1 /* crypto/rand/md_rand.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 #define OPENSSL_FIPSEVP
113 
114 #ifdef MD_RAND_DEBUG
115 # ifndef NDEBUG
116 #  define NDEBUG
117 # endif
118 #endif
119 
120 #include <assert.h>
121 #include <stdio.h>
122 #include <string.h>
123 
124 #include "e_os.h"
125 
126 #include <openssl/crypto.h>
127 #include <openssl/rand.h>
128 #include "rand_lcl.h"
129 
130 #include <openssl/err.h>
131 
132 #ifdef BN_DEBUG
133 # define PREDICT
134 #endif
135 
136 /* #define PREDICT      1 */
137 
138 #define STATE_SIZE      1023
139 static size_t state_num = 0, state_index = 0;
140 static unsigned char state[STATE_SIZE + MD_DIGEST_LENGTH];
141 static unsigned char md[MD_DIGEST_LENGTH];
142 static long md_count[2] = { 0, 0 };
143 
144 static double entropy = 0;
145 static int initialized = 0;
146 
147 static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
148                                            * holds CRYPTO_LOCK_RAND (to
149                                            * prevent double locking) */
150 /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
151 /* valid iff crypto_lock_rand is set */
152 static CRYPTO_THREADID locking_threadid;
153 
154 #ifdef PREDICT
155 int rand_predictable = 0;
156 #endif
157 
158 const char RAND_version[] = "RAND" OPENSSL_VERSION_PTEXT;
159 
160 static void ssleay_rand_cleanup(void);
161 static void ssleay_rand_seed(const void *buf, int num);
162 static void ssleay_rand_add(const void *buf, int num, double add_entropy);
163 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
164 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
165 static int ssleay_rand_status(void);
166 
167 RAND_METHOD rand_ssleay_meth = {
168     ssleay_rand_seed,
169     ssleay_rand_nopseudo_bytes,
170     ssleay_rand_cleanup,
171     ssleay_rand_add,
172     ssleay_rand_pseudo_bytes,
173     ssleay_rand_status
174 };
175 
RAND_SSLeay(void)176 RAND_METHOD *RAND_SSLeay(void)
177 {
178     return (&rand_ssleay_meth);
179 }
180 
ssleay_rand_cleanup(void)181 static void ssleay_rand_cleanup(void)
182 {
183     OPENSSL_cleanse(state, sizeof(state));
184     state_num = 0;
185     state_index = 0;
186     OPENSSL_cleanse(md, MD_DIGEST_LENGTH);
187     md_count[0] = 0;
188     md_count[1] = 0;
189     entropy = 0;
190     initialized = 0;
191 }
192 
ssleay_rand_add(const void * buf,int num,double add)193 static void ssleay_rand_add(const void *buf, int num, double add)
194 {
195     int i, j, k, st_idx;
196     long md_c[2];
197     unsigned char local_md[MD_DIGEST_LENGTH];
198     EVP_MD_CTX m;
199     int do_not_lock;
200 
201     if (!num)
202         return;
203 
204     /*
205      * (Based on the rand(3) manpage)
206      *
207      * The input is chopped up into units of 20 bytes (or less for
208      * the last block).  Each of these blocks is run through the hash
209      * function as follows:  The data passed to the hash function
210      * is the current 'md', the same number of bytes from the 'state'
211      * (the location determined by in incremented looping index) as
212      * the current 'block', the new key data 'block', and 'count'
213      * (which is incremented after each use).
214      * The result of this is kept in 'md' and also xored into the
215      * 'state' at the same locations that were used as input into the
216      * hash function.
