1 /*	$OpenBSD: queue.h,v 1.32 2007/04/30 18:42:34 pedro Exp $	*/
2 /*	$NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $	*/
3 
4 /*
5  * Copyright (c) 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
33  */
34 
35 #ifndef	_SYS_QUEUE_H_
36 #define	_SYS_QUEUE_H_
37 
38 /*
39  * This file defines five types of data structures: singly-linked lists,
40  * lists, simple queues, tail queues, and circular queues.
41  *
42  *
43  * A singly-linked list is headed by a single forward pointer. The elements
44  * are singly linked for minimum space and pointer manipulation overhead at
45  * the expense of O(n) removal for arbitrary elements. New elements can be
46  * added to the list after an existing element or at the head of the list.
47  * Elements being removed from the head of the list should use the explicit
48  * macro for this purpose for optimum efficiency. A singly-linked list may
49  * only be traversed in the forward direction.  Singly-linked lists are ideal
50  * for applications with large datasets and few or no removals or for
51  * implementing a LIFO queue.
52  *
53  * A list is headed by a single forward pointer (or an array of forward
54  * pointers for a hash table header). The elements are doubly linked
55  * so that an arbitrary element can be removed without a need to
56  * traverse the list. New elements can be added to the list before
57  * or after an existing element or at the head of the list. A list
58  * may only be traversed in the forward direction.
59  *
60  * A simple queue is headed by a pair of pointers, one the head of the
61  * list and the other to the tail of the list. The elements are singly
62  * linked to save space, so elements can only be removed from the
63  * head of the list. New elements can be added to the list before or after
64  * an existing element, at the head of the list, or at the end of the
65  * list. A simple queue may only be traversed in the forward direction.
66  *
67  * A tail queue is headed by a pair of pointers, one to the head of the
68  * list and the other to the tail of the list. The elements are doubly
69  * linked so that an arbitrary element can be removed without a need to
70  * traverse the list. New elements can be added to the list before or
71  * after an existing element, at the head of the list, or at the end of
72  * the list. A tail queue may be traversed in either direction.
73  *
74  * A circle queue is headed by a pair of pointers, one to the head of the
75  * list and the other to the tail of the list. The elements are doubly
76  * linked so that an arbitrary element can be removed without a need to
77  * traverse the list. New elements can be added to the list before or after
78  * an existing element, at the head of the list, or at the end of the list.
79  * A circle queue may be traversed in either direction, but has a more
80  * complex end of list detection.
81  *
82  * For details on the use of these macros, see the queue(3) manual page.
83  */
84 
85 #if defined(__clang_analyzer__) || defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC))
86 #define _Q_INVALIDATE(a) ((a) = ((void *)-1))
87 #else
88 #define _Q_INVALIDATE(a)
89 #endif
90 
91 #if defined(__clang_analyzer__)
92 #define _Q_ASSERT(a) assert((a))
93 #else
94 #define _Q_ASSERT(a)
95 #endif
96 
97 /*
98  * Singly-linked List definitions.
99  */
100 
101 /*
102  * The following macros are not used and are in conflict with Win32 API
103  */
104 
105 #if 0
106 
107 #define SLIST_HEAD(name, type)						\
108 struct name {								\
109 	struct type *slh_first;	/* first element */			\
110 }
111 
112 #define	SLIST_HEAD_INITIALIZER(head)					\
113 	{ NULL }
114 
115 #define SLIST_ENTRY(type)						\
116 struct {								\
117 	struct type *sle_next;	/* next element */			\
118 }
119 
120 /*
121  * Singly-linked List access methods.
122  */
123 #define	SLIST_FIRST(head)	((head)->slh_first)
124 #define	SLIST_END(head)		NULL
125 #define	SLIST_EMPTY(head)	(SLIST_FIRST(head) == SLIST_END(head))
126 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
127 
128 #define	SLIST_FOREACH(var, head, field)					\
129 	for((var) = SLIST_FIRST(head);					\
130 	    (var) != SLIST_END(head);					\
131 	    (var) = SLIST_NEXT(var, field))
132 
133 #define	SLIST_FOREACH_PREVPTR(var, varp, head, field)			\
134 	for ((varp) = &SLIST_FIRST((head));				\
135 	    ((var) = *(varp)) != SLIST_END(head);			\
136 	    (varp) = &SLIST_NEXT((var), field))
137 
138 /*
139  * Singly-linked List functions.
