1// Copyright (c) 2012-2018 Ugorji Nwoke. All rights reserved.
2// Use of this source code is governed by a MIT license found in the LICENSE file.
3
4package codec
5
6// Contains code shared by both encode and decode.
7
8// Some shared ideas around encoding/decoding
9// ------------------------------------------
10//
11// If an interface{} is passed, we first do a type assertion to see if it is
12// a primitive type or a map/slice of primitive types, and use a fastpath to handle it.
13//
14// If we start with a reflect.Value, we are already in reflect.Value land and
15// will try to grab the function for the underlying Type and directly call that function.
16// This is more performant than calling reflect.Value.Interface().
17//
18// This still helps us bypass many layers of reflection, and give best performance.
19//
20// Containers
21// ------------
22// Containers in the stream are either associative arrays (key-value pairs) or
23// regular arrays (indexed by incrementing integers).
24//
25// Some streams support indefinite-length containers, and use a breaking
26// byte-sequence to denote that the container has come to an end.
27//
28// Some streams also are text-based, and use explicit separators to denote the
29// end/beginning of different values.
30//
31// During encode, we use a high-level condition to determine how to iterate through
32// the container. That decision is based on whether the container is text-based (with
33// separators) or binary (without separators). If binary, we do not even call the
34// encoding of separators.
35//
36// During decode, we use a different high-level condition to determine how to iterate
37// through the containers. That decision is based on whether the stream contained
38// a length prefix, or if it used explicit breaks. If length-prefixed, we assume that
39// it has to be binary, and we do not even try to read separators.
40//
41// Philosophy
42// ------------
43// On decode, this codec will update containers appropriately:
44//    - If struct, update fields from stream into fields of struct.
45//      If field in stream not found in struct, handle appropriately (based on option).
46//      If a struct field has no corresponding value in the stream, leave it AS IS.
47//      If nil in stream, set value to nil/zero value.
48//    - If map, update map from stream.
49//      If the stream value is NIL, set the map to nil.
50//    - if slice, try to update up to length of array in stream.
51//      if container len is less than stream array length,
52//      and container cannot be expanded, handled (based on option).
53//      This means you can decode 4-element stream array into 1-element array.
54//
55// ------------------------------------
56// On encode, user can specify omitEmpty. This means that the value will be omitted
57// if the zero value. The problem may occur during decode, where omitted values do not affect
58// the value being decoded into. This means that if decoding into a struct with an
59// int field with current value=5, and the field is omitted in the stream, then after
60// decoding, the value will still be 5 (not 0).
61// omitEmpty only works if you guarantee that you always decode into zero-values.
62//
63// ------------------------------------
64// We could have truncated a map to remove keys not available in the stream,
65// or set values in the struct which are not in the stream to their zero values.
66// We decided against it because there is no efficient way to do it.
67// We may introduce it as an option later.
68// However, that will require enabling it for both runtime and code generation modes.
69//
70// To support truncate, we need to do 2 passes over the container:
71//   map
72//   - first collect all keys (e.g. in k1)
73//   - for each key in stream, mark k1 that the key should not be removed
74//   - after updating map, do second pass and call delete for all keys in k1 which are not marked
75//   struct:
76//   - for each field, track the *typeInfo s1
77//   - iterate through all s1, and for each one not marked, set value to zero
78//   - this involves checking the possible anonymous fields which are nil ptrs.
79//     too much work.
80//
81// ------------------------------------------
82// Error Handling is done within the library using panic.
83//
84// This way, the code doesn't have to keep checking if an error has happened,
85// and we don't have to keep sending the error value along with each call
86// or storing it in the En|Decoder and checking it constantly along the way.
87//
88// The disadvantage is that small functions which use panics cannot be inlined.
89// The code accounts for that by only using panics behind an interface;
90// since interface calls cannot be inlined, this is irrelevant.
91//
92// We considered storing the error is En|Decoder.
93//   - once it has its err field set, it cannot be used again.
94//   - panicing will be optional, controlled by const flag.
95//   - code should always check error first and return early.
96// We eventually decided against it as it makes the code clumsier to always
97// check for these error conditions.
98
99import (
100	"bytes"
101	"encoding"
102	"encoding/binary"
103	"errors"
104	"fmt"
105	"io"
106	"math"
107	"reflect"
108	"sort"
109	"strconv"
110	"strings"
111	"sync"
112	"sync/atomic"
113	"time"
114)
115
116const (
117	scratchByteArrayLen = 32
118	// initCollectionCap   = 16 // 32 is defensive. 16 is preferred.
119
120	// Support encoding.(Binary|Text)(Unm|M)arshaler.
121	// This constant flag will enable or disable it.
122	supportMarshalInterfaces = true
123
124	// for debugging, set this to false, to catch panic traces.
125	// Note that this will always cause rpc tests to fail, since they need io.EOF sent via panic.
126	recoverPanicToErr = true
127
128	// arrayCacheLen is the length of the cache used in encoder or decoder for
129	// allowing zero-alloc initialization.
130	// arrayCacheLen = 8
131
132	// size of the cacheline: defaulting to value for archs: amd64, arm64, 386
133	// should use "runtime/internal/sys".CacheLineSize, but that is not exposed.
134	cacheLineSize = 64
135
136	wordSizeBits = 32 << (^uint(0) >> 63) // strconv.IntSize
137	wordSize     = wordSizeBits / 8
138
139	// so structFieldInfo fits into 8 bytes
140	maxLevelsEmbedding = 14
141
142	// useFinalizers=true configures finalizers to release pool'ed resources
143	// acquired by Encoder/Decoder during their GC.
144	//
145	// Note that calling SetFinalizer is always expensive,
146	// as code must be run on the systemstack even for SetFinalizer(t, nil).
147	//
148	// We document that folks SHOULD call Release() when done, or they can
149	// explicitly call SetFinalizer themselves e.g.
150	//    runtime.SetFinalizer(e, (*Encoder).Release)
151	//    runtime.SetFinalizer(d, (*Decoder).Release)
152	useFinalizers = false
153)
154
155var oneByteArr [1]byte
156var zeroByteSlice = oneByteArr[:0:0]
157
158var codecgen bool
159
160var refBitset bitset256
161var pool pooler
162var panicv panicHdl
163
164func init() {
165	pool.init()
166
167	refBitset.set(byte(reflect.Map))
168	refBitset.set(byte(reflect.Ptr))
169	refBitset.set(byte(reflect.Func))
170	refBitset.set(byte(reflect.Chan))
171}
172
173type clsErr struct {
174	closed    bool  // is it closed?
175	errClosed error // error on closing
176}
177
178// type entryType uint8
179
180// const (
181// 	entryTypeBytes entryType = iota // make this 0, so a comparison is cheap
182// 	entryTypeIo
183// 	entryTypeBufio
184// 	entryTypeUnset = 255
185// )
186
187type charEncoding uint8
188
189const (
190	_ charEncoding = iota // make 0 unset
191	cUTF8
192	cUTF16LE
193	cUTF16BE
194	cUTF32LE
195	cUTF32BE
196	// Deprecated: not a true char encoding value
197	cRAW charEncoding = 255
198)
199
200// valueType is the stream type
201type valueType uint8
202
203const (
204	valueTypeUnset valueType = iota
205	valueTypeNil
206	valueTypeInt
207	valueTypeUint
208	valueTypeFloat
209	valueTypeBool
210	valueTypeString
211	valueTypeSymbol
212	valueTypeBytes
213	valueTypeMap
214	valueTypeArray
215	valueTypeTime
216	valueTypeExt
217
218	// valueTypeInvalid = 0xff
219)
220
221var valueTypeStrings = [...]string{
222	"Unset",
223	"Nil",
224	"Int",
225	"Uint",
226	"Float",
227	"Bool",
228	"String",
229	"Symbol",
230	"Bytes",
231	"Map",
232	"Array",
233	"Timestamp",
234	"Ext",
235}
236
237func (x valueType) String() string {
238	if int(x) < len(valueTypeStrings) {
239		return valueTypeStrings[x]
240	}
241	return strconv.FormatInt(int64(x), 10)
242}
243
244type seqType uint8
245
246const (
247	_ seqType = iota
248	seqTypeArray
249	seqTypeSlice
250	seqTypeChan
251)
252
253// note that containerMapStart and containerArraySend are not sent.
254// This is because the ReadXXXStart and EncodeXXXStart already does these.
255type containerState uint8
256
257const (
258	_ containerState = iota
259
260	containerMapStart // slot left open, since Driver method already covers it
261	containerMapKey
262	containerMapValue
263	containerMapEnd
264	containerArrayStart // slot left open, since Driver methods already cover it
265	containerArrayElem
266	containerArrayEnd
267)
268
269// // sfiIdx used for tracking where a (field/enc)Name is seen in a []*structFieldInfo
270// type sfiIdx struct {
271// 	name  string
272// 	index int
273// }
274
275// do not recurse if a containing type refers to an embedded type
276// which refers back to its containing type (via a pointer).
277// The second time this back-reference happens, break out,
278// so as not to cause an infinite loop.
279const rgetMaxRecursion = 2
280
281// Anecdotally, we believe most types have <= 12 fields.
282// - even Java's PMD rules set TooManyFields threshold to 15.
283// However, go has embedded fields, which should be regarded as
284// top level, allowing structs to possibly double or triple.
285// In addition, we don't want to keep creating transient arrays,
286// especially for the sfi index tracking, and the evtypes tracking.
