1 /* crypto/rand/md_rand.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58 /* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112 #define OPENSSL_FIPSEVP
113
114 #ifdef MD_RAND_DEBUG
115 # ifndef NDEBUG
116 # define NDEBUG
117 # endif
118 #endif
119
120 #include <assert.h>
121 #include <stdio.h>
122 #include <string.h>
123
124 #include "e_os.h"
125
126 #include <openssl/crypto.h>
127 #include <openssl/rand.h>
128 #include "rand_lcl.h"
129
130 #include <openssl/err.h>
131
132 #ifdef BN_DEBUG
133 # define PREDICT
134 #endif
135
136 /* #define PREDICT 1 */
137
138 #define STATE_SIZE 1023
139 static size_t state_num = 0, state_index = 0;
140 static unsigned char state[STATE_SIZE + MD_DIGEST_LENGTH];
141 static unsigned char md[MD_DIGEST_LENGTH];
142 static long md_count[2] = { 0, 0 };
143
144 static double entropy = 0;
145 static int initialized = 0;
146
147 static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
148 * holds CRYPTO_LOCK_RAND (to
149 * prevent double locking) */
150 /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
151 /* valid iff crypto_lock_rand is set */
152 static CRYPTO_THREADID locking_threadid;
153
154 #ifdef PREDICT
155 int rand_predictable = 0;
156 #endif
157
158 const char RAND_version[] = "RAND" OPENSSL_VERSION_PTEXT;
159
160 static void ssleay_rand_cleanup(void);
161 static void ssleay_rand_seed(const void *buf, int num);
162 static void ssleay_rand_add(const void *buf, int num, double add_entropy);
163 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num);
164 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
165 static int ssleay_rand_status(void);
166
167 RAND_METHOD rand_ssleay_meth = {
168 ssleay_rand_seed,
169 ssleay_rand_nopseudo_bytes,
170 ssleay_rand_cleanup,
171 ssleay_rand_add,
172 ssleay_rand_pseudo_bytes,
173 ssleay_rand_status
174 };
175
RAND_SSLeay(void)176 RAND_METHOD *RAND_SSLeay(void)
177 {
178 return (&rand_ssleay_meth);
179 }
180
ssleay_rand_cleanup(void)181 static void ssleay_rand_cleanup(void)
182 {
183 OPENSSL_cleanse(state, sizeof(state));
184 state_num = 0;
185 state_index = 0;
186 OPENSSL_cleanse(md, MD_DIGEST_LENGTH);
187 md_count[0] = 0;
188 md_count[1] = 0;
189 entropy = 0;
190 initialized = 0;
191 }
192
ssleay_rand_add(const void * buf,int num,double add)193 static void ssleay_rand_add(const void *buf, int num, double add)
194 {
195 int i, j, k, st_idx;
196 long md_c[2];
197 unsigned char local_md[MD_DIGEST_LENGTH];
198 EVP_MD_CTX m;
199 int do_not_lock;
200
201 if (!num)
202 return;
203
204 /*
205 * (Based on the rand(3) manpage)
206 *
207 * The input is chopped up into units of 20 bytes (or less for
208 * the last block). Each of these blocks is run through the hash
209 * function as follows: The data passed to the hash function
210 * is the current 'md', the same number of bytes from the 'state'
211 * (the location determined by in incremented looping index) as
212 * the current 'block', the new key data 'block', and 'count'
213 * (which is incremented after each use).
214 * The result of this is kept in 'md' and also xored into the
215 * 'state' at the same locations that were used as input into the
216 * hash function.
