1#!/usr/bin/env perl 2 3# ==================================================================== 4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL 5# project. The module is, however, dual licensed under OpenSSL and 6# CRYPTOGAMS licenses depending on where you obtain it. For further 7# details see http://www.openssl.org/~appro/cryptogams/. 8# ==================================================================== 9 10# January 2009 11# 12# Provided that UltraSPARC VIS instructions are pipe-lined(*) and 13# pairable(*) with IALU ones, offloading of Xupdate to the UltraSPARC 14# Graphic Unit would make it possible to achieve higher instruction- 15# level parallelism, ILP, and thus higher performance. It should be 16# explicitly noted that ILP is the keyword, and it means that this 17# code would be unsuitable for cores like UltraSPARC-Tx. The idea is 18# not really novel, Sun had VIS-powered implementation for a while. 19# Unlike Sun's implementation this one can process multiple unaligned 20# input blocks, and as such works as drop-in replacement for OpenSSL 21# sha1_block_data_order. Performance improvement was measured to be 22# 40% over pure IALU sha1-sparcv9.pl on UltraSPARC-IIi, but 12% on 23# UltraSPARC-III. See below for discussion... 24# 25# The module does not present direct interest for OpenSSL, because 26# it doesn't provide better performance on contemporary SPARCv9 CPUs, 27# UltraSPARC-Tx and SPARC64-V[II] to be specific. Those who feel they 28# absolutely must score on UltraSPARC-I-IV can simply replace 29# crypto/sha/asm/sha1-sparcv9.pl with this module. 30# 31# (*) "Pipe-lined" means that even if it takes several cycles to 32# complete, next instruction using same functional unit [but not 33# depending on the result of the current instruction] can start 34# execution without having to wait for the unit. "Pairable" 35# means that two [or more] independent instructions can be 36# issued at the very same time. 37 38$bits=32; 39for (@ARGV) { $bits=64 if (/\-m64/ || /\-xarch\=v9/); } 40if ($bits==64) { $bias=2047; $frame=192; } 41else { $bias=0; $frame=112; } 42 43$output=shift; 44open STDOUT,">$output"; 45 46$ctx="%i0"; 47$inp="%i1"; 48$len="%i2"; 49$tmp0="%i3"; 50$tmp1="%i4"; 51$tmp2="%i5"; 52$tmp3="%g5"; 53 54$base="%g1"; 55$align="%g4"; 56$Xfer="%o5"; 57$nXfer=$tmp3; 58$Xi="%o7"; 59 60$A="%l0"; 61$B="%l1"; 62$C="%l2"; 63$D="%l3"; 64$E="%l4"; 65@V=($A,$B,$C,$D,$E); 66 67$Actx="%o0"; 68$Bctx="%o1"; 69$Cctx="%o2"; 70$Dctx="%o3"; 71$Ectx="%o4"; 72 73$fmul="%f32"; 74$VK_00_19="%f34"; 75$VK_20_39="%f36"; 76$VK_40_59="%f38"; 77$VK_60_79="%f40"; 78@VK=($VK_00_19,$VK_20_39,$VK_40_59,$VK_60_79); 79@X=("%f0", "%f1", "%f2", "%f3", "%f4", "%f5", "%f6", "%f7", 80 "%f8", "%f9","%f10","%f11","%f12","%f13","%f14","%f15","%f16"); 81 82# This is reference 2x-parallelized VIS-powered Xupdate procedure. It 83# covers even K_NN_MM addition... 