217      */
218 
219     /* check if we already have the lock */
220     if (crypto_lock_rand) {
221         CRYPTO_THREADID cur;
222         CRYPTO_THREADID_current(&cur);
223         CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
224         do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
225         CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
226     } else
227         do_not_lock = 0;
228 
229     if (!do_not_lock)
230         CRYPTO_w_lock(CRYPTO_LOCK_RAND);
231     st_idx = state_index;
232 
233     /*
234      * use our own copies of the counters so that even if a concurrent thread
235      * seeds with exactly the same data and uses the same subarray there's
236      * _some_ difference
237      */
238     md_c[0] = md_count[0];
239     md_c[1] = md_count[1];
240 
241     memcpy(local_md, md, sizeof md);
242 
243     /* state_index <= state_num <= STATE_SIZE */
244     state_index += num;
245     if (state_index >= STATE_SIZE) {
246         state_index %= STATE_SIZE;
247         state_num = STATE_SIZE;
248     } else if (state_num < STATE_SIZE) {
249         if (state_index > state_num)
250             state_num = state_index;
251     }
252     /* state_index <= state_num <= STATE_SIZE */
253 
254     /*
255      * state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] are what we
256      * will use now, but other threads may use them as well
257      */
258 
259     md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
260 
261     if (!do_not_lock)
262         CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
263 
264     EVP_MD_CTX_init(&m);
265     for (i = 0; i < num; i += MD_DIGEST_LENGTH) {
266         j = (num - i);
267         j = (j > MD_DIGEST_LENGTH) ? MD_DIGEST_LENGTH : j;
268 
269         MD_Init(&m);
270         MD_Update(&m, local_md, MD_DIGEST_LENGTH);
271         k = (st_idx + j) - STATE_SIZE;
272         if (k > 0) {
273             MD_Update(&m, &(state[st_idx]), j - k);
274             MD_Update(&m, &(state[0]), k);
275         } else
276             MD_Update(&m, &(state[st_idx]), j);
277 
278         /* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
279         MD_Update(&m, buf, j);
280         /*
281          * We know that line may cause programs such as purify and valgrind
282          * to complain about use of uninitialized data.  The problem is not,
283          * it's with the caller.  Removing that line will make sure you get
284          * really bad randomness and thereby other problems such as very
285          * insecure keys.
286          */
287 
288         MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c));
289         MD_Final(&m, local_md);
290         md_c[1]++;
291 
292         buf = (const char *)buf + j;
293 
294         for (k = 0; k < j; k++) {
295             /*
296              * Parallel threads may interfere with this, but always each byte
297              * of the new state is the XOR of some previous value of its and
298              * local_md (itermediate values may be lost). Alway using locking
299              * could hurt performance more than necessary given that
300              * conflicts occur only when the total seeding is longer than the
301              * random state.
302              */
303             state[st_idx++] ^= local_md[k];
304             if (st_idx >= STATE_SIZE)
305                 st_idx = 0;
306         }
307     }
308     EVP_MD_CTX_cleanup(&m);
309 
310     if (!do_not_lock)
311         CRYPTO_w_lock(CRYPTO_LOCK_RAND);
312     /*
313      * Don't just copy back local_md into md -- this could mean that other
314      * thread's seeding remains without effect (except for the incremented
315      * counter).  By XORing it we keep at least as much entropy as fits into
316      * md.
317      */
318     for (k = 0; k < (int)sizeof(md); k++) {
319         md[k] ^= local_md[k];
320     }
321     if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
322         entropy += add;
323     if (!do_not_lock)
324         CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
325 
326 #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
327     assert(md_c[1] == md_count[1]);
328 #endif
329 }
330 
ssleay_rand_seed(const void * buf,int num)331 static void ssleay_rand_seed(const void *buf, int num)
332 {
333     ssleay_rand_add(buf, num, (double)num);
334 }
335 
ssleay_rand_bytes(unsigned char * buf,int num,int pseudo,int lock)336 int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo, int lock)
337 {
338     static volatile int stirred_pool = 0;
339     int i, j, k;
340     size_t num_ceil, st_idx, st_num;
341     int ok;
342     long md_c[2];
343     unsigned char local_md[MD_DIGEST_LENGTH];
344     EVP_MD_CTX m;
345 #ifndef GETPID_IS_MEANINGLESS
346     pid_t curr_pid = getpid();
347 #endif
348     int do_stir_pool = 0;
349 
350 #ifdef PREDICT
351     if (rand_predictable) {
352         static unsigned char val = 0;
353 
354         for (i = 0; i < num; i++)
355             buf[i] = val++;
356         return (1);
357     }
358 #endif
359 
360     if (num <= 0)
361         return 1;
362 
363     EVP_MD_CTX_init(&m);
364     /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
365     num_ceil =
366         (1 + (num - 1) / (MD_DIGEST_LENGTH / 2)) * (MD_DIGEST_LENGTH / 2);
367 
368     /*
369      * (Based on the rand(3) manpage:)
370      *
371      * For each group of 10 bytes (or less), we do the following:
372      *
373      * Input into the hash function the local 'md' (which is initialized from
374      * the global 'md' before any bytes are generated), the bytes that are to
375      * be overwritten by the random bytes, and bytes from the 'state'
376      * (incrementing looping index). From this digest output (which is kept
377      * in 'md'), the top (up to) 10 bytes are returned to the caller and the
378      * bottom 10 bytes are xored into the 'state'.