217 */
218
219 /* check if we already have the lock */
220 if (crypto_lock_rand) {
221 CRYPTO_THREADID cur;
222 CRYPTO_THREADID_current(&cur);
223 CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
224 do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
225 CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
226 } else
227 do_not_lock = 0;
228
229 if (!do_not_lock)
230 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
231 st_idx = state_index;
232
233 /*
234 * use our own copies of the counters so that even if a concurrent thread
235 * seeds with exactly the same data and uses the same subarray there's
236 * _some_ difference
237 */
238 md_c[0] = md_count[0];
239 md_c[1] = md_count[1];
240
241 memcpy(local_md, md, sizeof md);
242
243 /* state_index <= state_num <= STATE_SIZE */
244 state_index += num;
245 if (state_index >= STATE_SIZE) {
246 state_index %= STATE_SIZE;
247 state_num = STATE_SIZE;
248 } else if (state_num < STATE_SIZE) {
249 if (state_index > state_num)
250 state_num = state_index;
251 }
252 /* state_index <= state_num <= STATE_SIZE */
253
254 /*
255 * state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] are what we
256 * will use now, but other threads may use them as well
257 */
258
259 md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
260
261 if (!do_not_lock)
262 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
263
264 EVP_MD_CTX_init(&m);
265 for (i = 0; i < num; i += MD_DIGEST_LENGTH) {
266 j = (num - i);
267 j = (j > MD_DIGEST_LENGTH) ? MD_DIGEST_LENGTH : j;
268
269 MD_Init(&m);
270 MD_Update(&m, local_md, MD_DIGEST_LENGTH);
271 k = (st_idx + j) - STATE_SIZE;
272 if (k > 0) {
273 MD_Update(&m, &(state[st_idx]), j - k);
274 MD_Update(&m, &(state[0]), k);
275 } else
276 MD_Update(&m, &(state[st_idx]), j);
277
278 /* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
279 MD_Update(&m, buf, j);
280 /*
281 * We know that line may cause programs such as purify and valgrind
282 * to complain about use of uninitialized data. The problem is not,
283 * it's with the caller. Removing that line will make sure you get
284 * really bad randomness and thereby other problems such as very
285 * insecure keys.
286 */
287
288 MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c));
289 MD_Final(&m, local_md);
290 md_c[1]++;
291
292 buf = (const char *)buf + j;
293
294 for (k = 0; k < j; k++) {
295 /*
296 * Parallel threads may interfere with this, but always each byte
297 * of the new state is the XOR of some previous value of its and
298 * local_md (itermediate values may be lost). Alway using locking
299 * could hurt performance more than necessary given that
300 * conflicts occur only when the total seeding is longer than the
301 * random state.
302 */
303 state[st_idx++] ^= local_md[k];
304 if (st_idx >= STATE_SIZE)
305 st_idx = 0;
306 }
307 }
308 EVP_MD_CTX_cleanup(&m);
309
310 if (!do_not_lock)
311 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
312 /*
313 * Don't just copy back local_md into md -- this could mean that other
314 * thread's seeding remains without effect (except for the incremented
315 * counter). By XORing it we keep at least as much entropy as fits into
316 * md.
317 */
318 for (k = 0; k < (int)sizeof(md); k++) {
319 md[k] ^= local_md[k];
320 }
321 if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
322 entropy += add;
323 if (!do_not_lock)
324 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
325
326 #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
327 assert(md_c[1] == md_count[1]);
328 #endif
329 }
330
ssleay_rand_seed(const void * buf,int num)331 static void ssleay_rand_seed(const void *buf, int num)
332 {
333 ssleay_rand_add(buf, num, (double)num);
334 }
335
ssleay_rand_bytes(unsigned char * buf,int num,int pseudo,int lock)336 int ssleay_rand_bytes(unsigned char *buf, int num, int pseudo, int lock)
337 {
338 static volatile int stirred_pool = 0;
339 int i, j, k;
340 size_t num_ceil, st_idx, st_num;
341 int ok;
342 long md_c[2];
343 unsigned char local_md[MD_DIGEST_LENGTH];
344 EVP_MD_CTX m;
345 #ifndef GETPID_IS_MEANINGLESS
346 pid_t curr_pid = getpid();
347 #endif
348 int do_stir_pool = 0;
349
350 #ifdef PREDICT
351 if (rand_predictable) {
352 static unsigned char val = 0;
353
354 for (i = 0; i < num; i++)
355 buf[i] = val++;
356 return (1);
357 }
358 #endif
359
360 if (num <= 0)
361 return 1;
362
363 EVP_MD_CTX_init(&m);
364 /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
365 num_ceil =
366 (1 + (num - 1) / (MD_DIGEST_LENGTH / 2)) * (MD_DIGEST_LENGTH / 2);
367
368 /*
369 * (Based on the rand(3) manpage:)
370 *
371 * For each group of 10 bytes (or less), we do the following:
372 *
373 * Input into the hash function the local 'md' (which is initialized from
374 * the global 'md' before any bytes are generated), the bytes that are to
375 * be overwritten by the random bytes, and bytes from the 'state'
376 * (incrementing looping index). From this digest output (which is kept
377 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
378 * bottom 10 bytes are xored into the 'state'.