84sub Xupdate { 85my ($i)=@_; 86my $K=@VK[($i+16)/20]; 87my $j=($i+16)%16; 88 89# [ provided that GSR.alignaddr_offset is 5, $mul contains 90# 0x100ULL<<32|0x100 value and K_NN_MM are pre-loaded to 91# chosen registers... ] 92$code.=<<___; 93 fxors @X[($j+13)%16],@X[$j],@X[$j] !-1/-1/-1:X[0]^=X[13] 94 fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] 95 fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] 96 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] 97 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 98 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 99 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 100 ![fxors %f15,%f2,%f2] 101 for %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp 102 ![fxors %f0,%f3,%f3] !10/17/12:X[0] dependency 103 fpadd32 $K,@X[$j],%f20 104 std %f20,[$Xfer+`4*$j`] 105___ 106# The numbers delimited with slash are the earliest possible dispatch 107# cycles for given instruction assuming 1 cycle latency for simple VIS 108# instructions, such as on UltraSPARC-I&II, 3 cycles latency, such as 109# on UltraSPARC-III&IV, and 2 cycles latency(*), respectively. Being 110# 2x-parallelized the procedure is "worth" 5, 8.5 or 6 ticks per SHA1 111# round. As [long as] FPU/VIS instructions are perfectly pairable with 112# IALU ones, the round timing is defined by the maximum between VIS 113# and IALU timings. The latter varies from round to round and averages 114# out at 6.25 ticks. This means that USI&II should operate at IALU 115# rate, while USIII&IV - at VIS rate. This explains why performance 116# improvement varies among processors. Well, given that pure IALU 117# sha1-sparcv9.pl module exhibits virtually uniform performance of 118# ~9.3 cycles per SHA1 round. Timings mentioned above are theoretical 119# lower limits. Real-life performance was measured to be 6.6 cycles 120# per SHA1 round on USIIi and 8.3 on USIII. The latter is lower than 121# half-round VIS timing, because there are 16 Xupdate-free rounds, 122# which "push down" average theoretical timing to 8 cycles... 123 124# (*) SPARC64-V[II] was originally believed to have 2 cycles VIS 125# latency. Well, it might have, but it doesn't have dedicated 126# VIS-unit. Instead, VIS instructions are executed by other 127# functional units, ones used here - by IALU. This doesn't 128# improve effective ILP... 129} 130 131# The reference Xupdate procedure is then "strained" over *pairs* of 132# BODY_NN_MM and kind of modulo-scheduled in respect to X[n]^=X[n+13] 133# and K_NN_MM addition. It's "running" 15 rounds ahead, which leaves 134# plenty of room to amortize for read-after-write hazard, as well as 135# to fetch and align input for the next spin. The VIS instructions are 136# scheduled for latency of 2 cycles, because there are not enough IALU 137# instructions to schedule for latency of 3, while scheduling for 1 138# would give no gain on USI&II anyway. 