379      *
380      * Finally, after we have finished 'num' random bytes for the
381      * caller, 'count' (which is incremented) and the local and global 'md'
382      * are fed into the hash function and the results are kept in the
383      * global 'md'.
384      */
385     if (lock)
386         CRYPTO_w_lock(CRYPTO_LOCK_RAND);
387 
388     /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
389     CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
390     CRYPTO_THREADID_current(&locking_threadid);
391     CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
392     crypto_lock_rand = 1;
393 
394     if (!initialized) {
395         RAND_poll();
396         initialized = 1;
397     }
398 
399     if (!stirred_pool)
400         do_stir_pool = 1;
401 
402     ok = (entropy >= ENTROPY_NEEDED);
403     if (!ok) {
404         /*
405          * If the PRNG state is not yet unpredictable, then seeing the PRNG
406          * output may help attackers to determine the new state; thus we have
407          * to decrease the entropy estimate. Once we've had enough initial
408          * seeding we don't bother to adjust the entropy count, though,
409          * because we're not ambitious to provide *information-theoretic*
410          * randomness. NOTE: This approach fails if the program forks before
411          * we have enough entropy. Entropy should be collected in a separate
412          * input pool and be transferred to the output pool only when the
413          * entropy limit has been reached.
414          */
415         entropy -= num;
416         if (entropy < 0)
417             entropy = 0;
418     }
419 
420     if (do_stir_pool) {
421         /*
422          * In the output function only half of 'md' remains secret, so we
423          * better make sure that the required entropy gets 'evenly
424          * distributed' through 'state', our randomness pool. The input
425          * function (ssleay_rand_add) chains all of 'md', which makes it more
426          * suitable for this purpose.
427          */
428 
429         int n = STATE_SIZE;     /* so that the complete pool gets accessed */
430         while (n > 0) {
431 #if MD_DIGEST_LENGTH > 20
432 # error "Please adjust DUMMY_SEED."
433 #endif
434 #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
435             /*
436              * Note that the seed does not matter, it's just that
437              * ssleay_rand_add expects to have something to hash.
438              */
439             ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
440             n -= MD_DIGEST_LENGTH;
441         }
442         if (ok)
443             stirred_pool = 1;
444     }
445 
446     st_idx = state_index;
447     st_num = state_num;
448     md_c[0] = md_count[0];
449     md_c[1] = md_count[1];
450     memcpy(local_md, md, sizeof md);
451 
452     state_index += num_ceil;
453     if (state_index > state_num)
454         state_index %= state_num;
455 
456     /*
457      * state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] are now
458      * ours (but other threads may use them too)
459      */
460 
461     md_count[0] += 1;
462 
463     /* before unlocking, we must clear 'crypto_lock_rand' */
464     crypto_lock_rand = 0;
465     if (lock)
466         CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
467 
468     while (num > 0) {
469         /* num_ceil -= MD_DIGEST_LENGTH/2 */
470         j = (num >= MD_DIGEST_LENGTH / 2) ? MD_DIGEST_LENGTH / 2 : num;
471         num -= j;
472         MD_Init(&m);
473 #ifndef GETPID_IS_MEANINGLESS
474         if (curr_pid) {         /* just in the first iteration to save time */
475             MD_Update(&m, (unsigned char *)&curr_pid, sizeof curr_pid);
476             curr_pid = 0;
477         }
478 #endif
479         MD_Update(&m, local_md, MD_DIGEST_LENGTH);
480         MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c));
481 
482 #ifndef PURIFY                  /* purify complains */
483         /*
484          * The following line uses the supplied buffer as a small source of
485          * entropy: since this buffer is often uninitialised it may cause
486          * programs such as purify or valgrind to complain. So for those
487          * builds it is not used: the removal of such a small source of
488          * entropy has negligible impact on security.