140  */
141 #define	SLIST_INIT(head) {						\
142 	SLIST_FIRST(head) = SLIST_END(head);				\
143 }
144 
145 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
146 	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
147 	(slistelm)->field.sle_next = (elm);				\
148 } while (0)
149 
150 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
151 	(elm)->field.sle_next = (head)->slh_first;			\
152 	(head)->slh_first = (elm);					\
153 } while (0)
154 
155 #define	SLIST_REMOVE_NEXT(head, elm, field) do {			\
156 	(elm)->field.sle_next = (elm)->field.sle_next->field.sle_next;	\
157 } while (0)
158 
159 #define	SLIST_REMOVE_HEAD(head, field) do {				\
160 	(head)->slh_first = (head)->slh_first->field.sle_next;		\
161 } while (0)
162 
163 #define SLIST_REMOVE(head, elm, type, field) do {			\
164 	if ((head)->slh_first == (elm)) {				\
165 		SLIST_REMOVE_HEAD((head), field);			\
166 	} else {							\
167 		struct type *curelm = (head)->slh_first;		\
168 									\
169 		while (curelm->field.sle_next != (elm))			\
170 			curelm = curelm->field.sle_next;		\
171 		curelm->field.sle_next =				\
172 		    curelm->field.sle_next->field.sle_next;		\
173 		_Q_INVALIDATE((elm)->field.sle_next);			\
174 	}								\
175 } while (0)
176 
177 #endif /* 0 */
178 
179 /*
180  * List definitions.
181  */
182 #define LIST_HEAD(name, type)						\
183 struct name {								\
184 	struct type *lh_first;	/* first element */			\
185 }
186 
187 #define LIST_HEAD_INITIALIZER(head)					\
188 	{ NULL }
189 
190 #define LIST_ENTRY(type)						\
191 struct {								\
192 	struct type *le_next;	/* next element */			\
193 	struct type **le_prev;	/* address of previous next element */	\
194 }
195 
196 /*
197  * List access methods
198  */
199 #define	LIST_FIRST(head)		((head)->lh_first)
200 #define	LIST_END(head)			NULL
201 #define	LIST_EMPTY(head)		(LIST_FIRST(head) == LIST_END(head))
202 #define	LIST_NEXT(elm, field)		((elm)->field.le_next)
203 
204 #define LIST_FOREACH(var, head, field)					\
205 	for((var) = LIST_FIRST(head);					\
206 	    (var)!= LIST_END(head);					\
207 	    (var) = LIST_NEXT(var, field))
208 
209 /*
210  * List functions.
211  */
212 #define	LIST_INIT(head) do {						\
213 	LIST_FIRST(head) = LIST_END(head);				\
214 } while (0)
215 
216 #define LIST_INSERT_AFTER(listelm, elm, field) do {			\
217 	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
218 		(listelm)->field.le_next->field.le_prev =		\
219 		    &(elm)->field.le_next;				\
220 	(listelm)->field.le_next = (elm);				\
221 	(elm)->field.le_prev = &(listelm)->field.le_next;		\
222 } while (0)
223 
224 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
225 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
226 	(elm)->field.le_next = (listelm);				\
227 	*(listelm)->field.le_prev = (elm);				\
228 	(listelm)->field.le_prev = &(elm)->field.le_next;		\
229 } while (0)
230 
231 #define LIST_INSERT_HEAD(head, elm, field) do {				\
232 	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
233 		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
234 	(head)->lh_first = (elm);					\
235 	(elm)->field.le_prev = &(head)->lh_first;			\
236 } while (0)
237 
238 #define LIST_REMOVE(elm, field) do {					\
239 	if ((elm)->field.le_next != NULL)				\
240 		(elm)->field.le_next->field.le_prev =			\
241 		    (elm)->field.le_prev;				\
242 	*(elm)->field.le_prev = (elm)->field.le_next;			\
243 	_Q_INVALIDATE((elm)->field.le_prev);				\
244 	_Q_INVALIDATE((elm)->field.le_next);				\
245 } while (0)
246 
247 #define LIST_REPLACE(elm, elm2, field) do {				\
248 	if (((elm2)->field.le_next = (elm)->field.le_next) != NULL)	\
249 		(elm2)->field.le_next->field.le_prev =			\
250 		    &(elm2)->field.le_next;				\
251 	(elm2)->field.le_prev = (elm)->field.le_prev;			\
252 	*(elm2)->field.le_prev = (elm2);				\
253 	_Q_INVALIDATE((elm)->field.le_prev);				\
254 	_Q_INVALIDATE((elm)->field.le_next);				\
255 } while (0)
256 
257 /*
258  * Simple queue definitions.
