ethernet filters. */
9447 static struct block *
gen_geneve_ll_check(compiler_state_t * cstate)9448 gen_geneve_ll_check(compiler_state_t *cstate)
9449 {
9450 	struct block *b0;
9451 	struct slist *s, *s1;
9452 
9453 	/* The easiest way to see if there is a link layer present
9454 	 * is to check if the link layer header and payload are not
9455 	 * the same. */
9456 
9457 	/* Geneve always generates pure variable offsets so we can
9458 	 * compare only the registers. */
9459 	s = new_stmt(cstate, BPF_LD|BPF_MEM);
9460 	s->s.k = cstate->off_linkhdr.reg;
9461 
9462 	s1 = new_stmt(cstate, BPF_LDX|BPF_MEM);
9463 	s1->s.k = cstate->off_linkpl.reg;
9464 	sappend(s, s1);
9465 
9466 	b0 = new_block(cstate, BPF_JMP|BPF_JEQ|BPF_X);
9467 	b0->stmts = s;
9468 	b0->s.k = 0;
9469 	gen_not(b0);
9470 
9471 	return b0;
9472 }
9473 
9474 static struct block *
gen_atmfield_code_internal(compiler_state_t * cstate,int atmfield,bpf_int32 jvalue,bpf_u_int32 jtype,int reverse)9475 gen_atmfield_code_internal(compiler_state_t *cstate, int atmfield,
9476     bpf_int32 jvalue, bpf_u_int32 jtype, int reverse)
9477 {
9478 	struct block *b0;
9479 
9480 	switch (atmfield) {
9481 
9482 	case A_VPI:
9483 		if (!cstate->is_atm)
9484 			bpf_error(cstate, "'vpi' supported only on raw ATM");
9485 		if (cstate->off_vpi == OFFSET_NOT_SET)
9486 			abort();
9487 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vpi, BPF_B, 0xffffffff, jtype,
9488 		    reverse, jvalue);
9489 		break;
9490 
9491 	case A_VCI:
9492 		if (!cstate->is_atm)
9493 			bpf_error(cstate, "'vci' supported only on raw ATM");
9494 		if (cstate->off_vci == OFFSET_NOT_SET)
9495 			abort();
9496 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_vci, BPF_H, 0xffffffff, jtype,
9497 		    reverse, jvalue);
9498 		break;
9499 
9500 	case A_PROTOTYPE:
9501 		if (cstate->off_proto == OFFSET_NOT_SET)
9502 			abort();	/* XXX - this isn't on FreeBSD */
9503 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0x0f, jtype,
9504 		    reverse, jvalue);
9505 		break;
9506 
9507 	case A_MSGTYPE:
9508 		if (cstate->off_payload == OFFSET_NOT_SET)
9509 			abort();
9510 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_payload + MSG_TYPE_POS, BPF_B,
9511 		    0xffffffff, jtype, reverse, jvalue);
9512 		break;
9513 
9514 	case A_CALLREFTYPE:
9515 		if (!cstate->is_atm)
9516 			bpf_error(cstate, "'callref' supported only on raw ATM");
9517 		if (cstate->off_proto == OFFSET_NOT_SET)
9518 			abort();
9519 		b0 = gen_ncmp(cstate, OR_LINKHDR, cstate->off_proto, BPF_B, 0xffffffff,
9520 		    jtype, reverse, jvalue);
9521 		break;
9522 
9523 	default:
9524 		abort();
9525 	}
9526 	return b0;
9527 }
9528 
9529 static struct block *
gen_atmtype_metac(compiler_state_t * cstate)9530 gen_atmtype_metac(compiler_state_t *cstate)
9531 {
9532 	struct block *b0, *b1;
9533 
9534 	b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9535 	b1 = gen_atmfield_code_internal(cstate, A_VCI, 1, BPF_JEQ, 0);
9536 	gen_and(b0, b1);
9537 	return b1;
9538 }
9539 
9540 static struct block *
gen_atmtype_sc(compiler_state_t * cstate)9541 gen_atmtype_sc(compiler_state_t *cstate)
9542 {
9543 	struct block *b0, *b1;
9544 
9545 	b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9546 	b1 = gen_atmfield_code_internal(cstate, A_VCI, 5, BPF_JEQ, 0);
9547 	gen_and(b0, b1);
9548 	return b1;
9549 }
9550 
9551 static struct block *
gen_atmtype_llc(compiler_state_t * cstate)9552 gen_atmtype_llc(compiler_state_t *cstate)
9553 {
9554 	struct block *b0;
9555 
9556 	b0 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LLC, BPF_JEQ, 0);
9557 	cstate->linktype = cstate->prevlinktype;
9558 	return b0;
9559 }
9560 
9561 struct block *
gen_atmfield_code(compiler_state_t * cstate,int atmfield,bpf_int32 jvalue,bpf_u_int32 jtype,int reverse)9562 gen_atmfield_code(compiler_state_t *cstate, int atmfield,
9563     bpf_int32 jvalue, bpf_u_int32 jtype, int reverse)
9564 {
9565 	/*
9566 	 * Catch errors reported by us and routines below us, and return NULL
9567 	 * on an error.