489          */
490         MD_Update(&m, buf, j);
491 #endif
492 
493         k = (st_idx + MD_DIGEST_LENGTH / 2) - st_num;
494         if (k > 0) {
495             MD_Update(&m, &(state[st_idx]), MD_DIGEST_LENGTH / 2 - k);
496             MD_Update(&m, &(state[0]), k);
497         } else
498             MD_Update(&m, &(state[st_idx]), MD_DIGEST_LENGTH / 2);
499         MD_Final(&m, local_md);
500 
501         for (i = 0; i < MD_DIGEST_LENGTH / 2; i++) {
502             /* may compete with other threads */
503             state[st_idx++] ^= local_md[i];
504             if (st_idx >= st_num)
505                 st_idx = 0;
506             if (i < j)
507                 *(buf++) = local_md[i + MD_DIGEST_LENGTH / 2];
508         }
509     }
510 
511     MD_Init(&m);
512     MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c));
513     MD_Update(&m, local_md, MD_DIGEST_LENGTH);
514     if (lock)
515         CRYPTO_w_lock(CRYPTO_LOCK_RAND);
516     MD_Update(&m, md, MD_DIGEST_LENGTH);
517     MD_Final(&m, md);
518     if (lock)
519         CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
520 
521     EVP_MD_CTX_cleanup(&m);
522     if (ok)
523         return (1);
524     else if (pseudo)
525         return 0;
526     else {
527         RANDerr(RAND_F_SSLEAY_RAND_BYTES, RAND_R_PRNG_NOT_SEEDED);
528         ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
529                            "http://www.openssl.org/support/faq.html");
530         return (0);
531     }
532 }
533 
ssleay_rand_nopseudo_bytes(unsigned char * buf,int num)534 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
535 {
536     return ssleay_rand_bytes(buf, num, 0, 1);
537 }
538 
539 /*
540  * pseudo-random bytes that are guaranteed to be unique but not unpredictable
541  */
ssleay_rand_pseudo_bytes(unsigned char * buf,int num)542 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
543 {
544     return ssleay_rand_bytes(buf, num, 1, 1);
545 }
546 
ssleay_rand_status(void)547 static int ssleay_rand_status(void)
548 {
549     CRYPTO_THREADID cur;
550     int ret;
551     int do_not_lock;
552 
553     CRYPTO_THREADID_current(&cur);
554     /*
555      * check if we already have the lock (could happen if a RAND_poll()
556      * implementation calls RAND_status())
557      */
558     if (crypto_lock_rand) {
559         CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
560         do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
561         CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
562     } else
563         do_not_lock = 0;
564 
565     if (!do_not_lock) {
566         CRYPTO_w_lock(CRYPTO_LOCK_RAND);
567 
568         /*
569          * prevent ssleay_rand_bytes() from trying to obtain the lock again
570          */
571         CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
572         CRYPTO_THREADID_cpy(&locking_threadid, &cur);
573         CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
574         crypto_lock_rand = 1;
575     }
576 
577     if (!initialized) {
578         RAND_poll();
579         initialized = 1;
580     }
581 
582     ret = entropy >= ENTROPY_NEEDED;
583 
584     if (!do_not_lock) {
585         /* before unlocking, we must clear 'crypto_lock_rand' */
586         crypto_lock_rand = 0;
587 
588         CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
589     }
590 
591     return ret;
592 }
593