139 140sub BODY_00_19 { 141my ($i,$a,$b,$c,$d,$e)=@_; 142my $j=$i&~1; 143my $k=($j+16+2)%16; # ahead reference 144my $l=($j+16-2)%16; # behind reference 145my $K=@VK[($j+16-2)/20]; 146 147$j=($j+16)%16; 148 149$code.=<<___ if (!($i&1)); 150 sll $a,5,$tmp0 !! $i 151 and $c,$b,$tmp3 152 ld [$Xfer+`4*($i%16)`],$Xi 153 fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] 154 srl $a,27,$tmp1 155 add $tmp0,$e,$e 156 fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] 157 sll $b,30,$tmp2 158 add $tmp1,$e,$e 159 andn $d,$b,$tmp1 160 add $Xi,$e,$e 161 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] 162 srl $b,2,$b 163 or $tmp1,$tmp3,$tmp1 164 or $tmp2,$b,$b 165 add $tmp1,$e,$e 166 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 167___ 168$code.=<<___ if ($i&1); 169 sll $a,5,$tmp0 !! $i 170 and $c,$b,$tmp3 171 ld [$Xfer+`4*($i%16)`],$Xi 172 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 173 srl $a,27,$tmp1 174 add $tmp0,$e,$e 175 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 176 sll $b,30,$tmp2 177 add $tmp1,$e,$e 178 fpadd32 $K,@X[$l],%f20 ! 179 andn $d,$b,$tmp1 180 add $Xi,$e,$e 181 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] 182 srl $b,2,$b 183 or $tmp1,$tmp3,$tmp1 184 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp 185 or $tmp2,$b,$b 186 add $tmp1,$e,$e 187___ 188$code.=<<___ if ($i&1 && $i>=2); 189 std %f20,[$Xfer+`4*$l`] ! 190___ 191} 192 193sub BODY_20_39 { 194my ($i,$a,$b,$c,$d,$e)=@_; 195my $j=$i&~1; 196my $k=($j+16+2)%16; # ahead reference 197my $l=($j+16-2)%16; # behind reference 198my $K=@VK[($j+16-2)/20]; 199 200$j=($j+16)%16; 201 202$code.=<<___ if (!($i&1) && $i<64); 203 sll $a,5,$tmp0 !! $i 204 ld [$Xfer+`4*($i%16)`],$Xi 205 fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] 206 srl $a,27,$tmp1 207 add $tmp0,$e,$e 208 fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] 209 xor $c,$b,$tmp0 210 add $tmp1,$e,$e 211 sll $b,30,$tmp2 212 xor $d,$tmp0,$tmp1 213 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] 214 srl $b,2,$b 215 add $tmp1,$e,$e 216 or $tmp2,$b,$b 217 add $Xi,$e,$e 218 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 219___ 220$code.=<<___ if ($i&1 && $i<64); 221 sll $a,5,$tmp0 !! $i 222 ld [$Xfer+`4*($i%16)`],$Xi 223 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 224 srl $a,27,$tmp1 225 add $tmp0,$e,$e 226 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 227 xor $c,$b,$tmp0 228 add $tmp1,$e,$e 229 fpadd32 $K,@X[$l],%f20 ! 230 sll $b,30,$tmp2 231 xor $d,$tmp0,$tmp1 232 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] 233 srl $b,2,$b 234 add $tmp1,$e,$e 235 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp 236 or $tmp2,$b,$b 237 add $Xi,$e,$e 238 std %f20,[$Xfer+`4*$l`] ! 239___ 240$code.=<<___ if ($i==64); 241 sll $a,5,$tmp0 !! $i 242 ld [$Xfer+`4*($i%16)`],$Xi 243 fpadd32 $K,@X[$l],%f20 244 srl $a,27,$tmp1 245 add $tmp0,$e,$e 246 xor $c,$b,$tmp0 247 add $tmp1,$e,$e 248 sll $b,30,$tmp2 249 xor $d,$tmp0,$tmp1 250 std %f20,[$Xfer+`4*$l`] 251 srl $b,2,$b 252 add $tmp1,$e,$e 253 or $tmp2,$b,$b 254 add $Xi,$e,$e 255___ 256$code.