259  */
260 #define SIMPLEQ_HEAD(name, type)					\
261 struct name {								\
262 	struct type *sqh_first;	/* first element */			\
263 	struct type **sqh_last;	/* addr of last next element */		\
264 }
265 
266 #define SIMPLEQ_HEAD_INITIALIZER(head)					\
267 	{ NULL, &(head).sqh_first }
268 
269 #define SIMPLEQ_ENTRY(type)						\
270 struct {								\
271 	struct type *sqe_next;	/* next element */			\
272 }
273 
274 /*
275  * Simple queue access methods.
276  */
277 #define	SIMPLEQ_FIRST(head)	    ((head)->sqh_first)
278 #define	SIMPLEQ_END(head)	    NULL
279 #define	SIMPLEQ_EMPTY(head)	    (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
280 #define	SIMPLEQ_NEXT(elm, field)    ((elm)->field.sqe_next)
281 
282 #define SIMPLEQ_FOREACH(var, head, field)				\
283 	for((var) = SIMPLEQ_FIRST(head);				\
284 	    (var) != SIMPLEQ_END(head);					\
285 	    (var) = SIMPLEQ_NEXT(var, field))
286 
287 /*
288  * Simple queue functions.
289  */
290 #define	SIMPLEQ_INIT(head) do {						\
291 	(head)->sqh_first = NULL;					\
292 	(head)->sqh_last = &(head)->sqh_first;				\
293 } while (0)
294 
295 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
296 	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
297 		(head)->sqh_last = &(elm)->field.sqe_next;		\
298 	(head)->sqh_first = (elm);					\
299 } while (0)
300 
301 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
302 	(elm)->field.sqe_next = NULL;					\
303 	*(head)->sqh_last = (elm);					\
304 	(head)->sqh_last = &(elm)->field.sqe_next;			\
305 } while (0)
306 
307 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
308 	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
309 		(head)->sqh_last = &(elm)->field.sqe_next;		\
310 	(listelm)->field.sqe_next = (elm);				\
311 } while (0)
312 
313 #define SIMPLEQ_REMOVE_HEAD(head, field) do {			\
314 	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
315 		(head)->sqh_last = &(head)->sqh_first;			\
316 } while (0)
317 
318 /*
319  * Tail queue definitions.
320  */
321 #define TAILQ_HEAD(name, type)						\
322 struct name {								\
323 	struct type *tqh_first;	/* first element */			\
324 	struct type **tqh_last;	/* addr of last next element */		\
325 }
326 
327 #define TAILQ_HEAD_INITIALIZER(head)					\
328 	{ NULL, &(head).tqh_first }
329 
330 #define TAILQ_ENTRY(type)						\
331 struct {								\
332 	struct type *tqe_next;	/* next element */			\
333 	struct type **tqe_prev;	/* address of previous next element */	\
334 }
335 
336 /*
337  * tail queue access methods
338  */
339 #define	TAILQ_FIRST(head)		((head)->tqh_first)
340 #define	TAILQ_END(head)			NULL
341 #define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
342 #define TAILQ_LAST(head, headname)					\
343 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
344 /* XXX */
345 #define TAILQ_PREV(elm, headname, field)				\
346 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
347 #define	TAILQ_EMPTY(head)						\
348 	(TAILQ_FIRST(head) == TAILQ_END(head))
349 
350 #define TAILQ_FOREACH(var, head, field)					\
351 	for((var) = TAILQ_FIRST(head);					\
352 	    (var) != TAILQ_END(head);					\
353 	    (var) = TAILQ_NEXT(var, field))
354 
355 /* removal safe iterator using a temprary element has last param */
356 #define TAILQ_FOREACH_SAFE(var, head, field, tvar)					\
357 	for((var) = TAILQ_FIRST(head), \
358         (tvar) = TAILQ_FIRST(head) ? TAILQ_NEXT(TAILQ_FIRST(head), field): NULL ; \
359 	    (var) != TAILQ_END(head);					\
360 	    (var = tvar), (tvar) = var ? TAILQ_NEXT(var, field): NULL)
361 
362 #define TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
363 	for((var) = TAILQ_LAST(head, headname);				\
364 	    (var) != TAILQ_END(head);					\
365 	    (var) = TAILQ_PREV(var, headname, field))
366 
367 /*
368  * Tail queue functions.