287//
288// So - try to keep typeInfoLoadArray within 2K bytes
289const (
290	typeInfoLoadArraySfisLen   = 16
291	typeInfoLoadArraySfiidxLen = 8 * 112
292	typeInfoLoadArrayEtypesLen = 12
293	typeInfoLoadArrayBLen      = 8 * 4
294)
295
296type typeInfoLoad struct {
297	// fNames   []string
298	// encNames []string
299	etypes []uintptr
300	sfis   []structFieldInfo
301}
302
303type typeInfoLoadArray struct {
304	// fNames   [typeInfoLoadArrayLen]string
305	// encNames [typeInfoLoadArrayLen]string
306	sfis   [typeInfoLoadArraySfisLen]structFieldInfo
307	sfiidx [typeInfoLoadArraySfiidxLen]byte
308	etypes [typeInfoLoadArrayEtypesLen]uintptr
309	b      [typeInfoLoadArrayBLen]byte // scratch - used for struct field names
310}
311
312// mirror json.Marshaler and json.Unmarshaler here,
313// so we don't import the encoding/json package
314
315type jsonMarshaler interface {
316	MarshalJSON() ([]byte, error)
317}
318type jsonUnmarshaler interface {
319	UnmarshalJSON([]byte) error
320}
321
322type isZeroer interface {
323	IsZero() bool
324}
325
326type codecError struct {
327	name string
328	err  interface{}
329}
330
331func (e codecError) Cause() error {
332	switch xerr := e.err.(type) {
333	case nil:
334		return nil
335	case error:
336		return xerr
337	case string:
338		return errors.New(xerr)
339	case fmt.Stringer:
340		return errors.New(xerr.String())
341	default:
342		return fmt.Errorf("%v", e.err)
343	}
344}
345
346func (e codecError) Error() string {
347	return fmt.Sprintf("%s error: %v", e.name, e.err)
348}
349
350// type byteAccepter func(byte) bool
351
352var (
353	bigen               = binary.BigEndian
354	structInfoFieldName = "_struct"
355
356	mapStrIntfTyp  = reflect.TypeOf(map[string]interface{}(nil))
357	mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
358	intfSliceTyp   = reflect.TypeOf([]interface{}(nil))
359	intfTyp        = intfSliceTyp.Elem()
360
361	reflectValTyp = reflect.TypeOf((*reflect.Value)(nil)).Elem()
362
363	stringTyp     = reflect.TypeOf("")
364	timeTyp       = reflect.TypeOf(time.Time{})
365	rawExtTyp     = reflect.TypeOf(RawExt{})
366	rawTyp        = reflect.TypeOf(Raw{})
367	uintptrTyp    = reflect.TypeOf(uintptr(0))
368	uint8Typ      = reflect.TypeOf(uint8(0))
369	uint8SliceTyp = reflect.TypeOf([]uint8(nil))
370	uintTyp       = reflect.TypeOf(uint(0))
371	intTyp        = reflect.TypeOf(int(0))
372
373	mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()
374
375	binaryMarshalerTyp   = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
376	binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()
377
378	textMarshalerTyp   = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
379	textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()
380
381	jsonMarshalerTyp   = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
382	jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem()
383
384	selferTyp         = reflect.TypeOf((*Selfer)(nil)).Elem()
385	missingFielderTyp = reflect.TypeOf((*MissingFielder)(nil)).Elem()
386	iszeroTyp         = reflect.TypeOf((*isZeroer)(nil)).Elem()
387
388	uint8TypId      = rt2id(uint8Typ)
389	uint8SliceTypId = rt2id(uint8SliceTyp)
390	rawExtTypId     = rt2id(rawExtTyp)
391	rawTypId        = rt2id(rawTyp)
392	intfTypId       = rt2id(intfTyp)
393	timeTypId       = rt2id(timeTyp)
394	stringTypId     = rt2id(stringTyp)
395
396	mapStrIntfTypId  = rt2id(mapStrIntfTyp)
397	mapIntfIntfTypId = rt2id(mapIntfIntfTyp)
398	intfSliceTypId   = rt2id(intfSliceTyp)
399	// mapBySliceTypId  = rt2id(mapBySliceTyp)
400
401	intBitsize  = uint8(intTyp.Bits())
402	uintBitsize = uint8(uintTyp.Bits())
403
404	// bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
405	bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
406
407	chkOvf checkOverflow
408
409	errNoFieldNameToStructFieldInfo = errors.New("no field name passed to parseStructFieldInfo")
410)
411
412var defTypeInfos = NewTypeInfos([]string{"codec", "json"})
413
414var immutableKindsSet = [32]bool{
415	// reflect.Invalid:  ,
416	reflect.Bool:       true,
417	reflect.Int:        true,
418	reflect.Int8:       true,
419	reflect.Int16:      true,
420	reflect.Int32:      true,
421	reflect.Int64:      true,
422	reflect.Uint:       true,
423	reflect.Uint8:      true,
424	reflect.Uint16:     true,
425	reflect.Uint32:     true,
426	reflect.Uint64:     true,
427	reflect.Uintptr:    true,
428	reflect.Float32:    true,
429	reflect.Float64:    true,
430	reflect.Complex64:  true,
431	reflect.Complex128: true,
432	// reflect.Array
433	// reflect.Chan
434	// reflect.Func: true,
435	// reflect.Interface
436	// reflect.Map
437	// reflect.Ptr
438	// reflect.Slice
439	reflect.String: true,
440	// reflect.Struct
441	// reflect.UnsafePointer
442}
443
444// Selfer defines methods by which a value can encode or decode itself.
445//
446// Any type which implements Selfer will be able to encode or decode itself.
447// Consequently, during (en|de)code, this takes precedence over
448// (text|binary)(M|Unm)arshal or extension support.
449//
450// By definition, it is not allowed for a Selfer to directly call Encode or Decode on itself.
451// If that is done, Encode/Decode will rightfully fail with a Stack Overflow style error.
452// For example, the snippet below will cause such an error.
453//     type testSelferRecur struct{}
454//     func (s *testSelferRecur) CodecEncodeSelf(e *Encoder) { e.MustEncode(s) }
455//     func (s *testSelferRecur) CodecDecodeSelf(d *Decoder) { d.MustDecode(s) }
456//
457// Note: *the first set of bytes of any value MUST NOT represent nil in the format*.
458// This is because, during each decode, we first check the the next set of bytes
459// represent nil, and if so, we just set the value to nil.
460type Selfer interface {
461	CodecEncodeSelf(*Encoder)
462	CodecDecodeSelf(*Decoder)
463}
464
465// MissingFielder defines the interface allowing structs to internally decode or encode
466// values which do not map to struct fields.
467//
468// We expect that this interface is bound to a pointer type (so the mutation function works).
469//
470// A use-case is if a version of a type unexports a field, but you want compatibility between
471// both versions during encoding and decoding.
472//
473// Note that the interface is completely ignored during codecgen.
474type MissingFielder interface {
475	// CodecMissingField is called to set a missing field and value pair.
476	//
477	// It returns true if the missing field was set on the struct.
478	CodecMissingField(field []byte, value interface{}) bool
479
480	// CodecMissingFields returns the set of fields which are not struct fields
481	CodecMissingFields() map[string]interface{}
482}
483
484// MapBySlice is a tag interface that denotes wrapped slice should encode as a map in the stream.
485// The slice contains a sequence of key-value pairs.
486// This affords storing a map in a specific sequence in the stream.
487//
488// Example usage:
489//    type T1 []string         // or []int or []Point or any other "slice" type
490//    func (_ T1) MapBySlice{} // T1 now implements MapBySlice, and will be encoded as a map
491//    type T2 struct { KeyValues T1 }
492//
493//    var kvs = []string{"one", "1", "two", "2", "three", "3"}
494//    var v2 = T2{ KeyValues: T1(kvs) }
495//    // v2 will be encoded like the map: {"KeyValues": {"one": "1", "two": "2", "three": "3"} }
496//
497// The support of MapBySlice affords the following:
498//   - A slice type which implements MapBySlice will be encoded as a map
499//   - A slice can be decoded from a map in the stream
500//   - It MUST be a slice type (not a pointer receiver) that implements MapBySlice
501type MapBySlice interface {
502	MapBySlice()
503}
504
505// BasicHandle encapsulates the common options and extension functions.
506//
507// Deprecated: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
508type BasicHandle struct {
509	// BasicHandle is always a part of a different type.
510	// It doesn't have to fit into it own cache lines.
511
512	// TypeInfos is used to get the type info for any type.
513	//
514	// If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json
515	TypeInfos *TypeInfos
516
517	// Note: BasicHandle is not comparable, due to these slices here (extHandle, intf2impls).
518	// If *[]T is used instead, this becomes comparable, at the cost of extra indirection.
519	// Thses slices are used all the time, so keep as slices (not pointers).
520
521	extHandle
522
523	intf2impls
524
525	inited uint32
526	_      uint32 // padding
527
528	// ---- cache line
529
530	RPCOptions
531
532	// TimeNotBuiltin configures whether time.Time should be treated as a builtin type.
533	//
534	// All Handlers should know how to encode/decode time.Time as part of the core
535	// format specification, or as a standard extension defined by the format.
536	//
537	// However, users can elect to handle time.Time as a custom extension, or via the
538	// standard library's encoding.Binary(M|Unm)arshaler or Text(M|Unm)arshaler interface.
539	// To elect this behavior, users can set TimeNotBuiltin=true.
540	// Note: Setting TimeNotBuiltin=true can be used to enable the legacy behavior
541	// (for Cbor and Msgpack), where time.Time was not a builtin supported type.
542	TimeNotBuiltin bool
543
544	// ExplicitRelease configures whether Release() is implicitly called after an encode or
545	// decode call.
546	//
547	// If you will hold onto an Encoder or Decoder for re-use, by calling Reset(...)
548	// on it or calling (Must)Encode repeatedly into a given []byte or io.Writer,
549	// then you do not want it to be implicitly closed after each Encode/Decode call.
550	// Doing so will unnecessarily return resources to the shared pool, only for you to
551	// grab them right after again to do another Encode/Decode call.
552	//
553	// Instead, you configure ExplicitRelease=true, and you explicitly call Release() when
554	// you are truly done.
555	//
556	// As an alternative, you can explicitly set a finalizer - so its resources
557	// are returned to the shared pool before it is garbage-collected. Do it as below:
558	//    runtime.SetFinalizer(e, (*Encoder).Release)
559	//    runtime.SetFinalizer(d, (*Decoder).Release)
560	ExplicitRelease bool
561
562	be bool   // is handle a binary encoding?
563	js bool   // is handle javascript handler?
564	n  byte   // first letter of handle name
565	_  uint16 // padding
566
567	// ---- cache line
568
569	DecodeOptions
570
571	// ---- cache line
572
573	EncodeOptions
574
575	// noBuiltInTypeChecker
576
577	rtidFns atomicRtidFnSlice
578	mu      sync.Mutex
579	// r []uintptr     // rtids mapped to s above
580}
581
582// basicHandle returns an initialized BasicHandle from the Handle.
583func basicHandle(hh Handle) (x *BasicHandle) {
584	x = hh.getBasicHandle()
585	// ** We need to simulate once.Do, to ensure no data race within the block.
586	// ** Consequently, below would not work.
587	// if atomic.CompareAndSwapUint32(&x.inited, 0, 1) {
588	// 	x.be = hh.isBinary()
589	// 	_, x.js = hh.(*JsonHandle)
590	// 	x.n = hh.Name()[0]
591	// }
592
593	// simulate once.Do using our own stored flag and mutex as a CompareAndSwap
594	// is not sufficient, since a race condition can occur within init(Handle) function.
595	// init is made noinline, so that this function can be inlined by its caller.
596	if atomic.LoadUint32(&x.inited) == 0 {
597		x.init(hh)
598	}
599	return
600}
601
602//go:noinline
603func (x *BasicHandle) init(hh Handle) {
604	// make it uninlineable, as it is called at most once
605	x.mu.Lock()
606	if x.inited == 0 {
607		x.be = hh.isBinary()
608		_, x.js = hh.(*JsonHandle)
609		x.n = hh.Name()[0]
610		atomic.StoreUint32(&x.inited, 1)
611	}
612	x.mu.Unlock()
613}
614
615func (x *BasicHandle) getBasicHandle() *BasicHandle {
616	return x
617}
618
619func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
620	if x.TypeInfos == nil {
621		return defTypeInfos.get(rtid, rt)
622	}
623	return x.TypeInfos.get(rtid, rt)
624}
625
626func findFn(s []codecRtidFn, rtid uintptr) (i uint, fn *codecFn) {
627	// binary search. adapted from sort/search.go.
628	// Note: we use goto (instead of for loop) so this can be inlined.