379 *
380 * Finally, after we have finished 'num' random bytes for the
381 * caller, 'count' (which is incremented) and the local and global 'md'
382 * are fed into the hash function and the results are kept in the
383 * global 'md'.
384 */
385 if (lock)
386 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
387
388 /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
389 CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
390 CRYPTO_THREADID_current(&locking_threadid);
391 CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
392 crypto_lock_rand = 1;
393
394 if (!initialized) {
395 RAND_poll();
396 initialized = 1;
397 }
398
399 if (!stirred_pool)
400 do_stir_pool = 1;
401
402 ok = (entropy >= ENTROPY_NEEDED);
403 if (!ok) {
404 /*
405 * If the PRNG state is not yet unpredictable, then seeing the PRNG
406 * output may help attackers to determine the new state; thus we have
407 * to decrease the entropy estimate. Once we've had enough initial
408 * seeding we don't bother to adjust the entropy count, though,
409 * because we're not ambitious to provide *information-theoretic*
410 * randomness. NOTE: This approach fails if the program forks before
411 * we have enough entropy. Entropy should be collected in a separate
412 * input pool and be transferred to the output pool only when the
413 * entropy limit has been reached.
414 */
415 entropy -= num;
416 if (entropy < 0)
417 entropy = 0;
418 }
419
420 if (do_stir_pool) {
421 /*
422 * In the output function only half of 'md' remains secret, so we
423 * better make sure that the required entropy gets 'evenly
424 * distributed' through 'state', our randomness pool. The input
425 * function (ssleay_rand_add) chains all of 'md', which makes it more
426 * suitable for this purpose.
427 */
428
429 int n = STATE_SIZE; /* so that the complete pool gets accessed */
430 while (n > 0) {
431 #if MD_DIGEST_LENGTH > 20
432 # error "Please adjust DUMMY_SEED."
433 #endif
434 #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
435 /*
436 * Note that the seed does not matter, it's just that
437 * ssleay_rand_add expects to have something to hash.
438 */
439 ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
440 n -= MD_DIGEST_LENGTH;
441 }
442 if (ok)
443 stirred_pool = 1;
444 }
445
446 st_idx = state_index;
447 st_num = state_num;
448 md_c[0] = md_count[0];
449 md_c[1] = md_count[1];
450 memcpy(local_md, md, sizeof md);
451
452 state_index += num_ceil;
453 if (state_index > state_num)
454 state_index %= state_num;
455
456 /*
457 * state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] are now
458 * ours (but other threads may use them too)
459 */
460
461 md_count[0] += 1;
462
463 /* before unlocking, we must clear 'crypto_lock_rand' */
464 crypto_lock_rand = 0;
465 if (lock)
466 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
467
468 while (num > 0) {
469 /* num_ceil -= MD_DIGEST_LENGTH/2 */
470 j = (num >= MD_DIGEST_LENGTH / 2) ? MD_DIGEST_LENGTH / 2 : num;
471 num -= j;
472 MD_Init(&m);
473 #ifndef GETPID_IS_MEANINGLESS
474 if (curr_pid) { /* just in the first iteration to save time */
475 MD_Update(&m, (unsigned char *)&curr_pid, sizeof curr_pid);
476 curr_pid = 0;
477 }
478 #endif
479 MD_Update(&m, local_md, MD_DIGEST_LENGTH);
480 MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c));
481
482 #ifndef PURIFY /* purify complains */
483 /*
484 * The following line uses the supplied buffer as a small source of
485 * entropy: since this buffer is often uninitialised it may cause
486 * programs such as purify or valgrind to complain. So for those
487 * builds it is not used: the removal of such a small source of
488 * entropy has negligible impact on security.