=<<___ if ($i>64); 257 sll $a,5,$tmp0 !! $i 258 ld [$Xfer+`4*($i%16)`],$Xi 259 srl $a,27,$tmp1 260 add $tmp0,$e,$e 261 xor $c,$b,$tmp0 262 add $tmp1,$e,$e 263 sll $b,30,$tmp2 264 xor $d,$tmp0,$tmp1 265 srl $b,2,$b 266 add $tmp1,$e,$e 267 or $tmp2,$b,$b 268 add $Xi,$e,$e 269___ 270} 271 272sub BODY_40_59 { 273my ($i,$a,$b,$c,$d,$e)=@_; 274my $j=$i&~1; 275my $k=($j+16+2)%16; # ahead reference 276my $l=($j+16-2)%16; # behind reference 277my $K=@VK[($j+16-2)/20]; 278 279$j=($j+16)%16; 280 281$code.=<<___ if (!($i&1)); 282 sll $a,5,$tmp0 !! $i 283 ld [$Xfer+`4*($i%16)`],$Xi 284 fxors @X[($j+14)%16],@X[$j+1],@X[$j+1]! 0/ 0/ 0:X[1]^=X[14] 285 srl $a,27,$tmp1 286 add $tmp0,$e,$e 287 fxor @X[($j+2)%16],@X[($j+8)%16],%f18! 1/ 1/ 1:Tmp=X[2,3]^X[8,9] 288 and $c,$b,$tmp0 289 add $tmp1,$e,$e 290 sll $b,30,$tmp2 291 or $c,$b,$tmp1 292 fxor %f18,@X[$j],@X[$j] ! 2/ 4/ 3:X[0,1]^=X[2,3]^X[8,9] 293 srl $b,2,$b 294 and $d,$tmp1,$tmp1 295 add $Xi,$e,$e 296 or $tmp1,$tmp0,$tmp1 297 faligndata @X[$j],@X[$j],%f18 ! 3/ 7/ 5:Tmp=X[0,1]>>>24 298 or $tmp2,$b,$b 299 add $tmp1,$e,$e 300 fpadd32 @X[$j],@X[$j],@X[$j] ! 4/ 8/ 6:X[0,1]<<=1 301___ 302$code.=<<___ if ($i&1); 303 sll $a,5,$tmp0 !! $i 304 ld [$Xfer+`4*($i%16)`],$Xi 305 srl $a,27,$tmp1 306 add $tmp0,$e,$e 307 fmul8ulx16 %f18,$fmul,%f18 ! 5/10/ 7:Tmp>>=7, Tmp&=1 308 and $c,$b,$tmp0 309 add $tmp1,$e,$e 310 fpadd32 $K,@X[$l],%f20 ! 311 sll $b,30,$tmp2 312 or $c,$b,$tmp1 313 fxors @X[($k+13)%16],@X[$k],@X[$k] !-1/-1/-1:X[0]^=X[13] 314 srl $b,2,$b 315 and $d,$tmp1,$tmp1 316 fxor %f18,@X[$j],@X[$j] ! 8/14/10:X[0,1]|=Tmp 317 add $Xi,$e,$e 318 or $tmp1,$tmp0,$tmp1 319 or $tmp2,$b,$b 320 add $tmp1,$e,$e 321 std %f20,[$Xfer+`4*$l`] ! 322___ 323} 324 325# If there is more data to process, then we pre-fetch the data for 326# next iteration in last ten rounds... 327sub BODY_70_79 { 328my ($i,$a,$b,$c,$d,$e)=@_; 329my $j=$i&~1; 330my $m=($i%8)*2; 331 332$j=($j+16)%16; 333 334$code.=<<___ if ($i==70); 335 sll $a,5,$tmp0 !! $i 336 ld [$Xfer+`4*($i%16)`],$Xi 337 srl $a,27,$tmp1 338 add $tmp0,$e,$e 339 ldd [$inp+64],@X[0] 340 xor $c,$b,$tmp0 341 add $tmp1,$e,$e 342 sll $b,30,$tmp2 343 xor $d,$tmp0,$tmp1 344 srl $b,2,$b 345 add $tmp1,$e,$e 346 or $tmp2,$b,$b 347 add $Xi,$e,$e 348 349 and $inp,-64,$nXfer 350 inc 64,$inp 351 and $nXfer,255,$nXfer 352 alignaddr %g0,$align,%g0 353 add $base,$nXfer,$nXfer 354___ 355$code.=<<___ if ($i==71); 356 sll $a,5,$tmp0 !! $i 357 ld [$Xfer+`4*($i%16)`],$Xi 358 srl $a,27,$tmp1 359 add $tmp0,$e,$e 360 xor $c,$b,$tmp0 361 add $tmp1,$e,$e 362 sll $b,30,$tmp2 363 xor $d,$tmp0,$tmp1 364 srl $b,2,$b 365 add $tmp1,$e,$e 366 or $tmp2,$b,$b 367 add $Xi,$e,$e 368___ 369$code.