369  */
370 #define	TAILQ_INIT(head) do {						\
371 	(head)->tqh_first = NULL;					\
372 	(head)->tqh_last = &(head)->tqh_first;				\
373 } while (0)
374 
375 #define TAILQ_INSERT_HEAD(head, elm, field) do {			\
376 	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
377 		(head)->tqh_first->field.tqe_prev =			\
378 		    &(elm)->field.tqe_next;				\
379 	else								\
380 		(head)->tqh_last = &(elm)->field.tqe_next;		\
381 	(head)->tqh_first = (elm);					\
382 	(elm)->field.tqe_prev = &(head)->tqh_first;			\
383 } while (0)
384 
385 #define TAILQ_INSERT_TAIL(head, elm, field) do {			\
386 	_Q_ASSERT((elm));						\
387 	_Q_ASSERT((head));						\
388 	(elm)->field.tqe_next = NULL;					\
389 	(elm)->field.tqe_prev = (head)->tqh_last;			\
390 	*(head)->tqh_last = (elm);					\
391 	_Q_ASSERT(*(head)->tqh_last);					\
392 	(head)->tqh_last = &(elm)->field.tqe_next;			\
393 } while (0)
394 
395 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
396 	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
397 		(elm)->field.tqe_next->field.tqe_prev =			\
398 		    &(elm)->field.tqe_next;				\
399 	else								\
400 		(head)->tqh_last = &(elm)->field.tqe_next;		\
401 	(listelm)->field.tqe_next = (elm);				\
402 	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
403 } while (0)
404 
405 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
406 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
407 	(elm)->field.tqe_next = (listelm);				\
408 	*(listelm)->field.tqe_prev = (elm);				\
409 	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
410 } while (0)
411 
412 #define TAILQ_REMOVE(head, elm, field) do {				\
413 	if (((elm)->field.tqe_next) != NULL)				\
414 		(elm)->field.tqe_next->field.tqe_prev =			\
415 		    (elm)->field.tqe_prev;				\
416 	else								\
417 		(head)->tqh_last = (elm)->field.tqe_prev;		\
418 	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
419 	_Q_ASSERT((head)->tqh_first != (elm));				\
420 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
421 	_Q_INVALIDATE((elm)->field.tqe_next);				\
422 } while (0)
423 
424 #define TAILQ_REPLACE(head, elm, elm2, field) do {			\
425 	if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL)	\
426 		(elm2)->field.tqe_next->field.tqe_prev =		\
427 		    &(elm2)->field.tqe_next;				\
428 	else								\
429 		(head)->tqh_last = &(elm2)->field.tqe_next;		\
430 	(elm2)->field.tqe_prev = (elm)->field.tqe_prev;			\
431 	*(elm2)->field.tqe_prev = (elm2);				\
432 	_Q_INVALIDATE((elm)->field.tqe_prev);				\
433 	_Q_INVALIDATE((elm)->field.tqe_next);				\
434 } while (0)
435 
436 /*
437  * Circular queue definitions.
438  */
439 #define CIRCLEQ_HEAD(name, type)					\
440 struct name {								\
441 	struct type *cqh_first;		/* first element */		\
442 	struct type *cqh_last;		/* last element */		\
443 }
444 
445 #define CIRCLEQ_HEAD_INITIALIZER(head)					\
446 	{ CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
447 
448 #define CIRCLEQ_ENTRY(type)						\
449 struct {								\
450 	struct type *cqe_next;		/* next element */		\
451 	struct type *cqe_prev;		/* previous element */		\
452 }
453 
454 /*
455  * Circular queue access methods
456  */
457 #define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
458 #define	CIRCLEQ_LAST(head)		((head)->cqh_last)
459 #define	CIRCLEQ_END(head)		((void *)(head))
460 #define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
461 #define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
462 #define	CIRCLEQ_EMPTY(head)						\
463 	(CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
464 
465 #define CIRCLEQ_FOREACH(var, head, field)				\
466 	for((var) = CIRCLEQ_FIRST(head);				\
467 	    (var) != CIRCLEQ_END(head);					\
468 	    (var) = CIRCLEQ_NEXT(var, field))
469 
470 #define CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
471 	for((var) = CIRCLEQ_LAST(head);					\
472 	    (var) != CIRCLEQ_END(head);					\
473 	    (var) = CIRCLEQ_PREV(var, field))
474 
475 /*
476  * Circular queue functions.