489 */
490 MD_Update(&m, buf, j);
491 #endif
492
493 k = (st_idx + MD_DIGEST_LENGTH / 2) - st_num;
494 if (k > 0) {
495 MD_Update(&m, &(state[st_idx]), MD_DIGEST_LENGTH / 2 - k);
496 MD_Update(&m, &(state[0]), k);
497 } else
498 MD_Update(&m, &(state[st_idx]), MD_DIGEST_LENGTH / 2);
499 MD_Final(&m, local_md);
500
501 for (i = 0; i < MD_DIGEST_LENGTH / 2; i++) {
502 /* may compete with other threads */
503 state[st_idx++] ^= local_md[i];
504 if (st_idx >= st_num)
505 st_idx = 0;
506 if (i < j)
507 *(buf++) = local_md[i + MD_DIGEST_LENGTH / 2];
508 }
509 }
510
511 MD_Init(&m);
512 MD_Update(&m, (unsigned char *)&(md_c[0]), sizeof(md_c));
513 MD_Update(&m, local_md, MD_DIGEST_LENGTH);
514 if (lock)
515 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
516 MD_Update(&m, md, MD_DIGEST_LENGTH);
517 MD_Final(&m, md);
518 if (lock)
519 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
520
521 EVP_MD_CTX_cleanup(&m);
522 if (ok)
523 return (1);
524 else if (pseudo)
525 return 0;
526 else {
527 RANDerr(RAND_F_SSLEAY_RAND_BYTES, RAND_R_PRNG_NOT_SEEDED);
528 ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
529 "http://www.openssl.org/support/faq.html");
530 return (0);
531 }
532 }
533
ssleay_rand_nopseudo_bytes(unsigned char * buf,int num)534 static int ssleay_rand_nopseudo_bytes(unsigned char *buf, int num)
535 {
536 return ssleay_rand_bytes(buf, num, 0, 1);
537 }
538
539 /*
540 * pseudo-random bytes that are guaranteed to be unique but not unpredictable
541 */
ssleay_rand_pseudo_bytes(unsigned char * buf,int num)542 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
543 {
544 return ssleay_rand_bytes(buf, num, 1, 1);
545 }
546
ssleay_rand_status(void)547 static int ssleay_rand_status(void)
548 {
549 CRYPTO_THREADID cur;
550 int ret;
551 int do_not_lock;
552
553 CRYPTO_THREADID_current(&cur);
554 /*
555 * check if we already have the lock (could happen if a RAND_poll()
556 * implementation calls RAND_status())
557 */
558 if (crypto_lock_rand) {
559 CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
560 do_not_lock = !CRYPTO_THREADID_cmp(&locking_threadid, &cur);
561 CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
562 } else
563 do_not_lock = 0;
564
565 if (!do_not_lock) {
566 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
567
568 /*
569 * prevent ssleay_rand_bytes() from trying to obtain the lock again
570 */
571 CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
572 CRYPTO_THREADID_cpy(&locking_threadid, &cur);
573 CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
574 crypto_lock_rand = 1;
575 }
576
577 if (!initialized) {
578 RAND_poll();
579 initialized = 1;
580 }
581
582 ret = entropy >= ENTROPY_NEEDED;
583
584 if (!do_not_lock) {
585 /* before unlocking, we must clear 'crypto_lock_rand' */
586 crypto_lock_rand = 0;
587
588 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
589 }
590
591 return ret;
592 }
593