629
630	// h, i, j := 0, 0, len(s)
631	var h uint // var h, i uint
632	var j = uint(len(s))
633LOOP:
634	if i < j {
635		h = i + (j-i)/2
636		if s[h].rtid < rtid {
637			i = h + 1
638		} else {
639			j = h
640		}
641		goto LOOP
642	}
643	if i < uint(len(s)) && s[i].rtid == rtid {
644		fn = s[i].fn
645	}
646	return
647}
648
649func (x *BasicHandle) fn(rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn *codecFn) {
650	rtid := rt2id(rt)
651	sp := x.rtidFns.load()
652	if sp != nil {
653		if _, fn = findFn(sp, rtid); fn != nil {
654			// xdebugf("<<<< %c: found fn for %v in rtidfns of size: %v", c.n, rt, len(sp))
655			return
656		}
657	}
658	c := x
659	// xdebugf("#### for %c: load fn for %v in rtidfns of size: %v", c.n, rt, len(sp))
660	fn = new(codecFn)
661	fi := &(fn.i)
662	ti := c.getTypeInfo(rtid, rt)
663	fi.ti = ti
664
665	rk := reflect.Kind(ti.kind)
666
667	if checkCodecSelfer && (ti.cs || ti.csp) {
668		fn.fe = (*Encoder).selferMarshal
669		fn.fd = (*Decoder).selferUnmarshal
670		fi.addrF = true
671		fi.addrD = ti.csp
672		fi.addrE = ti.csp
673	} else if rtid == timeTypId && !c.TimeNotBuiltin {
674		fn.fe = (*Encoder).kTime
675		fn.fd = (*Decoder).kTime
676	} else if rtid == rawTypId {
677		fn.fe = (*Encoder).raw
678		fn.fd = (*Decoder).raw
679	} else if rtid == rawExtTypId {
680		fn.fe = (*Encoder).rawExt
681		fn.fd = (*Decoder).rawExt
682		fi.addrF = true
683		fi.addrD = true
684		fi.addrE = true
685	} else if xfFn := c.getExt(rtid); xfFn != nil {
686		fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
687		fn.fe = (*Encoder).ext
688		fn.fd = (*Decoder).ext
689		fi.addrF = true
690		fi.addrD = true
691		if rk == reflect.Struct || rk == reflect.Array {
692			fi.addrE = true
693		}
694	} else if supportMarshalInterfaces && c.be && (ti.bm || ti.bmp) && (ti.bu || ti.bup) {
695		fn.fe = (*Encoder).binaryMarshal
696		fn.fd = (*Decoder).binaryUnmarshal
697		fi.addrF = true
698		fi.addrD = ti.bup
699		fi.addrE = ti.bmp
700	} else if supportMarshalInterfaces && !c.be && c.js && (ti.jm || ti.jmp) && (ti.ju || ti.jup) {
701		//If JSON, we should check JSONMarshal before textMarshal
702		fn.fe = (*Encoder).jsonMarshal
703		fn.fd = (*Decoder).jsonUnmarshal
704		fi.addrF = true
705		fi.addrD = ti.jup
706		fi.addrE = ti.jmp
707	} else if supportMarshalInterfaces && !c.be && (ti.tm || ti.tmp) && (ti.tu || ti.tup) {
708		fn.fe = (*Encoder).textMarshal
709		fn.fd = (*Decoder).textUnmarshal
710		fi.addrF = true
711		fi.addrD = ti.tup
712		fi.addrE = ti.tmp
713	} else {
714		if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
715			if ti.pkgpath == "" { // un-named slice or map
716				if idx := fastpathAV.index(rtid); idx != -1 {
717					fn.fe = fastpathAV[idx].encfn
718					fn.fd = fastpathAV[idx].decfn
719					fi.addrD = true
720					fi.addrF = false
721				}
722			} else {
723				// use mapping for underlying type if there
724				var rtu reflect.Type
725				if rk == reflect.Map {
726					rtu = reflect.MapOf(ti.key, ti.elem)
727				} else {
728					rtu = reflect.SliceOf(ti.elem)
729				}
730				rtuid := rt2id(rtu)
731				if idx := fastpathAV.index(rtuid); idx != -1 {
732					xfnf := fastpathAV[idx].encfn
733					xrt := fastpathAV[idx].rt
734					fn.fe = func(e *Encoder, xf *codecFnInfo, xrv reflect.Value) {
735						xfnf(e, xf, xrv.Convert(xrt))
736					}
737					fi.addrD = true
738					fi.addrF = false // meaning it can be an address(ptr) or a value
739					xfnf2 := fastpathAV[idx].decfn
740					fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
741						if xrv.Kind() == reflect.Ptr {
742							xfnf2(d, xf, xrv.Convert(reflect.PtrTo(xrt)))
743						} else {
744							xfnf2(d, xf, xrv.Convert(xrt))
745						}
746					}
747				}
748			}
749		}
750		if fn.fe == nil && fn.fd == nil {
751			switch rk {
752			case reflect.Bool:
753				fn.fe = (*Encoder).kBool
754				fn.fd = (*Decoder).kBool
755			case reflect.String:
756				fn.fe = (*Encoder).kString
757				fn.fd = (*Decoder).kString
758			case reflect.Int:
759				fn.fd = (*Decoder).kInt
760				fn.fe = (*Encoder).kInt
761			case reflect.Int8:
762				fn.fe = (*Encoder).kInt8
763				fn.fd = (*Decoder).kInt8
764			case reflect.Int16:
765				fn.fe = (*Encoder).kInt16
766				fn.fd = (*Decoder).kInt16
767			case reflect.Int32:
768				fn.fe = (*Encoder).kInt32
769				fn.fd = (*Decoder).kInt32
770			case reflect.Int64:
771				fn.fe = (*Encoder).kInt64
772				fn.fd = (*Decoder).kInt64
773			case reflect.Uint:
774				fn.fd = (*Decoder).kUint
775				fn.fe = (*Encoder).kUint
776			case reflect.Uint8:
777				fn.fe = (*Encoder).kUint8
778				fn.fd = (*Decoder).kUint8
779			case reflect.Uint16:
780				fn.fe = (*Encoder).kUint16
781				fn.fd = (*Decoder).kUint16
782			case reflect.Uint32:
783				fn.fe = (*Encoder).kUint32
784				fn.fd = (*Decoder).kUint32
785			case reflect.Uint64:
786				fn.fe = (*Encoder).kUint64
787				fn.fd = (*Decoder).kUint64
788			case reflect.Uintptr:
789				fn.fe = (*Encoder).kUintptr
790				fn.fd = (*Decoder).kUintptr
791			case reflect.Float32:
792				fn.fe = (*Encoder).kFloat32
793				fn.fd = (*Decoder).kFloat32
794			case reflect.Float64:
795				fn.fe = (*Encoder).kFloat64
796				fn.fd = (*Decoder).kFloat64
797			case reflect.Invalid:
798				fn.fe = (*Encoder).kInvalid
799				fn.fd = (*Decoder).kErr
800			case reflect.Chan:
801				fi.seq = seqTypeChan
802				fn.fe = (*Encoder).kSlice
803				fn.fd = (*Decoder).kSlice
804			case reflect.Slice:
805				fi.seq = seqTypeSlice
806				fn.fe = (*Encoder).kSlice
807				fn.fd = (*Decoder).kSlice
808			case reflect.Array:
809				fi.seq = seqTypeArray
810				fn.fe = (*Encoder).kSlice
811				fi.addrF = false
812				fi.addrD = false
813				rt2 := reflect.SliceOf(ti.elem)
814				fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
815					d.h.fn(rt2, true, false).fd(d, xf, xrv.Slice(0, xrv.Len()))
816				}
817				// fn.fd = (*Decoder).kArray
818			case reflect.Struct:
819				if ti.anyOmitEmpty || ti.mf || ti.mfp {
820					fn.fe = (*Encoder).kStruct
821				} else {
822					fn.fe = (*Encoder).kStructNoOmitempty
823				}
824				fn.fd = (*Decoder).kStruct
825			case reflect.Map:
826				fn.fe = (*Encoder).kMap
827				fn.fd = (*Decoder).kMap
828			case reflect.Interface:
829				// encode: reflect.Interface are handled already by preEncodeValue
830				fn.fd = (*Decoder).kInterface
831				fn.fe = (*Encoder).kErr
832			default:
833				// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
834				fn.fe = (*Encoder).kErr
835				fn.fd = (*Decoder).kErr
836			}
837		}
838	}
839
840	c.mu.Lock()
841	var sp2 []codecRtidFn
842	sp = c.rtidFns.load()
843	if sp == nil {
844		sp2 = []codecRtidFn{{rtid, fn}}
845		c.rtidFns.store(sp2)
846		// xdebugf(">>>> adding rt: %v to rtidfns of size: %v", rt, len(sp2))
847		// xdebugf(">>>> loading stored rtidfns of size: %v", len(c.rtidFns.load()))
848	} else {
849		idx, fn2 := findFn(sp, rtid)
850		if fn2 == nil {
851			sp2 = make([]codecRtidFn, len(sp)+1)
852			copy(sp2, sp[:idx])
853			copy(sp2[idx+1:], sp[idx:])
854			sp2[idx] = codecRtidFn{rtid, fn}
855			c.rtidFns.store(sp2)
856			// xdebugf(">>>> adding rt: %v to rtidfns of size: %v", rt, len(sp2))
857
858		}
859	}
860	c.mu.Unlock()
861	return
862}
863
864// Handle defines a specific encoding format. It also stores any runtime state
865// used during an Encoding or Decoding session e.g. stored state about Types, etc.
866//
867// Once a handle is configured, it can be shared across multiple Encoders and Decoders.
868//
869// Note that a Handle is NOT safe for concurrent modification.
870// Consequently, do not modify it after it is configured if shared among
871// multiple Encoders and Decoders in different goroutines.
872//
873// Consequently, the typical usage model is that a Handle is pre-configured
874// before first time use, and not modified while in use.
875// Such a pre-configured Handle is safe for concurrent access.
876type Handle interface {
877	Name() string
878	// return the basic handle. It may not have been inited.
879	// Prefer to use basicHandle() helper function that ensures it has been inited.
880	getBasicHandle() *BasicHandle
881	recreateEncDriver(encDriver) bool
882	newEncDriver(w *Encoder) encDriver
883	newDecDriver(r *Decoder) decDriver
884	isBinary() bool
885	hasElemSeparators() bool
886	// IsBuiltinType(rtid uintptr) bool
887}
888
889// Raw represents raw formatted bytes.
890// We "blindly" store it during encode and retrieve the raw bytes during decode.
891// Note: it is dangerous during encode, so we may gate the behaviour
892// behind an Encode flag which must be explicitly set.
893type Raw []byte
894
895// RawExt represents raw unprocessed extension data.
896// Some codecs will decode extension data as a *RawExt
897// if there is no registered extension for the tag.
898//
899// Only one of Data or Value is nil.
900// If Data is nil, then the content of the RawExt is in the Value.
901type RawExt struct {
902	Tag uint64
903	// Data is the []byte which represents the raw ext. If nil, ext is exposed in Value.
904	// Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of types
905	Data []byte
906	// Value represents the extension, if Data is nil.
907	// Value is used by codecs (e.g. cbor, json) which leverage the format to do
908	// custom serialization of the types.
909	Value interface{}
910}
911
912// BytesExt handles custom (de)serialization of types to/from []byte.
913// It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types.
914type BytesExt interface {
915	// WriteExt converts a value to a []byte.