9568 	 */
9569 	if (setjmp(cstate->top_ctx))
9570 		return (NULL);
9571 
9572 	return gen_atmfield_code_internal(cstate, atmfield, jvalue, jtype,
9573 	    reverse);
9574 }
9575 
9576 struct block *
gen_atmtype_abbrev(compiler_state_t * cstate,int type)9577 gen_atmtype_abbrev(compiler_state_t *cstate, int type)
9578 {
9579 	struct block *b0, *b1;
9580 
9581 	/*
9582 	 * Catch errors reported by us and routines below us, and return NULL
9583 	 * on an error.
9584 	 */
9585 	if (setjmp(cstate->top_ctx))
9586 		return (NULL);
9587 
9588 	switch (type) {
9589 
9590 	case A_METAC:
9591 		/* Get all packets in Meta signalling Circuit */
9592 		if (!cstate->is_atm)
9593 			bpf_error(cstate, "'metac' supported only on raw ATM");
9594 		b1 = gen_atmtype_metac(cstate);
9595 		break;
9596 
9597 	case A_BCC:
9598 		/* Get all packets in Broadcast Circuit*/
9599 		if (!cstate->is_atm)
9600 			bpf_error(cstate, "'bcc' supported only on raw ATM");
9601 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9602 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 2, BPF_JEQ, 0);
9603 		gen_and(b0, b1);
9604 		break;
9605 
9606 	case A_OAMF4SC:
9607 		/* Get all cells in Segment OAM F4 circuit*/
9608 		if (!cstate->is_atm)
9609 			bpf_error(cstate, "'oam4sc' supported only on raw ATM");
9610 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9611 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9612 		gen_and(b0, b1);
9613 		break;
9614 
9615 	case A_OAMF4EC:
9616 		/* Get all cells in End-to-End OAM F4 Circuit*/
9617 		if (!cstate->is_atm)
9618 			bpf_error(cstate, "'oam4ec' supported only on raw ATM");
9619 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9620 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9621 		gen_and(b0, b1);
9622 		break;
9623 
9624 	case A_SC:
9625 		/*  Get all packets in connection Signalling Circuit */
9626 		if (!cstate->is_atm)
9627 			bpf_error(cstate, "'sc' supported only on raw ATM");
9628 		b1 = gen_atmtype_sc(cstate);
9629 		break;
9630 
9631 	case A_ILMIC:
9632 		/* Get all packets in ILMI Circuit */
9633 		if (!cstate->is_atm)
9634 			bpf_error(cstate, "'ilmic' supported only on raw ATM");
9635 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9636 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 16, BPF_JEQ, 0);
9637 		gen_and(b0, b1);
9638 		break;
9639 
9640 	case A_LANE:
9641 		/* Get all LANE packets */
9642 		if (!cstate->is_atm)
9643 			bpf_error(cstate, "'lane' supported only on raw ATM");
9644 		b1 = gen_atmfield_code_internal(cstate, A_PROTOTYPE, PT_LANE, BPF_JEQ, 0);
9645 
9646 		/*
9647 		 * Arrange that all subsequent tests assume LANE
9648 		 * rather than LLC-encapsulated packets, and set
9649 		 * the offsets appropriately for LANE-encapsulated
9650 		 * Ethernet.
9651 		 *
9652 		 * We assume LANE means Ethernet, not Token Ring.