=<<___ if ($i>=72); 370 faligndata @X[$m],@X[$m+2],@X[$m] 371 sll $a,5,$tmp0 !! $i 372 ld [$Xfer+`4*($i%16)`],$Xi 373 srl $a,27,$tmp1 374 add $tmp0,$e,$e 375 xor $c,$b,$tmp0 376 add $tmp1,$e,$e 377 fpadd32 $VK_00_19,@X[$m],%f20 378 sll $b,30,$tmp2 379 xor $d,$tmp0,$tmp1 380 srl $b,2,$b 381 add $tmp1,$e,$e 382 or $tmp2,$b,$b 383 add $Xi,$e,$e 384___ 385$code.=<<___ if ($i<77); 386 ldd [$inp+`8*($i+1-70)`],@X[2*($i+1-70)] 387___ 388$code.=<<___ if ($i==77); # redundant if $inp was aligned 389 add $align,63,$tmp0 390 and $tmp0,-8,$tmp0 391 ldd [$inp+$tmp0],@X[16] 392___ 393$code.=<<___ if ($i>=72); 394 std %f20,[$nXfer+`4*$m`] 395___ 396} 397 398$code.=<<___; 399.section ".text",#alloc,#execinstr 400 401.align 64 402vis_const: 403.long 0x5a827999,0x5a827999 ! K_00_19 404.long 0x6ed9eba1,0x6ed9eba1 ! K_20_39 405.long 0x8f1bbcdc,0x8f1bbcdc ! K_40_59 406.long 0xca62c1d6,0xca62c1d6 ! K_60_79 407.long 0x00000100,0x00000100 408.align 64 409.type vis_const,#object 410.size vis_const,(.-vis_const) 411 412.globl sha1_block_data_order 413sha1_block_data_order: 414 save %sp,-$frame,%sp 415 add %fp,$bias-256,$base 416 4171: call .+8 418 add %o7,vis_const-1b,$tmp0 419 420 ldd [$tmp0+0],$VK_00_19 421 ldd [$tmp0+8],$VK_20_39 422 ldd [$tmp0+16],$VK_40_59 423 ldd [$tmp0+24],$VK_60_79 424 ldd [$tmp0+32],$fmul 425 426 ld [$ctx+0],$Actx 427 and $base,-256,$base 428 ld [$ctx+4],$Bctx 429 sub $base,$bias+$frame,%sp 430 ld [$ctx+8],$Cctx 431 and $inp,7,$align 432 ld [$ctx+12],$Dctx 433 and $inp,-8,$inp 434 ld [$ctx+16],$Ectx 435 436 ! X[16] is maintained in FP register bank 437 alignaddr %g0,$align,%g0 438 ldd [$inp+0],@X[0] 439 sub $inp,-64,$Xfer 440 ldd [$inp+8],@X[2] 441 and $Xfer,-64,$Xfer 442 ldd [$inp+16],@X[4] 443 and $Xfer,255,$Xfer 444 ldd [$inp+24],@X[6] 445 add $base,$Xfer,$Xfer 446 ldd [$inp+32],@X[8] 447 ldd [$inp+40],@X[10] 448 ldd [$inp+48],@X[12] 449 brz,pt $align,.Laligned 450 ldd [$inp+56],@X[14] 451 452 ldd [$inp+64],@X[16] 453 faligndata @X[0],@X[2],@X[0] 454 faligndata @X[2],@X[4],@X[2] 455 faligndata @X[4],@X[6],@X[4] 456 faligndata @X[6],@X[8],@X[6] 457 faligndata @X[8],@X[10],@X[8] 458 faligndata @X[10],@X[12],@X[10] 459 faligndata @X[12],@X[14],@X[12] 460 faligndata @X[14],@X[16],@X[14] 461 462.Laligned: 463 mov 5,$tmp0 464 dec 1,$len 465 alignaddr %g0,$tmp0,%g0 466 fpadd32 $VK_00_19,@X[0],%f16 467 fpadd32 $VK_00_19,@X[2],%f18 468 fpadd32 $VK_00_19,@X[4],%f20 469 fpadd32 $VK_00_19,@X[6],%f22 470 fpadd32 $VK_00_19,@X[8],%f24 471 fpadd32 $VK_00_19,@X[10],%f26 472 fpadd32 $VK_00_19,@X[12],%f28 473 fpadd32 $VK_00_19,@X[14],%f30 474 std %f16,[$Xfer+0] 475 mov $Actx,$A 476 std %f18,[$Xfer+8] 477 mov $Bctx,$B 478 std %f20,[$Xfer+16] 479 mov $Cctx,$C 480 std %f22,[$Xfer+24] 481 mov $Dctx,$D 482 std %f24,[$Xfer+32] 483 mov $Ectx,$E 484 std %f26,[$Xfer+40] 485 fxors @X[13],@X[0],@X[0] 486 std %f28,[$Xfer+48] 487 ba .Loop 488 std %f30,[$Xfer+56] 489.align 32 490.Loop: 491___ 492for ($i=0;$i<20;$i++) { &BODY_00_19($i,@V); unshift(@V,pop(@V)); } 493for (;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } 494for (;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); } 495for (;$i<70;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } 496$code.