916	//
917	// Note: v is a pointer iff the registered extension type is a struct or array kind.
918	WriteExt(v interface{}) []byte
919
920	// ReadExt updates a value from a []byte.
921	//
922	// Note: dst is always a pointer kind to the registered extension type.
923	ReadExt(dst interface{}, src []byte)
924}
925
926// InterfaceExt handles custom (de)serialization of types to/from another interface{} value.
927// The Encoder or Decoder will then handle the further (de)serialization of that known type.
928//
929// It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of types.
930type InterfaceExt interface {
931	// ConvertExt converts a value into a simpler interface for easy encoding
932	// e.g. convert time.Time to int64.
933	//
934	// Note: v is a pointer iff the registered extension type is a struct or array kind.
935	ConvertExt(v interface{}) interface{}
936
937	// UpdateExt updates a value from a simpler interface for easy decoding
938	// e.g. convert int64 to time.Time.
939	//
940	// Note: dst is always a pointer kind to the registered extension type.
941	UpdateExt(dst interface{}, src interface{})
942}
943
944// Ext handles custom (de)serialization of custom types / extensions.
945type Ext interface {
946	BytesExt
947	InterfaceExt
948}
949
950// addExtWrapper is a wrapper implementation to support former AddExt exported method.
951type addExtWrapper struct {
952	encFn func(reflect.Value) ([]byte, error)
953	decFn func(reflect.Value, []byte) error
954}
955
956func (x addExtWrapper) WriteExt(v interface{}) []byte {
957	bs, err := x.encFn(reflect.ValueOf(v))
958	if err != nil {
959		panic(err)
960	}
961	return bs
962}
963
964func (x addExtWrapper) ReadExt(v interface{}, bs []byte) {
965	if err := x.decFn(reflect.ValueOf(v), bs); err != nil {
966		panic(err)
967	}
968}
969
970func (x addExtWrapper) ConvertExt(v interface{}) interface{} {
971	return x.WriteExt(v)
972}
973
974func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) {
975	x.ReadExt(dest, v.([]byte))
976}
977
978type extWrapper struct {
979	BytesExt
980	InterfaceExt
981}
982
983type bytesExtFailer struct{}
984
985func (bytesExtFailer) WriteExt(v interface{}) []byte {
986	panicv.errorstr("BytesExt.WriteExt is not supported")
987	return nil
988}
989func (bytesExtFailer) ReadExt(v interface{}, bs []byte) {
990	panicv.errorstr("BytesExt.ReadExt is not supported")
991}
992
993type interfaceExtFailer struct{}
994
995func (interfaceExtFailer) ConvertExt(v interface{}) interface{} {
996	panicv.errorstr("InterfaceExt.ConvertExt is not supported")
997	return nil
998}
999func (interfaceExtFailer) UpdateExt(dest interface{}, v interface{}) {
1000	panicv.errorstr("InterfaceExt.UpdateExt is not supported")
1001}
1002
1003type binaryEncodingType struct{}
1004
1005func (binaryEncodingType) isBinary() bool { return true }
1006
1007type textEncodingType struct{}
1008
1009func (textEncodingType) isBinary() bool { return false }
1010
1011// noBuiltInTypes is embedded into many types which do not support builtins
1012// e.g. msgpack, simple, cbor.
1013
1014// type noBuiltInTypeChecker struct{}
1015// func (noBuiltInTypeChecker) IsBuiltinType(rt uintptr) bool { return false }
1016// type noBuiltInTypes struct{ noBuiltInTypeChecker }
1017
1018type noBuiltInTypes struct{}
1019
1020func (noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {}
1021func (noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {}
1022
1023// type noStreamingCodec struct{}
1024// func (noStreamingCodec) CheckBreak() bool { return false }
1025// func (noStreamingCodec) hasElemSeparators() bool { return false }
1026
1027type noElemSeparators struct{}
1028
1029func (noElemSeparators) hasElemSeparators() (v bool)            { return }
1030func (noElemSeparators) recreateEncDriver(e encDriver) (v bool) { return }
1031
1032// bigenHelper.
1033// Users must already slice the x completely, because we will not reslice.
1034type bigenHelper struct {
1035	x []byte // must be correctly sliced to appropriate len. slicing is a cost.
1036	w *encWriterSwitch
1037}
1038
1039func (z bigenHelper) writeUint16(v uint16) {
1040	bigen.PutUint16(z.x, v)
1041	z.w.writeb(z.x)
1042}
1043
1044func (z bigenHelper) writeUint32(v uint32) {
1045	bigen.PutUint32(z.x, v)
1046	z.w.writeb(z.x)
1047}
1048
1049func (z bigenHelper) writeUint64(v uint64) {
1050	bigen.PutUint64(z.x, v)
1051	z.w.writeb(z.x)
1052}
1053
1054type extTypeTagFn struct {
1055	rtid    uintptr
1056	rtidptr uintptr
1057	rt      reflect.Type
1058	tag     uint64
1059	ext     Ext
1060	_       [1]uint64 // padding
1061}
1062
1063type extHandle []extTypeTagFn
1064
1065// AddExt registes an encode and decode function for a reflect.Type.
1066// To deregister an Ext, call AddExt with nil encfn and/or nil decfn.
1067//
1068// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
1069func (o *extHandle) AddExt(rt reflect.Type, tag byte,
1070	encfn func(reflect.Value) ([]byte, error),
1071	decfn func(reflect.Value, []byte) error) (err error) {
1072	if encfn == nil || decfn == nil {
1073		return o.SetExt(rt, uint64(tag), nil)
1074	}
1075	return o.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn})
1076}
1077
1078// SetExt will set the extension for a tag and reflect.Type.
1079// Note that the type must be a named type, and specifically not a pointer or Interface.
1080// An error is returned if that is not honored.
1081// To Deregister an ext, call SetExt with nil Ext.
1082//
1083// Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
1084func (o *extHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
1085	// o is a pointer, because we may need to initialize it
1086	rk := rt.Kind()
1087	for rk == reflect.Ptr {
1088		rt = rt.Elem()
1089		rk = rt.Kind()
1090	}
1091
1092	if rt.PkgPath() == "" || rk == reflect.Interface { // || rk == reflect.Ptr {
1093		return fmt.Errorf("codec.Handle.SetExt: Takes named type, not a pointer or interface: %v", rt)
1094	}
1095
1096	rtid := rt2id(rt)
1097	switch rtid {
1098	case timeTypId, rawTypId, rawExtTypId:
1099		// all natively supported type, so cannot have an extension
1100		return // TODO: should we silently ignore, or return an error???
1101	}
1102	// if o == nil {
1103	// 	return errors.New("codec.Handle.SetExt: extHandle not initialized")
1104	// }
1105	o2 := *o
1106	// if o2 == nil {
1107	// 	return errors.New("codec.Handle.SetExt: extHandle not initialized")
1108	// }
1109	for i := range o2 {
1110		v := &o2[i]
1111		if v.rtid == rtid {
1112			v.tag, v.ext = tag, ext
1113			return
1114		}
1115	}
1116	rtidptr := rt2id(reflect.PtrTo(rt))
1117	*o = append(o2, extTypeTagFn{rtid, rtidptr, rt, tag, ext, [1]uint64{}})
1118	return
1119}
1120
1121func (o extHandle) getExt(rtid uintptr) (v *extTypeTagFn) {
1122	for i := range o {
1123		v = &o[i]
1124		if v.rtid == rtid || v.rtidptr == rtid {
1125			return
1126		}
1127	}
1128	return nil
1129}
1130
1131func (o extHandle) getExtForTag(tag uint64) (v *extTypeTagFn) {
1132	for i := range o {
1133		v = &o[i]
1134		if v.tag == tag {
1135			return
1136		}
1137	}
1138	return nil
1139}
1140
1141type intf2impl struct {
1142	rtid uintptr // for intf
1143	impl reflect.Type
1144	// _    [1]uint64 // padding // not-needed, as *intf2impl is never returned.
1145}
1146
1147type intf2impls []intf2impl
1148
1149// Intf2Impl maps an interface to an implementing type.
1150// This allows us support infering the concrete type
1151// and populating it when passed an interface.
1152// e.g. var v io.Reader can be decoded as a bytes.Buffer, etc.
1153//
1154// Passing a nil impl will clear the mapping.
1155func (o *intf2impls) Intf2Impl(intf, impl reflect.Type) (err error) {
1156	if impl != nil && !impl.Implements(intf) {
1157		return fmt.Errorf("Intf2Impl: %v does not implement %v", impl, intf)
1158	}
1159	rtid := rt2id(intf)
1160	o2 := *o
1161	for i := range o2 {
1162		v := &o2[i]
1163		if v.rtid == rtid {
1164			v.impl = impl
1165			return
1166		}
1167	}
1168	*o = append(o2, intf2impl{rtid, impl})
1169	return
1170}
1171
1172func (o intf2impls) intf2impl(rtid uintptr) (rv reflect.Value) {
1173	for i := range o {
1174		v := &o[i]
1175		if v.rtid == rtid {
1176			if v.impl == nil {
1177				return
1178			}
1179			if v.impl.Kind() == reflect.Ptr {
1180				return reflect.New(v.impl.Elem())
1181			}
1182			return reflect.New(v.impl).Elem()
1183		}
1184	}
1185	return
1186}
1187
1188type structFieldInfoFlag uint8
1189
1190const (
1191	_ structFieldInfoFlag = 1 << iota
1192	structFieldInfoFlagReady
1193	structFieldInfoFlagOmitEmpty
1194)
1195
1196func (x *structFieldInfoFlag) flagSet(f structFieldInfoFlag) {
1197	*x = *x | f
1198}
1199
1200func (x *structFieldInfoFlag) flagClr(f structFieldInfoFlag) {
1201	*x = *x &^ f
1202}
1203
1204func (x structFieldInfoFlag) flagGet(f structFieldInfoFlag) bool {
1205	return x&f != 0
1206}
1207
1208func (x structFieldInfoFlag) omitEmpty() bool {
1209	return x.flagGet(structFieldInfoFlagOmitEmpty)
1210}
1211
1212func (x structFieldInfoFlag) ready() bool {
1213	return x.flagGet(structFieldInfoFlagReady)
1214}
1215
1216type structFieldInfo struct {
1217	encName   string // encode name
1218	fieldName string // field name
1219
1220	is  [maxLevelsEmbedding]uint16 // (recursive/embedded) field index in struct
1221	nis uint8                      // num levels of embedding. if 1, then it's not embedded.
1222
1223	encNameAsciiAlphaNum bool // the encName only contains ascii alphabet and numbers
1224	structFieldInfoFlag
1225	_ [1]byte // padding
1226}
1227
1228func (si *structFieldInfo) setToZeroValue(v reflect.Value) {
1229	if v, valid := si.field(v, false); valid {
1230		v.Set(reflect.Zero(v.Type()))
1231	}
1232}
1233
1234// rv returns the field of the struct.