477  */
478 #define	CIRCLEQ_INIT(head) do {						\
479 	(head)->cqh_first = CIRCLEQ_END(head);				\
480 	(head)->cqh_last = CIRCLEQ_END(head);				\
481 } while (0)
482 
483 #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
484 	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
485 	(elm)->field.cqe_prev = (listelm);				\
486 	if ((listelm)->field.cqe_next == CIRCLEQ_END(head))		\
487 		(head)->cqh_last = (elm);				\
488 	else								\
489 		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
490 	(listelm)->field.cqe_next = (elm);				\
491 } while (0)
492 
493 #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
494 	(elm)->field.cqe_next = (listelm);				\
495 	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
496 	if ((listelm)->field.cqe_prev == CIRCLEQ_END(head))		\
497 		(head)->cqh_first = (elm);				\
498 	else								\
499 		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
500 	(listelm)->field.cqe_prev = (elm);				\
501 } while (0)
502 
503 #define CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
504 	(elm)->field.cqe_next = (head)->cqh_first;			\
505 	(elm)->field.cqe_prev = CIRCLEQ_END(head);			\
506 	if ((head)->cqh_last == CIRCLEQ_END(head))			\
507 		(head)->cqh_last = (elm);				\
508 	else								\
509 		(head)->cqh_first->field.cqe_prev = (elm);		\
510 	(head)->cqh_first = (elm);					\
511 } while (0)
512 
513 #define CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
514 	(elm)->field.cqe_next = CIRCLEQ_END(head);			\
515 	(elm)->field.cqe_prev = (head)->cqh_last;			\
516 	if ((head)->cqh_first == CIRCLEQ_END(head))			\
517 		(head)->cqh_first = (elm);				\
518 	else								\
519 		(head)->cqh_last->field.cqe_next = (elm);		\
520 	(head)->cqh_last = (elm);					\
521 } while (0)
522 
523 #define	CIRCLEQ_REMOVE(head, elm, field) do {				\
524 	if ((elm)->field.cqe_next == CIRCLEQ_END(head))			\
525 		(head)->cqh_last = (elm)->field.cqe_prev;		\
526 	else								\
527 		(elm)->field.cqe_next->field.cqe_prev =			\
528 		    (elm)->field.cqe_prev;				\
529 	if ((elm)->field.cqe_prev == CIRCLEQ_END(head))			\
530 		(head)->cqh_first = (elm)->field.cqe_next;		\
531 	else								\
532 		(elm)->field.cqe_prev->field.cqe_next =			\
533 		    (elm)->field.cqe_next;				\
534 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
535 	_Q_INVALIDATE((elm)->field.cqe_next);				\
536 } while (0)
537 
538 #define CIRCLEQ_REPLACE(head, elm, elm2, field) do {			\
539 	if (((elm2)->field.cqe_next = (elm)->field.cqe_next) ==		\
540 	    CIRCLEQ_END(head))						\
541 		(head).cqh_last = (elm2);				\
542 	else								\
543 		(elm2)->field.cqe_next->field.cqe_prev = (elm2);	\
544 	if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) ==		\
545 	    CIRCLEQ_END(head))						\
546 		(head).cqh_first = (elm2);				\
547 	else								\
548 		(elm2)->field.cqe_prev->field.cqe_next = (elm2);	\
549 	_Q_INVALIDATE((elm)->field.cqe_prev);				\
550 	_Q_INVALIDATE((elm)->field.cqe_next);				\
551 } while (0)
552 
553 #define	CIRCLEQ_FOREACH_SAFE(var, head, field, tvar)			\
554     for ((var) = CIRCLEQ_FIRST(head);				\
555         (var) != CIRCLEQ_END(head) &&				\
556         ((tvar) = CIRCLEQ_NEXT(var, field), 1);			\
557         (var) = (tvar))
558 
559 #define	CIRCLEQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar)	\
560     for ((var) = CIRCLEQ_LAST(head, headname);			\
561         (var) != CIRCLEQ_END(head) && 				\
562         ((tvar) = CIRCLEQ_PREV(var, headname, field), 1);		\
563         (var) = (tvar))
564 
565 #endif	/* !_SYS_QUEUE_H_ */
566