1=pod 2 3=head1 NAME 4 5BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add, 6BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd - 7arithmetic operations on BIGNUMs 8 9=head1 SYNOPSIS 10 11 #include <openssl/bn.h> 12 13 int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); 14 15 int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b); 16 17 int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); 18 19 int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx); 20 21 int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d, 22 BN_CTX *ctx); 23 24 int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); 25 26 int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); 27 28 int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, 29 BN_CTX *ctx); 30 31 int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, 32 BN_CTX *ctx); 33 34 int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m, 35 BN_CTX *ctx); 36 37 int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx); 38 39 int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx); 40 41 int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p, 42 const BIGNUM *m, BN_CTX *ctx); 43 44 int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx); 45 46=head1 DESCRIPTION 47 48BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>). 49I<r> may be the same B<BIGNUM> as I<a> or I<b>. 50 51BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>). 52 53BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>). 54I<r> may be the same B<BIGNUM> as I<a> or I<b>. 55For multiplication by powers of 2, use L<BN_lshift(3)|BN_lshift(3)>. 56 57BN_sqr() takes the square of I<a> and places the result in I<r> 58(C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>. 59This function is faster than BN_mul(r,a,a). 60 61BN_div() divides I<a> by I<d> and places the result in I<dv> and the 62remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may 63be B<NULL>, in which case the respective value is not returned. 64The result is rounded towards zero; thus if I<a> is negative, the 65remainder will be zero or negative. 66For division by powers of 2, use BN_rshift(3). 67 68BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>. 69 70BN_nnmod() reduces I<a> modulo I<m> and places the non-negative 71remainder in I<r>. 72 73BN_mod_add() adds I<a> to I<b> modulo I<m> and places the non-negative 74result in I<r>. 75 76BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the 77non-negative result in I<r>. 78 79BN_mod_mul() multiplies I<a> by I<b> and finds the non-negative 80remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be 81the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for 82repeated computations using the same modulus, see 83L<BN_mod_mul_montgomery(3)|BN_mod_mul_montgomery(3)> and 84L<BN_mod_mul_reciprocal(3)|BN_mod_mul_reciprocal(3)>. 85 86BN_mod_sqr() takes the square of I<a> modulo B<m> and places the 87result in I<r>. 88 89BN_exp() raises I<a> to the I<p>-th power and places the result in I<r> 90(C<r=a^p>). This function is faster than repeated applications of 91BN_mul(). 92 93BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p % 94m>). This function uses less time and space than BN_exp(). 95 96BN_gcd() computes the greatest common divisor of I<a> and I<b> and 97places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or 98I<b>. 99 100For all functions, I<ctx> is a previously allocated B<BN_CTX> used for 101temporary variables; see L<BN_CTX_new(3)|BN_CTX_new(3)>. 102 103Unless noted otherwise, the result B<BIGNUM> must be different from 104the arguments. 105 106=head1 RETURN VALUES 107 108For all functions, 1 is returned for success, 0 on error. The return 109value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>). 110The error codes can be obtained by L<ERR_get_error(3)|ERR_get_error(3)>. 111 112=head1 SEE ALSO 113 114L<bn(3)|bn(3)>, L<ERR_get_error(3)|ERR_get_error(3)>, L<BN_CTX_new(3)|BN_CTX_new(3)>, 115L<BN_add_word(3)|BN_add_word(3)>, L<BN_set_bit(3)|BN_set_bit(3)> 116 117=head1 HISTORY 118 119BN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(), 120BN_mod_exp() and BN_gcd() are available in all versions of SSLeay and 121OpenSSL. The I<ctx> argument to BN_mul() was added in SSLeay 1220.9.1b. BN_exp() appeared in SSLeay 0.9.0. 123BN_nnmod(), BN_mod_add(), BN_mod_sub(), and BN_mod_sqr() were added in 124OpenSSL 0.9.7. 125 126=cut 127