1235// If anonymous, it returns an Invalid
1236func (si *structFieldInfo) field(v reflect.Value, update bool) (rv2 reflect.Value, valid bool) {
1237	// replicate FieldByIndex
1238	for i, x := range si.is {
1239		if uint8(i) == si.nis {
1240			break
1241		}
1242		if v, valid = baseStructRv(v, update); !valid {
1243			return
1244		}
1245		v = v.Field(int(x))
1246	}
1247
1248	return v, true
1249}
1250
1251// func (si *structFieldInfo) fieldval(v reflect.Value, update bool) reflect.Value {
1252// 	v, _ = si.field(v, update)
1253// 	return v
1254// }
1255
1256func parseStructInfo(stag string) (toArray, omitEmpty bool, keytype valueType) {
1257	keytype = valueTypeString // default
1258	if stag == "" {
1259		return
1260	}
1261	for i, s := range strings.Split(stag, ",") {
1262		if i == 0 {
1263		} else {
1264			switch s {
1265			case "omitempty":
1266				omitEmpty = true
1267			case "toarray":
1268				toArray = true
1269			case "int":
1270				keytype = valueTypeInt
1271			case "uint":
1272				keytype = valueTypeUint
1273			case "float":
1274				keytype = valueTypeFloat
1275				// case "bool":
1276				// 	keytype = valueTypeBool
1277			case "string":
1278				keytype = valueTypeString
1279			}
1280		}
1281	}
1282	return
1283}
1284
1285func (si *structFieldInfo) parseTag(stag string) {
1286	// if fname == "" {
1287	// 	panic(errNoFieldNameToStructFieldInfo)
1288	// }
1289
1290	if stag == "" {
1291		return
1292	}
1293	for i, s := range strings.Split(stag, ",") {
1294		if i == 0 {
1295			if s != "" {
1296				si.encName = s
1297			}
1298		} else {
1299			switch s {
1300			case "omitempty":
1301				si.flagSet(structFieldInfoFlagOmitEmpty)
1302				// si.omitEmpty = true
1303				// case "toarray":
1304				// 	si.toArray = true
1305			}
1306		}
1307	}
1308}
1309
1310type sfiSortedByEncName []*structFieldInfo
1311
1312func (p sfiSortedByEncName) Len() int           { return len(p) }
1313func (p sfiSortedByEncName) Less(i, j int) bool { return p[uint(i)].encName < p[uint(j)].encName }
1314func (p sfiSortedByEncName) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
1315
1316const structFieldNodeNumToCache = 4
1317
1318type structFieldNodeCache struct {
1319	rv  [structFieldNodeNumToCache]reflect.Value
1320	idx [structFieldNodeNumToCache]uint32
1321	num uint8
1322}
1323
1324func (x *structFieldNodeCache) get(key uint32) (fv reflect.Value, valid bool) {
1325	for i, k := range &x.idx {
1326		if uint8(i) == x.num {
1327			return // break
1328		}
1329		if key == k {
1330			return x.rv[i], true
1331		}
1332	}
1333	return
1334}
1335
1336func (x *structFieldNodeCache) tryAdd(fv reflect.Value, key uint32) {
1337	if x.num < structFieldNodeNumToCache {
1338		x.rv[x.num] = fv
1339		x.idx[x.num] = key
1340		x.num++
1341		return
1342	}
1343}
1344
1345type structFieldNode struct {
1346	v      reflect.Value
1347	cache2 structFieldNodeCache
1348	cache3 structFieldNodeCache
1349	update bool
1350}
1351
1352func (x *structFieldNode) field(si *structFieldInfo) (fv reflect.Value) {
1353	// return si.fieldval(x.v, x.update)
1354	// Note: we only cache if nis=2 or nis=3 i.e. up to 2 levels of embedding
1355	// This mostly saves us time on the repeated calls to v.Elem, v.Field, etc.
1356	var valid bool
1357	switch si.nis {
1358	case 1:
1359		fv = x.v.Field(int(si.is[0]))
1360	case 2:
1361		if fv, valid = x.cache2.get(uint32(si.is[0])); valid {
1362			fv = fv.Field(int(si.is[1]))
1363			return
1364		}
1365		fv = x.v.Field(int(si.is[0]))
1366		if fv, valid = baseStructRv(fv, x.update); !valid {
1367			return
1368		}
1369		x.cache2.tryAdd(fv, uint32(si.is[0]))
1370		fv = fv.Field(int(si.is[1]))
1371	case 3:
1372		var key uint32 = uint32(si.is[0])<<16 | uint32(si.is[1])
1373		if fv, valid = x.cache3.get(key); valid {
1374			fv = fv.Field(int(si.is[2]))
1375			return
1376		}
1377		fv = x.v.Field(int(si.is[0]))
1378		if fv, valid = baseStructRv(fv, x.update); !valid {
1379			return
1380		}
1381		fv = fv.Field(int(si.is[1]))
1382		if fv, valid = baseStructRv(fv, x.update); !valid {
1383			return
1384		}
1385		x.cache3.tryAdd(fv, key)
1386		fv = fv.Field(int(si.is[2]))
1387	default:
1388		fv, _ = si.field(x.v, x.update)
1389	}
1390	return
1391}
1392
1393func baseStructRv(v reflect.Value, update bool) (v2 reflect.Value, valid bool) {
1394	for v.Kind() == reflect.Ptr {
1395		if v.IsNil() {
1396			if !update {
1397				return
1398			}
1399			v.Set(reflect.New(v.Type().Elem()))
1400		}
1401		v = v.Elem()
1402	}
1403	return v, true
1404}
1405
1406type typeInfoFlag uint8
1407
1408const (
1409	typeInfoFlagComparable = 1 << iota
1410	typeInfoFlagIsZeroer
1411	typeInfoFlagIsZeroerPtr
1412)
1413
1414// typeInfo keeps information about each (non-ptr) type referenced in the encode/decode sequence.
1415//
1416// During an encode/decode sequence, we work as below:
1417//   - If base is a built in type, en/decode base value
1418//   - If base is registered as an extension, en/decode base value
1419//   - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
1420//   - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method
1421//   - Else decode appropriately based on the reflect.Kind
1422type typeInfo struct {
1423	rt      reflect.Type
1424	elem    reflect.Type
1425	pkgpath string
1426
1427	rtid uintptr
1428	// rv0  reflect.Value // saved zero value, used if immutableKind
1429
1430	numMeth uint16 // number of methods
1431	kind    uint8
1432	chandir uint8
1433
1434	anyOmitEmpty bool      // true if a struct, and any of the fields are tagged "omitempty"
1435	toArray      bool      // whether this (struct) type should be encoded as an array
1436	keyType      valueType // if struct, how is the field name stored in a stream? default is string
1437	mbs          bool      // base type (T or *T) is a MapBySlice
1438
1439	// ---- cpu cache line boundary?
1440	sfiSort []*structFieldInfo // sorted. Used when enc/dec struct to map.
1441	sfiSrc  []*structFieldInfo // unsorted. Used when enc/dec struct to array.
1442
1443	key reflect.Type
1444
1445	// ---- cpu cache line boundary?
1446	// sfis         []structFieldInfo // all sfi, in src order, as created.
1447	sfiNamesSort []byte // all names, with indexes into the sfiSort
1448
1449	// format of marshal type fields below: [btj][mu]p? OR csp?
1450
1451	bm  bool // T is a binaryMarshaler
1452	bmp bool // *T is a binaryMarshaler
1453	bu  bool // T is a binaryUnmarshaler
1454	bup bool // *T is a binaryUnmarshaler
1455	tm  bool // T is a textMarshaler
1456	tmp bool // *T is a textMarshaler
1457	tu  bool // T is a textUnmarshaler
1458	tup bool // *T is a textUnmarshaler
1459
1460	jm  bool // T is a jsonMarshaler
1461	jmp bool // *T is a jsonMarshaler
1462	ju  bool // T is a jsonUnmarshaler
1463	jup bool // *T is a jsonUnmarshaler
1464	cs  bool // T is a Selfer
1465	csp bool // *T is a Selfer
1466	mf  bool // T is a MissingFielder
1467	mfp bool // *T is a MissingFielder
1468
1469	// other flags, with individual bits representing if set.
1470	flags              typeInfoFlag
1471	infoFieldOmitempty bool
1472
1473	_ [6]byte   // padding
1474	_ [2]uint64 // padding
1475}
1476
1477func (ti *typeInfo) isFlag(f typeInfoFlag) bool {
1478	return ti.flags&f != 0
1479}
1480
1481func (ti *typeInfo) indexForEncName(name []byte) (index int16) {
1482	var sn []byte
1483	if len(name)+2 <= 32 {
1484		var buf [32]byte // should not escape to heap
1485		sn = buf[:len(name)+2]
1486	} else {
1487		sn = make([]byte, len(name)+2)
1488	}
1489	copy(sn[1:], name)
1490	sn[0], sn[len(sn)-1] = tiSep2(name), 0xff
1491	j := bytes.Index(ti.sfiNamesSort, sn)
1492	if j < 0 {
1493		return -1
1494	}
1495	index = int16(uint16(ti.sfiNamesSort[j+len(sn)+1]) | uint16(ti.sfiNamesSort[j+len(sn)])<<8)
1496	return
1497}
1498
1499type rtid2ti struct {
1500	rtid uintptr
1501	ti   *typeInfo
1502}
1503
1504// TypeInfos caches typeInfo for each type on first inspection.
1505//
1506// It is configured with a set of tag keys, which are used to get
1507// configuration for the type.
1508type TypeInfos struct {
1509	// infos: formerly map[uintptr]*typeInfo, now *[]rtid2ti, 2 words expected
1510	infos atomicTypeInfoSlice
1511	mu    sync.Mutex
1512	tags  []string
1513	_     [2]uint64 // padding
1514}
1515
1516// NewTypeInfos creates a TypeInfos given a set of struct tags keys.
1517//
1518// This allows users customize the struct tag keys which contain configuration
1519// of their types.
1520func NewTypeInfos(tags []string) *TypeInfos {
1521	return &TypeInfos{tags: tags}
1522}
1523
1524func (x *TypeInfos) structTag(t reflect.StructTag) (s string) {
1525	// check for tags: codec, json, in that order.
1526	// this allows seamless support for many configured structs.
1527	for _, x := range x.tags {
1528		s = t.Get(x)
1529		if s != "" {
1530			return s
1531		}
1532	}
1533	return
1534}
1535
1536func findTypeInfo(s []rtid2ti, rtid uintptr) (i uint, ti *typeInfo) {
1537	// binary search. adapted from sort/search.go.
1538	// Note: we use goto (instead of for loop) so this can be inlined.
1539
1540	// if sp == nil {
1541	// 	return -1, nil
1542	// }
1543	// s := *sp
1544
1545	// h, i, j := 0, 0, len(s)
1546	var h uint // var h, i uint
1547	var j = uint(len(s))
1548LOOP:
1549	if i < j {
1550		h = i + (j-i)/2
1551		if s[h].rtid < rtid {
1552			i = h + 1
1553		} else {
1554			j = h
1555		}
1556		goto LOOP
1557	}
1558	if i < uint(len(s)) && s[i].rtid == rtid {
1559		ti = s[i].ti
1560	}
1561	return
1562}
1563
1564func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
1565	sp := x.infos.load()
1566	if sp != nil {
1567		_, pti = findTypeInfo(sp, rtid)
1568		if pti != nil {
1569			return
1570		}
1571	}
1572
1573	rk := rt.Kind()
1574
1575	if rk == reflect.Ptr { // || (rk == reflect.Interface && rtid != intfTypId) {
1576		panicv.errorf("invalid kind passed to TypeInfos.get: %v - %v", rk, rt)
1577	}
1578
1579	// do not hold lock while computing this.