9653 		 */
9654 		PUSH_LINKHDR(cstate, DLT_EN10MB, 0,
9655 		    cstate->off_payload + 2,	/* Ethernet header */
9656 		    -1);
9657 		cstate->off_linktype.constant_part = cstate->off_linkhdr.constant_part + 12;
9658 		cstate->off_linkpl.constant_part = cstate->off_linkhdr.constant_part + 14;	/* Ethernet */
9659 		cstate->off_nl = 0;			/* Ethernet II */
9660 		cstate->off_nl_nosnap = 3;		/* 802.3+802.2 */
9661 		break;
9662 
9663 	case A_LLC:
9664 		/* Get all LLC-encapsulated packets */
9665 		if (!cstate->is_atm)
9666 			bpf_error(cstate, "'llc' supported only on raw ATM");
9667 		b1 = gen_atmtype_llc(cstate);
9668 		break;
9669 
9670 	default:
9671 		abort();
9672 	}
9673 	return b1;
9674 }
9675 
9676 /*
9677  * Filtering for MTP2 messages based on li value
9678  * FISU, length is null
9679  * LSSU, length is 1 or 2
9680  * MSU, length is 3 or more
9681  * For MTP2_HSL, sequences are on 2 bytes, and length on 9 bits
9682  */
9683 struct block *
gen_mtp2type_abbrev(compiler_state_t * cstate,int type)9684 gen_mtp2type_abbrev(compiler_state_t *cstate, int type)
9685 {
9686 	struct block *b0, *b1;
9687 
9688 	/*
9689 	 * Catch errors reported by us and routines below us, and return NULL
9690 	 * on an error.
9691 	 */
9692 	if (setjmp(cstate->top_ctx))
9693 		return (NULL);
9694 
9695 	switch (type) {
9696 
9697 	case M_FISU:
9698 		if ( (cstate->linktype != DLT_MTP2) &&
9699 		     (cstate->linktype != DLT_ERF) &&
9700 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9701 			bpf_error(cstate, "'fisu' supported only on MTP2");
9702 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9703 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JEQ, 0, 0);
9704 		break;
9705 
9706 	case M_LSSU:
9707 		if ( (cstate->linktype != DLT_MTP2) &&
9708 		     (cstate->linktype != DLT_ERF) &&
9709 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9710 			bpf_error(cstate, "'lssu' supported only on MTP2");
9711 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 1, 2);
9712 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 0);
9713 		gen_and(b1, b0);
9714 		break;
9715 
9716 	case M_MSU:
9717 		if ( (cstate->linktype != DLT_MTP2) &&
9718 		     (cstate->linktype != DLT_ERF) &&
9719 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9720 			bpf_error(cstate, "'msu' supported only on MTP2");
9721 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li, BPF_B, 0x3f, BPF_JGT, 0, 2);
9722 		break;
9723 
9724 	case MH_FISU:
9725 		if ( (cstate->linktype != DLT_MTP2) &&
9726 		     (cstate->linktype != DLT_ERF) &&
9727 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9728 			bpf_error(cstate, "'hfisu' supported only on MTP2_HSL");
9729 		/* gen_ncmp(cstate, offrel, offset, size, mask, jtype, reverse, value) */
9730 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JEQ, 0, 0);
9731 		break;
9732 
9733 	case MH_LSSU:
9734 		if ( (cstate->linktype != DLT_MTP2) &&
9735 		     (cstate->linktype != DLT_ERF) &&
9736 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9737 			bpf_error(cstate, "'hlssu' supported only on MTP2_HSL");
9738 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 1, 0x0100);
9739 		b1 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0);
9740 		gen_and(b1, b0);
9741 		break;
9742 
9743 	case MH_MSU:
9744 		if ( (cstate->linktype != DLT_MTP2) &&
9745 		     (cstate->linktype != DLT_ERF) &&
9746 		     (cstate->linktype != DLT_MTP2_WITH_PHDR) )
9747 			bpf_error(cstate, "'hmsu' supported only on MTP2_HSL");
9748 		b0 = gen_ncmp(cstate, OR_PACKET, cstate->off_li_hsl, BPF_H, 0xff80, BPF_JGT, 0, 0x0100);
9749 		break;
9750 
9751 	default:
9752 		abort();
9753 	}
9754 	return b0;
9755 }
9756 
9757 /*
9758  * The jvalue_arg dance is to avoid annoying whining by compilers that
9759  * jvalue might be clobbered by longjmp - yeah, it might, but *WHO CARES*?
9760  * It's not *used* after setjmp returns.
9761  */
9762 struct block *
gen_mtp3field_code(compiler_state_t * cstate,int mtp3field,bpf_u_int32 jvalue_arg,bpf_u_int32 jtype,int reverse)9763 gen_mtp3field_code(compiler_state_t *cstate, int mtp3field,
9764     bpf_u_int32 jvalue_arg, bpf_u_int32 jtype, int reverse)
9765 {
9766 	volatile bpf_u_int32 jvalue = jvalue_arg;
9767 	struct block *b0;
9768 	bpf_u_int32 val1 , val2 , val3;
9769 	u_int newoff_sio;
9770 	u_int newoff_opc;
9771 	u_int newoff_dpc;
9772 	u_int newoff_sls;
9773 
9774 	/*
9775 	 * Catch errors reported by us and routines below us, and return NULL
9776 	 * on an error.