=<<___; 497 tst $len 498 bz,pn `$bits==32?"%icc":"%xcc"`,.Ltail 499 nop 500___ 501for (;$i<80;$i++) { &BODY_70_79($i,@V); unshift(@V,pop(@V)); } 502$code.=<<___; 503 add $A,$Actx,$Actx 504 add $B,$Bctx,$Bctx 505 add $C,$Cctx,$Cctx 506 add $D,$Dctx,$Dctx 507 add $E,$Ectx,$Ectx 508 mov 5,$tmp0 509 fxors @X[13],@X[0],@X[0] 510 mov $Actx,$A 511 mov $Bctx,$B 512 mov $Cctx,$C 513 mov $Dctx,$D 514 mov $Ectx,$E 515 alignaddr %g0,$tmp0,%g0 516 dec 1,$len 517 ba .Loop 518 mov $nXfer,$Xfer 519 520.align 32 521.Ltail: 522___ 523for($i=70;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); } 524$code.=<<___; 525 add $A,$Actx,$Actx 526 add $B,$Bctx,$Bctx 527 add $C,$Cctx,$Cctx 528 add $D,$Dctx,$Dctx 529 add $E,$Ectx,$Ectx 530 531 st $Actx,[$ctx+0] 532 st $Bctx,[$ctx+4] 533 st $Cctx,[$ctx+8] 534 st $Dctx,[$ctx+12] 535 st $Ectx,[$ctx+16] 536 537 ret 538 restore 539.type sha1_block_data_order,#function 540.size sha1_block_data_order,(.-sha1_block_data_order) 541.asciz "SHA1 block transform for SPARCv9a, CRYPTOGAMS by <appro\@openssl.org>" 542.align 4 543___ 544 545# Purpose of these subroutines is to explicitly encode VIS instructions, 546# so that one can compile the module without having to specify VIS 547# extentions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a. 548# Idea is to reserve for option to produce "universal" binary and let 549# programmer detect if current CPU is VIS capable at run-time. 550sub unvis { 551my ($mnemonic,$rs1,$rs2,$rd)=@_; 552my ($ref,$opf); 553my %visopf = ( "fmul8ulx16" => 0x037, 554 "faligndata" => 0x048, 555 "fpadd32" => 0x052, 556 "fxor" => 0x06c, 557 "fxors" => 0x06d ); 558 559 $ref = "$mnemonic\t$rs1,$rs2,$rd"; 560 561 if ($opf=$visopf{$mnemonic}) { 562 foreach ($rs1,$rs2,$rd) { 563 return $ref if (!/%f([0-9]{1,2})/); 564 $_=$1; 565 if ($1>=32) { 566 return $ref if ($1&1); 567 # re-encode for upper double register addressing 568 $_=($1|$1>>5)&31; 569 } 570 } 571 572 return sprintf ".word\t0x%08x !%s", 573 0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2, 574 $ref; 575 } else { 576 return $ref; 577 } 578} 579sub unalignaddr { 580my ($mnemonic,$rs1,$rs2,$rd)=@_; 581my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 ); 582my $ref="$mnemonic\t$rs1,$rs2,$rd"; 583 584 foreach ($rs1,$rs2,$rd) { 585 if (/%([goli])([0-7])/) { $_=$bias{$1}+$2; } 586 else { return $ref; } 587 } 588 return sprintf ".word\t0x%08x !%s", 589 0x81b00300|$rd<<25|$rs1<<14|$rs2, 590 $ref; 591} 592 593$code =~ s/\`([^\`]*)\`/eval $1/gem; 594$code =~ s/\b(f[^\s]*)\s+(%f[0-9]{1,2}),(%f[0-9]{1,2}),(%f[0-9]{1,2})/ 595 &unvis($1,$2,$3,$4) 596 /gem; 597$code =~ s/\b(alignaddr)\s+(%[goli][0-7]),(%[goli][0-7]),(%[goli][0-7])/ 598 &unalignaddr($1,$2,$3,$4) 599 /gem; 600print $code; 601close STDOUT; 602