1580	// it may lead to duplication, but that's ok.
1581	ti := typeInfo{
1582		rt:      rt,
1583		rtid:    rtid,
1584		kind:    uint8(rk),
1585		pkgpath: rt.PkgPath(),
1586		keyType: valueTypeString, // default it - so it's never 0
1587	}
1588	// ti.rv0 = reflect.Zero(rt)
1589
1590	// ti.comparable = rt.Comparable()
1591	ti.numMeth = uint16(rt.NumMethod())
1592
1593	ti.bm, ti.bmp = implIntf(rt, binaryMarshalerTyp)
1594	ti.bu, ti.bup = implIntf(rt, binaryUnmarshalerTyp)
1595	ti.tm, ti.tmp = implIntf(rt, textMarshalerTyp)
1596	ti.tu, ti.tup = implIntf(rt, textUnmarshalerTyp)
1597	ti.jm, ti.jmp = implIntf(rt, jsonMarshalerTyp)
1598	ti.ju, ti.jup = implIntf(rt, jsonUnmarshalerTyp)
1599	ti.cs, ti.csp = implIntf(rt, selferTyp)
1600	ti.mf, ti.mfp = implIntf(rt, missingFielderTyp)
1601
1602	b1, b2 := implIntf(rt, iszeroTyp)
1603	if b1 {
1604		ti.flags |= typeInfoFlagIsZeroer
1605	}
1606	if b2 {
1607		ti.flags |= typeInfoFlagIsZeroerPtr
1608	}
1609	if rt.Comparable() {
1610		ti.flags |= typeInfoFlagComparable
1611	}
1612
1613	switch rk {
1614	case reflect.Struct:
1615		var omitEmpty bool
1616		if f, ok := rt.FieldByName(structInfoFieldName); ok {
1617			ti.toArray, omitEmpty, ti.keyType = parseStructInfo(x.structTag(f.Tag))
1618			ti.infoFieldOmitempty = omitEmpty
1619		} else {
1620			ti.keyType = valueTypeString
1621		}
1622		pp, pi := &pool.tiload, pool.tiload.Get() // pool.tiLoad()
1623		pv := pi.(*typeInfoLoadArray)
1624		pv.etypes[0] = ti.rtid
1625		// vv := typeInfoLoad{pv.fNames[:0], pv.encNames[:0], pv.etypes[:1], pv.sfis[:0]}
1626		vv := typeInfoLoad{pv.etypes[:1], pv.sfis[:0]}
1627		x.rget(rt, rtid, omitEmpty, nil, &vv)
1628		// ti.sfis = vv.sfis
1629		ti.sfiSrc, ti.sfiSort, ti.sfiNamesSort, ti.anyOmitEmpty = rgetResolveSFI(rt, vv.sfis, pv)
1630		pp.Put(pi)
1631	case reflect.Map:
1632		ti.elem = rt.Elem()
1633		ti.key = rt.Key()
1634	case reflect.Slice:
1635		ti.mbs, _ = implIntf(rt, mapBySliceTyp)
1636		ti.elem = rt.Elem()
1637	case reflect.Chan:
1638		ti.elem = rt.Elem()
1639		ti.chandir = uint8(rt.ChanDir())
1640	case reflect.Array, reflect.Ptr:
1641		ti.elem = rt.Elem()
1642	}
1643	// sfi = sfiSrc
1644
1645	x.mu.Lock()
1646	sp = x.infos.load()
1647	var sp2 []rtid2ti
1648	if sp == nil {
1649		pti = &ti
1650		sp2 = []rtid2ti{{rtid, pti}}
1651		x.infos.store(sp2)
1652	} else {
1653		var idx uint
1654		idx, pti = findTypeInfo(sp, rtid)
1655		if pti == nil {
1656			pti = &ti
1657			sp2 = make([]rtid2ti, len(sp)+1)
1658			copy(sp2, sp[:idx])
1659			copy(sp2[idx+1:], sp[idx:])
1660			sp2[idx] = rtid2ti{rtid, pti}
1661			x.infos.store(sp2)
1662		}
1663	}
1664	x.mu.Unlock()
1665	return
1666}
1667
1668func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr, omitEmpty bool,
1669	indexstack []uint16, pv *typeInfoLoad) {
1670	// Read up fields and store how to access the value.
1671	//
1672	// It uses go's rules for message selectors,
1673	// which say that the field with the shallowest depth is selected.
1674	//
1675	// Note: we consciously use slices, not a map, to simulate a set.
1676	//       Typically, types have < 16 fields,
1677	//       and iteration using equals is faster than maps there
1678	flen := rt.NumField()
1679	if flen > (1<<maxLevelsEmbedding - 1) {
1680		panicv.errorf("codec: types with > %v fields are not supported - has %v fields",
1681			(1<<maxLevelsEmbedding - 1), flen)
1682	}
1683	// pv.sfis = make([]structFieldInfo, flen)
1684LOOP:
1685	for j, jlen := uint16(0), uint16(flen); j < jlen; j++ {
1686		f := rt.Field(int(j))
1687		fkind := f.Type.Kind()
1688		// skip if a func type, or is unexported, or structTag value == "-"
1689		switch fkind {
1690		case reflect.Func, reflect.Complex64, reflect.Complex128, reflect.UnsafePointer:
1691			continue LOOP
1692		}
1693
1694		isUnexported := f.PkgPath != ""
1695		if isUnexported && !f.Anonymous {
1696			continue
1697		}
1698		stag := x.structTag(f.Tag)
1699		if stag == "-" {
1700			continue
1701		}
1702		var si structFieldInfo
1703		var parsed bool
1704		// if anonymous and no struct tag (or it's blank),
1705		// and a struct (or pointer to struct), inline it.
1706		if f.Anonymous && fkind != reflect.Interface {
1707			// ^^ redundant but ok: per go spec, an embedded pointer type cannot be to an interface
1708			ft := f.Type
1709			isPtr := ft.Kind() == reflect.Ptr
1710			for ft.Kind() == reflect.Ptr {
1711				ft = ft.Elem()
1712			}
1713			isStruct := ft.Kind() == reflect.Struct
1714
1715			// Ignore embedded fields of unexported non-struct types.
1716			// Also, from go1.10, ignore pointers to unexported struct types
1717			// because unmarshal cannot assign a new struct to an unexported field.
1718			// See https://golang.org/issue/21357
1719			if (isUnexported && !isStruct) || (!allowSetUnexportedEmbeddedPtr && isUnexported && isPtr) {
1720				continue
1721			}
1722			doInline := stag == ""
1723			if !doInline {
1724				si.parseTag(stag)
1725				parsed = true
1726				doInline = si.encName == ""
1727				// doInline = si.isZero()
1728			}
1729			if doInline && isStruct {
1730				// if etypes contains this, don't call rget again (as fields are already seen here)
1731				ftid := rt2id(ft)
1732				// We cannot recurse forever, but we need to track other field depths.
1733				// So - we break if we see a type twice (not the first time).
1734				// This should be sufficient to handle an embedded type that refers to its
1735				// owning type, which then refers to its embedded type.
1736				processIt := true
1737				numk := 0
1738				for _, k := range pv.etypes {
1739					if k == ftid {
1740						numk++
1741						if numk == rgetMaxRecursion {
1742							processIt = false
1743							break
1744						}
1745					}
1746				}
1747				if processIt {
1748					pv.etypes = append(pv.etypes, ftid)
1749					indexstack2 := make([]uint16, len(indexstack)+1)
1750					copy(indexstack2, indexstack)
1751					indexstack2[len(indexstack)] = j
1752					// indexstack2 := append(append(make([]int, 0, len(indexstack)+4), indexstack...), j)
1753					x.rget(ft, ftid, omitEmpty, indexstack2, pv)
1754				}
1755				continue
1756			}
1757		}
1758
1759		// after the anonymous dance: if an unexported field, skip
1760		if isUnexported {
1761			continue
1762		}
1763
1764		if f.Name == "" {
1765			panic(errNoFieldNameToStructFieldInfo)
1766		}
1767
1768		// pv.fNames = append(pv.fNames, f.Name)
1769		// if si.encName == "" {
1770
1771		if !parsed {
1772			si.encName = f.Name
1773			si.parseTag(stag)
1774			parsed = true
1775		} else if si.encName == "" {
1776			si.encName = f.Name
1777		}
1778		si.encNameAsciiAlphaNum = true
1779		for i := len(si.encName) - 1; i >= 0; i-- { // bounds-check elimination
1780			b := si.encName[i]
1781			if (b >= '0' && b <= '9') || (b >= 'a' && b <= 'z') || (b >= 'A' && b <= 'Z') {
1782				continue
1783			}
1784			si.encNameAsciiAlphaNum = false
1785			break
1786		}
1787		si.fieldName = f.Name
1788		si.flagSet(structFieldInfoFlagReady)
1789
1790		// pv.encNames = append(pv.encNames, si.encName)
1791
1792		// si.ikind = int(f.Type.Kind())
1793		if len(indexstack) > maxLevelsEmbedding-1 {
1794			panicv.errorf("codec: only supports up to %v depth of embedding - type has %v depth",
1795				maxLevelsEmbedding-1, len(indexstack))
1796		}
1797		si.nis = uint8(len(indexstack)) + 1
1798		copy(si.is[:], indexstack)
1799		si.is[len(indexstack)] = j
1800
1801		if omitEmpty {
1802			si.flagSet(structFieldInfoFlagOmitEmpty)
1803		}
1804		pv.sfis = append(pv.sfis, si)
1805	}
1806}
1807
1808func tiSep(name string) uint8 {
1809	// (xn[0]%64) // (between 192-255 - outside ascii BMP)
1810	// return 0xfe - (name[0] & 63)
1811	// return 0xfe - (name[0] & 63) - uint8(len(name))
1812	// return 0xfe - (name[0] & 63) - uint8(len(name)&63)
1813	// return ((0xfe - (name[0] & 63)) & 0xf8) | (uint8(len(name) & 0x07))
1814	return 0xfe - (name[0] & 63) - uint8(len(name)&63)
1815}
1816
1817func tiSep2(name []byte) uint8 {
1818	return 0xfe - (name[0] & 63) - uint8(len(name)&63)
1819}
1820
1821// resolves the struct field info got from a call to rget.
1822// Returns a trimmed, unsorted and sorted []*structFieldInfo.
1823func rgetResolveSFI(rt reflect.Type, x []structFieldInfo, pv *typeInfoLoadArray) (
1824	y, z []*structFieldInfo, ss []byte, anyOmitEmpty bool) {
1825	sa := pv.sfiidx[:0]
1826	sn := pv.b[:]
1827	n := len(x)
1828
1829	var xn string
1830	var ui uint16
1831	var sep byte
1832
1833	for i := range x {
1834		ui = uint16(i)
1835		xn = x[i].encName // fieldName or encName? use encName for now.