9777 	 */
9778 	if (setjmp(cstate->top_ctx))
9779 		return (NULL);
9780 
9781 	newoff_sio = cstate->off_sio;
9782 	newoff_opc = cstate->off_opc;
9783 	newoff_dpc = cstate->off_dpc;
9784 	newoff_sls = cstate->off_sls;
9785 	switch (mtp3field) {
9786 
9787 	case MH_SIO:
9788 		newoff_sio += 3; /* offset for MTP2_HSL */
9789 		/* FALLTHROUGH */
9790 
9791 	case M_SIO:
9792 		if (cstate->off_sio == OFFSET_NOT_SET)
9793 			bpf_error(cstate, "'sio' supported only on SS7");
9794 		/* sio coded on 1 byte so max value 255 */
9795 		if(jvalue > 255)
9796 		        bpf_error(cstate, "sio value %u too big; max value = 255",
9797 		            jvalue);
9798 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sio, BPF_B, 0xffffffff,
9799 		    (u_int)jtype, reverse, (u_int)jvalue);
9800 		break;
9801 
9802 	case MH_OPC:
9803 		newoff_opc += 3;
9804 
9805 		/* FALLTHROUGH */
9806         case M_OPC:
9807 	        if (cstate->off_opc == OFFSET_NOT_SET)
9808 			bpf_error(cstate, "'opc' supported only on SS7");
9809 		/* opc coded on 14 bits so max value 16383 */
9810 		if (jvalue > 16383)
9811 		        bpf_error(cstate, "opc value %u too big; max value = 16383",
9812 		            jvalue);
9813 		/* the following instructions are made to convert jvalue
9814 		 * to the form used to write opc in an ss7 message*/
9815 		val1 = jvalue & 0x00003c00;
9816 		val1 = val1 >>10;
9817 		val2 = jvalue & 0x000003fc;
9818 		val2 = val2 <<6;
9819 		val3 = jvalue & 0x00000003;
9820 		val3 = val3 <<22;
9821 		jvalue = val1 + val2 + val3;
9822 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_opc, BPF_W, 0x00c0ff0f,
9823 		    (u_int)jtype, reverse, (u_int)jvalue);
9824 		break;
9825 
9826 	case MH_DPC:
9827 		newoff_dpc += 3;
9828 		/* FALLTHROUGH */
9829 
9830 	case M_DPC:
9831 	        if (cstate->off_dpc == OFFSET_NOT_SET)
9832 			bpf_error(cstate, "'dpc' supported only on SS7");
9833 		/* dpc coded on 14 bits so max value 16383 */
9834 		if (jvalue > 16383)
9835 		        bpf_error(cstate, "dpc value %u too big; max value = 16383",
9836 		            jvalue);
9837 		/* the following instructions are made to convert jvalue
9838 		 * to the forme used to write dpc in an ss7 message*/
9839 		val1 = jvalue & 0x000000ff;
9840 		val1 = val1 << 24;
9841 		val2 = jvalue & 0x00003f00;
9842 		val2 = val2 << 8;
9843 		jvalue = val1 + val2;
9844 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_dpc, BPF_W, 0xff3f0000,
9845 		    (u_int)jtype, reverse, (u_int)jvalue);
9846 		break;
9847 
9848 	case MH_SLS:
9849 		newoff_sls += 3;
9850 		/* FALLTHROUGH */
9851 
9852 	case M_SLS:
9853 	        if (cstate->off_sls == OFFSET_NOT_SET)
9854 			bpf_error(cstate, "'sls' supported only on SS7");
9855 		/* sls coded on 4 bits so max value 15 */
9856 		if (jvalue > 15)
9857 		         bpf_error(cstate, "sls value %u too big; max value = 15",
9858 		             jvalue);
9859 		/* the following instruction is made to convert jvalue
9860 		 * to the forme used to write sls in an ss7 message*/
9861 		jvalue = jvalue << 4;
9862 		b0 = gen_ncmp(cstate, OR_PACKET, newoff_sls, BPF_B, 0xf0,
9863 		    (u_int)jtype,reverse, (u_int)jvalue);
9864 		break;
9865 
9866 	default:
9867 		abort();
9868 	}
9869 	return b0;
9870 }
9871 
9872 static struct block *
gen_msg_abbrev(compiler_state_t * cstate,int type)9873 gen_msg_abbrev(compiler_state_t *cstate, int type)
9874 {
9875 	struct block *b1;
9876 
9877 	/*
9878 	 * Q.2931 signalling protocol messages for handling virtual circuits