1836		if len(xn)+2 > cap(pv.b) {
1837			sn = make([]byte, len(xn)+2)
1838		} else {
1839			sn = sn[:len(xn)+2]
1840		}
1841		// use a custom sep, so that misses are less frequent,
1842		// since the sep (first char in search) is as unique as first char in field name.
1843		sep = tiSep(xn)
1844		sn[0], sn[len(sn)-1] = sep, 0xff
1845		copy(sn[1:], xn)
1846		j := bytes.Index(sa, sn)
1847		if j == -1 {
1848			sa = append(sa, sep)
1849			sa = append(sa, xn...)
1850			sa = append(sa, 0xff, byte(ui>>8), byte(ui))
1851		} else {
1852			index := uint16(sa[j+len(sn)+1]) | uint16(sa[j+len(sn)])<<8
1853			// one of them must be reset to nil,
1854			// and the index updated appropriately to the other one
1855			if x[i].nis == x[index].nis {
1856			} else if x[i].nis < x[index].nis {
1857				sa[j+len(sn)], sa[j+len(sn)+1] = byte(ui>>8), byte(ui)
1858				if x[index].ready() {
1859					x[index].flagClr(structFieldInfoFlagReady)
1860					n--
1861				}
1862			} else {
1863				if x[i].ready() {
1864					x[i].flagClr(structFieldInfoFlagReady)
1865					n--
1866				}
1867			}
1868		}
1869
1870	}
1871	var w []structFieldInfo
1872	sharingArray := len(x) <= typeInfoLoadArraySfisLen // sharing array with typeInfoLoadArray
1873	if sharingArray {
1874		w = make([]structFieldInfo, n)
1875	}
1876
1877	// remove all the nils (non-ready)
1878	y = make([]*structFieldInfo, n)
1879	n = 0
1880	var sslen int
1881	for i := range x {
1882		if !x[i].ready() {
1883			continue
1884		}
1885		if !anyOmitEmpty && x[i].omitEmpty() {
1886			anyOmitEmpty = true
1887		}
1888		if sharingArray {
1889			w[n] = x[i]
1890			y[n] = &w[n]
1891		} else {
1892			y[n] = &x[i]
1893		}
1894		sslen = sslen + len(x[i].encName) + 4
1895		n++
1896	}
1897	if n != len(y) {
1898		panicv.errorf("failure reading struct %v - expecting %d of %d valid fields, got %d",
1899			rt, len(y), len(x), n)
1900	}
1901
1902	z = make([]*structFieldInfo, len(y))
1903	copy(z, y)
1904	sort.Sort(sfiSortedByEncName(z))
1905
1906	sharingArray = len(sa) <= typeInfoLoadArraySfiidxLen
1907	if sharingArray {
1908		ss = make([]byte, 0, sslen)
1909	} else {
1910		ss = sa[:0] // reuse the newly made sa array if necessary
1911	}
1912	for i := range z {
1913		xn = z[i].encName
1914		sep = tiSep(xn)
1915		ui = uint16(i)
1916		ss = append(ss, sep)
1917		ss = append(ss, xn...)
1918		ss = append(ss, 0xff, byte(ui>>8), byte(ui))
1919	}
1920	return
1921}
1922
1923func implIntf(rt, iTyp reflect.Type) (base bool, indir bool) {
1924	return rt.Implements(iTyp), reflect.PtrTo(rt).Implements(iTyp)
1925}
1926
1927// isEmptyStruct is only called from isEmptyValue, and checks if a struct is empty:
1928//    - does it implement IsZero() bool
1929//    - is it comparable, and can i compare directly using ==
1930//    - if checkStruct, then walk through the encodable fields
1931//      and check if they are empty or not.
1932func isEmptyStruct(v reflect.Value, tinfos *TypeInfos, deref, checkStruct bool) bool {
1933	// v is a struct kind - no need to check again.
1934	// We only check isZero on a struct kind, to reduce the amount of times
1935	// that we lookup the rtid and typeInfo for each type as we walk the tree.
1936
1937	vt := v.Type()
1938	rtid := rt2id(vt)
1939	if tinfos == nil {
1940		tinfos = defTypeInfos
1941	}
1942	ti := tinfos.get(rtid, vt)
1943	if ti.rtid == timeTypId {
1944		return rv2i(v).(time.Time).IsZero()
1945	}
1946	if ti.isFlag(typeInfoFlagIsZeroerPtr) && v.CanAddr() {
1947		return rv2i(v.Addr()).(isZeroer).IsZero()
1948	}
1949	if ti.isFlag(typeInfoFlagIsZeroer) {
1950		return rv2i(v).(isZeroer).IsZero()
1951	}
1952	if ti.isFlag(typeInfoFlagComparable) {
1953		return rv2i(v) == rv2i(reflect.Zero(vt))
1954	}
1955	if !checkStruct {
1956		return false
1957	}
1958	// We only care about what we can encode/decode,
1959	// so that is what we use to check omitEmpty.
1960	for _, si := range ti.sfiSrc {
1961		sfv, valid := si.field(v, false)
1962		if valid && !isEmptyValue(sfv, tinfos, deref, checkStruct) {
1963			return false
1964		}
1965	}
1966	return true
1967}
1968
1969// func roundFloat(x float64) float64 {
1970// 	t := math.Trunc(x)
1971// 	if math.Abs(x-t) >= 0.5 {
1972// 		return t + math.Copysign(1, x)
1973// 	}
1974// 	return t
1975// }
1976
1977func panicToErr(h errDecorator, err *error) {
1978	// Note: This method MUST be called directly from defer i.e. defer panicToErr ...
1979	// else it seems the recover is not fully handled
1980	if recoverPanicToErr {
1981		if x := recover(); x != nil {
1982			// fmt.Printf("panic'ing with: %v\n", x)
1983			// debug.PrintStack()
1984			panicValToErr(h, x, err)
1985		}
1986	}
1987}
1988
1989func panicValToErr(h errDecorator, v interface{}, err *error) {
1990	switch xerr := v.(type) {
1991	case nil:
1992	case error:
1993		switch xerr {
1994		case nil:
1995		case io.EOF, io.ErrUnexpectedEOF, errEncoderNotInitialized, errDecoderNotInitialized:
1996			// treat as special (bubble up)
1997			*err = xerr
1998		default:
1999			h.wrapErr(xerr, err)
2000		}
2001	case string:
2002		if xerr != "" {
2003			h.wrapErr(xerr, err)
2004		}
2005	case fmt.Stringer:
2006		if xerr != nil {
2007			h.wrapErr(xerr, err)
2008		}
2009	default:
2010		h.wrapErr(v, err)
2011	}
2012}
2013
2014func isImmutableKind(k reflect.Kind) (v bool) {
2015	// return immutableKindsSet[k]
2016	// since we know reflect.Kind is in range 0..31, then use the k%32 == k constraint
2017	return immutableKindsSet[k%reflect.Kind(len(immutableKindsSet))] // bounds-check-elimination
2018}
2019
2020// ----
2021
2022type codecFnInfo struct {
2023	ti    *typeInfo
2024	xfFn  Ext
2025	xfTag uint64
2026	seq   seqType
2027	addrD bool
2028	addrF bool // if addrD, this says whether decode function can take a value or a ptr
2029	addrE bool
2030}
2031
2032// codecFn encapsulates the captured variables and the encode function.
2033// This way, we only do some calculations one times, and pass to the
2034// code block that should be called (encapsulated in a function)
2035// instead of executing the checks every time.
2036type codecFn struct {
2037	i  codecFnInfo
2038	fe func(*Encoder, *codecFnInfo, reflect.Value)
2039	fd func(*Decoder, *codecFnInfo, reflect.Value)
2040	_  [1]uint64 // padding
2041}
2042
2043type codecRtidFn struct {
2044	rtid uintptr
2045	fn   *codecFn
2046}
2047
2048// ----
2049
2050// these "checkOverflow" functions must be inlinable, and not call anybody.
2051// Overflow means that the value cannot be represented without wrapping/overflow.
2052// Overflow=false does not mean that the value can be represented without losing precision
2053// (especially for floating point).