9879 	 * establishment and teardown
9880 	 */
9881 	switch (type) {
9882 
9883 	case A_SETUP:
9884 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, SETUP, BPF_JEQ, 0);
9885 		break;
9886 
9887 	case A_CALLPROCEED:
9888 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CALL_PROCEED, BPF_JEQ, 0);
9889 		break;
9890 
9891 	case A_CONNECT:
9892 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT, BPF_JEQ, 0);
9893 		break;
9894 
9895 	case A_CONNECTACK:
9896 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, CONNECT_ACK, BPF_JEQ, 0);
9897 		break;
9898 
9899 	case A_RELEASE:
9900 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE, BPF_JEQ, 0);
9901 		break;
9902 
9903 	case A_RELEASE_DONE:
9904 		b1 = gen_atmfield_code_internal(cstate, A_MSGTYPE, RELEASE_DONE, BPF_JEQ, 0);
9905 		break;
9906 
9907 	default:
9908 		abort();
9909 	}
9910 	return b1;
9911 }
9912 
9913 struct block *
gen_atmmulti_abbrev(compiler_state_t * cstate,int type)9914 gen_atmmulti_abbrev(compiler_state_t *cstate, int type)
9915 {
9916 	struct block *b0, *b1;
9917 
9918 	/*
9919 	 * Catch errors reported by us and routines below us, and return NULL
9920 	 * on an error.
9921 	 */
9922 	if (setjmp(cstate->top_ctx))
9923 		return (NULL);
9924 
9925 	switch (type) {
9926 
9927 	case A_OAM:
9928 		if (!cstate->is_atm)
9929 			bpf_error(cstate, "'oam' supported only on raw ATM");
9930 		/* OAM F4 type */
9931 		b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9932 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9933 		gen_or(b0, b1);
9934 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9935 		gen_and(b0, b1);
9936 		break;
9937 
9938 	case A_OAMF4:
9939 		if (!cstate->is_atm)
9940 			bpf_error(cstate, "'oamf4' supported only on raw ATM");
9941 		/* OAM F4 type */
9942 		b0 = gen_atmfield_code_internal(cstate, A_VCI, 3, BPF_JEQ, 0);
9943 		b1 = gen_atmfield_code_internal(cstate, A_VCI, 4, BPF_JEQ, 0);
9944 		gen_or(b0, b1);
9945 		b0 = gen_atmfield_code_internal(cstate, A_VPI, 0, BPF_JEQ, 0);
9946 		gen_and(b0, b1);
9947 		break;
9948 
9949 	case A_CONNECTMSG:
9950 		/*
9951 		 * Get Q.2931 signalling messages for switched
9952 		 * virtual connection
9953 		 */
9954 		if (!cstate->is_atm)
9955 			bpf_error(cstate, "'connectmsg' supported only on raw ATM");
9956 		b0 = gen_msg_abbrev(cstate, A_SETUP);
9957 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9958 		gen_or(b0, b1);
9959 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
9960 		gen_or(b0, b1);
9961 		b0 = gen_msg_abbrev(cstate, A_CONNECTACK);
9962 		gen_or(b0, b1);
9963 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
9964 		gen_or(b0, b1);
9965 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9966 		gen_or(b0, b1);
9967 		b0 = gen_atmtype_sc(cstate);
9968 		gen_and(b0, b1);
9969 		break;
9970 
9971 	case A_METACONNECT:
9972 		if (!cstate->is_atm)
9973 			bpf_error(cstate, "'metaconnect' supported only on raw ATM");
9974 		b0 = gen_msg_abbrev(cstate, A_SETUP);
9975 		b1 = gen_msg_abbrev(cstate, A_CALLPROCEED);
9976 		gen_or(b0, b1);
9977 		b0 = gen_msg_abbrev(cstate, A_CONNECT);
9978 		gen_or(b0, b1);
9979 		b0 = gen_msg_abbrev(cstate, A_RELEASE);
9980 		gen_or(b0, b1);
9981 		b0 = gen_msg_abbrev(cstate, A_RELEASE_DONE);
9982 		gen_or(b0, b1);
9983 		b0 = gen_atmtype_metac(cstate);
9984 		gen_and(b0, b1);
9985 		break;
9986 
9987 	default:
9988 		abort();
9989 	}
9990 	return b1;
9991 }
9992