2054
2055type checkOverflow struct{}
2056
2057// func (checkOverflow) Float16(f float64) (overflow bool) {
2058// 	panicv.errorf("unimplemented")
2059// 	if f < 0 {
2060// 		f = -f
2061// 	}
2062// 	return math.MaxFloat32 < f && f <= math.MaxFloat64
2063// }
2064
2065func (checkOverflow) Float32(v float64) (overflow bool) {
2066	if v < 0 {
2067		v = -v
2068	}
2069	return math.MaxFloat32 < v && v <= math.MaxFloat64
2070}
2071func (checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) {
2072	if bitsize == 0 || bitsize >= 64 || v == 0 {
2073		return
2074	}
2075	if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
2076		overflow = true
2077	}
2078	return
2079}
2080func (checkOverflow) Int(v int64, bitsize uint8) (overflow bool) {
2081	if bitsize == 0 || bitsize >= 64 || v == 0 {
2082		return
2083	}
2084	if trunc := (v << (64 - bitsize)) >> (64 - bitsize); v != trunc {
2085		overflow = true
2086	}
2087	return
2088}
2089func (checkOverflow) SignedInt(v uint64) (overflow bool) {
2090	//e.g. -127 to 128 for int8
2091	pos := (v >> 63) == 0
2092	ui2 := v & 0x7fffffffffffffff
2093	if pos {
2094		if ui2 > math.MaxInt64 {
2095			overflow = true
2096		}
2097	} else {
2098		if ui2 > math.MaxInt64-1 {
2099			overflow = true
2100		}
2101	}
2102	return
2103}
2104
2105func (x checkOverflow) Float32V(v float64) float64 {
2106	if x.Float32(v) {
2107		panicv.errorf("float32 overflow: %v", v)
2108	}
2109	return v
2110}
2111func (x checkOverflow) UintV(v uint64, bitsize uint8) uint64 {
2112	if x.Uint(v, bitsize) {
2113		panicv.errorf("uint64 overflow: %v", v)
2114	}
2115	return v
2116}
2117func (x checkOverflow) IntV(v int64, bitsize uint8) int64 {
2118	if x.Int(v, bitsize) {
2119		panicv.errorf("int64 overflow: %v", v)
2120	}
2121	return v
2122}
2123func (x checkOverflow) SignedIntV(v uint64) int64 {
2124	if x.SignedInt(v) {
2125		panicv.errorf("uint64 to int64 overflow: %v", v)
2126	}
2127	return int64(v)
2128}
2129
2130// ------------------ SORT -----------------
2131
2132func isNaN(f float64) bool { return f != f }
2133
2134// -----------------------
2135
2136type ioFlusher interface {
2137	Flush() error
2138}
2139
2140type ioPeeker interface {
2141	Peek(int) ([]byte, error)
2142}
2143
2144type ioBuffered interface {
2145	Buffered() int
2146}
2147
2148// -----------------------
2149
2150type intSlice []int64
2151type uintSlice []uint64
2152
2153// type uintptrSlice []uintptr
2154type floatSlice []float64
2155type boolSlice []bool
2156type stringSlice []string
2157
2158// type bytesSlice [][]byte
2159
2160func (p intSlice) Len() int           { return len(p) }
2161func (p intSlice) Less(i, j int) bool { return p[uint(i)] < p[uint(j)] }
2162func (p intSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2163
2164func (p uintSlice) Len() int           { return len(p) }
2165func (p uintSlice) Less(i, j int) bool { return p[uint(i)] < p[uint(j)] }
2166func (p uintSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2167
2168// func (p uintptrSlice) Len() int           { return len(p) }
2169// func (p uintptrSlice) Less(i, j int) bool { return p[uint(i)] < p[uint(j)] }
2170// func (p uintptrSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2171
2172func (p floatSlice) Len() int { return len(p) }
2173func (p floatSlice) Less(i, j int) bool {
2174	return p[uint(i)] < p[uint(j)] || isNaN(p[uint(i)]) && !isNaN(p[uint(j)])
2175}
2176func (p floatSlice) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2177
2178func (p stringSlice) Len() int           { return len(p) }
2179func (p stringSlice) Less(i, j int) bool { return p[uint(i)] < p[uint(j)] }
2180func (p stringSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2181
2182// func (p bytesSlice) Len() int           { return len(p) }
2183// func (p bytesSlice) Less(i, j int) bool { return bytes.Compare(p[uint(i)], p[uint(j)]) == -1 }
2184// func (p bytesSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2185
2186func (p boolSlice) Len() int           { return len(p) }
2187func (p boolSlice) Less(i, j int) bool { return !p[uint(i)] && p[uint(j)] }
2188func (p boolSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2189
2190// ---------------------
2191
2192type sfiRv struct {
2193	v *structFieldInfo
2194	r reflect.Value
2195}
2196
2197type intRv struct {
2198	v int64
2199	r reflect.Value
2200}
2201type intRvSlice []intRv
2202type uintRv struct {
2203	v uint64
2204	r reflect.Value
2205}
2206type uintRvSlice []uintRv
2207type floatRv struct {
2208	v float64
2209	r reflect.Value
2210}
2211type floatRvSlice []floatRv
2212type boolRv struct {
2213	v bool
2214	r reflect.Value
2215}
2216type boolRvSlice []boolRv
2217type stringRv struct {
2218	v string
2219	r reflect.Value
2220}
2221type stringRvSlice []stringRv
2222type bytesRv struct {
2223	v []byte
2224	r reflect.Value
2225}
2226type bytesRvSlice []bytesRv
2227type timeRv struct {
2228	v time.Time
2229	r reflect.Value
2230}
2231type timeRvSlice []timeRv
2232
2233func (p intRvSlice) Len() int           { return len(p) }
2234func (p intRvSlice) Less(i, j int) bool { return p[uint(i)].v < p[uint(j)].v }
2235func (p intRvSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2236
2237func (p uintRvSlice) Len() int           { return len(p) }
2238func (p uintRvSlice) Less(i, j int) bool { return p[uint(i)].v < p[uint(j)].v }
2239func (p uintRvSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2240
2241func (p floatRvSlice) Len() int { return len(p) }
2242func (p floatRvSlice) Less(i, j int) bool {
2243	return p[uint(i)].v < p[uint(j)].v || isNaN(p[uint(i)].v) && !isNaN(p[uint(j)].v)
2244}
2245func (p floatRvSlice) Swap(i, j int) { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2246
2247func (p stringRvSlice) Len() int           { return len(p) }
2248func (p stringRvSlice) Less(i, j int) bool { return p[uint(i)].v < p[uint(j)].v }
2249func (p stringRvSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2250
2251func (p bytesRvSlice) Len() int           { return len(p) }
2252func (p bytesRvSlice) Less(i, j int) bool { return bytes.Compare(p[uint(i)].v, p[uint(j)].v) == -1 }
2253func (p bytesRvSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2254
2255func (p boolRvSlice) Len() int           { return len(p) }
2256func (p boolRvSlice) Less(i, j int) bool { return !p[uint(i)].v && p[uint(j)].v }
2257func (p boolRvSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2258
2259func (p timeRvSlice) Len() int           { return len(p) }
2260func (p timeRvSlice) Less(i, j int) bool { return p[uint(i)].v.Before(p[uint(j)].v) }
2261func (p timeRvSlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2262
2263// -----------------
2264
2265type bytesI struct {
2266	v []byte
2267	i interface{}
2268}
2269
2270type bytesISlice []bytesI
2271
2272func (p bytesISlice) Len() int           { return len(p) }
2273func (p bytesISlice) Less(i, j int) bool { return bytes.Compare(p[uint(i)].v, p[uint(j)].v) == -1 }
2274func (p bytesISlice) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
2275
2276// -----------------
2277
2278type set []uintptr
2279
2280func (s *set) add(v uintptr) (exists bool) {
2281	// e.ci is always nil, or len >= 1
2282	x := *s
2283	if x == nil {
2284		x = make([]uintptr, 1, 8)
2285		x[0] = v
2286		*s = x
2287		return
2288	}
2289	// typically, length will be 1. make this perform.
2290	if len(x) == 1 {
2291		if j := x[0]; j == 0 {
2292			x[0] = v
2293		} else if j == v {
2294			exists = true
2295		} else {
2296			x = append(x, v)
2297			*s = x
2298		}
2299		return
2300	}
2301	// check if it exists
2302	for _, j := range x {
2303		if j == v {
2304			exists = true
2305			return
2306		}
2307	}
2308	// try to replace a "deleted" slot
2309	for i, j := range x {
2310		if j == 0 {
2311			x[i] = v
2312			return
2313		}
2314	}
2315	// if unable to replace deleted slot, just append it.
2316	x = append(x, v)
2317	*s = x
2318	return
2319}
2320
2321func (s *set) remove(v uintptr) (exists bool) {
2322	x := *s
2323	if len(x) == 0 {
2324		return
2325	}
2326	if len(x) == 1 {
2327		if x[0] == v {
2328			x[0] = 0
2329		}
2330		return
2331	}
2332	for i, j := range x {
2333		if j == v {
2334			exists = true
2335			x[i] = 0 // set it to 0, as way to delete it.
2336			// copy(x[i:], x[i+1:])
2337			// x = x[:len(x)-1]
2338			return
2339		}
2340	}
2341	return
2342}
2343
2344// ------
2345
2346// bitset types are better than [256]bool, because they permit the whole
2347// bitset array being on a single cache line and use less memory.
2348//
2349// Also, since pos is a byte (0-255), there's no bounds checks on indexing (cheap).
2350//
2351// We previously had bitset128 [16]byte, and bitset32 [4]byte, but those introduces
2352// bounds checking, so we discarded them, and everyone uses bitset256.
2353//
2354// given x > 0 and n > 0 and x is exactly 2^n, then pos/x === pos>>n AND pos%x === pos&(x-1).
2355// consequently, pos/32 === pos>>5, pos/16 === pos>>4, pos/8 === pos>>3, pos%8 == pos&7
2356
2357type bitset256 [32]byte
2358
2359func (x *bitset256) isset(pos byte) bool {
2360	return x[pos>>3]&(1<<(pos&7)) != 0
2361}
2362
2363// func (x *bitset256) issetv(pos byte) byte {
2364// 	return x[pos>>3] & (1 << (pos & 7))
2365// }
2366
2367func (x *bitset256) set(pos byte) {
2368	x[pos>>3] |= (1 << (pos & 7))
2369}
2370
2371// func (x *bitset256) unset(pos byte) {
2372// 	x[pos>>3] &^= (1 << (pos & 7))
2373// }
2374
2375// type bit2set256 [64]byte
2376
2377// func (x *bit2set256) set(pos byte, v1, v2 bool) {
2378// 	var pos2 uint8 = (pos & 3) << 1 // returning 0, 2, 4 or 6
2379// 	if v1 {
2380// 		x[pos>>2] |= 1 << (pos2 + 1)
2381// 	}
2382// 	if v2 {
2383// 		x[pos>>2] |= 1 << pos2
2384// 	}
2385// }
2386// func (x *bit2set256) get(pos byte) uint8 {
2387// 	var pos2 uint8 = (pos & 3) << 1     // returning 0, 2, 4 or 6
2388// 	return x[pos>>2] << (6 - pos2) >> 6 // 11000000 -> 00000011
2389// }
2390
2391// ------------
2392
2393type pooler struct {
2394	// function-scoped pooled resources
2395	tiload                                      sync.Pool // for type info loading
2396	sfiRv8, sfiRv16, sfiRv32, sfiRv64, sfiRv128 sync.Pool // for struct encoding
2397
2398	// lifetime-scoped pooled resources
2399	// dn                                 sync.Pool // for decNaked
2400	buf1k, buf2k, buf4k, buf8k, buf16k, buf32k, buf64k sync.Pool // for [N]byte
2401}
2402
2403func (p *pooler) init() {
2404	p.tiload.New = func() interface{} { return new(typeInfoLoadArray) }
2405
2406	p.sfiRv8.New = func() interface{} { return new([8]sfiRv) }
2407	p.sfiRv16.New = func() interface{} { return new([16]sfiRv) }
2408	p.sfiRv32.New = func() interface{} { return new([32]sfiRv) }
2409	p.sfiRv64.New = func() interface{} { return new([64]sfiRv) }
2410	p.sfiRv128.New = func() interface{} { return new([128]sfiRv) }
2411
2412	// p.dn.New = func() interface{} { x := new(decNaked); x.init(); return x }
2413
2414	p.buf1k.New = func() interface{} { return new([1 * 1024]byte) }
2415	p.buf2k.New = func() interface{} { return new([2 * 1024]byte) }
2416	p.buf4k.New = func() interface{} { return new([4 * 1024]byte) }
2417	p.buf8k.New = func() interface{} { return new([8 * 1024]byte) }
2418	p.buf16k.New = func() interface{} { return new([16 * 1024]byte) }
2419	p.buf32k.New = func() interface{} { return new([32 * 1024]byte) }
2420	p.buf64k.New = func() interface{} { return new([64 * 1024]byte) }
2421
2422}
2423
2424// func (p *pooler) sfiRv8() (sp *sync.Pool, v interface{}) {
2425// 	return &p.strRv8, p.strRv8.Get()
2426// }
2427// func (p *pooler) sfiRv16() (sp *sync.Pool, v interface{}) {
2428// 	return &p.strRv16, p.strRv16.Get()
2429// }
2430// func (p *pooler) sfiRv32() (sp *sync.Pool, v interface{}) {
2431// 	return &p.strRv32, p.strRv32.Get()
2432// }
2433// func (p *pooler) sfiRv64() (sp *sync.Pool, v interface{}) {
2434// 	return &p.strRv64, p.strRv64.Get()
2435// }
2436// func (p *pooler) sfiRv128() (sp *sync.Pool, v interface{}) {
2437// 	return &p.strRv128, p.strRv128.Get()
2438// }
2439
2440// func (p *pooler) bytes1k() (sp *sync.Pool, v interface{}) {
2441// 	return &p.buf1k, p.buf1k.Get()
2442// }
2443// func (p *pooler) bytes2k() (sp *sync.Pool, v interface{}) {
2444// 	return &p.buf2k, p.buf2k.Get()
2445// }
2446// func (p *pooler) bytes4k() (sp *sync.Pool, v interface{}) {
2447// 	return &p.buf4k, p.buf4k.Get()
2448// }
2449// func (p *pooler) bytes8k() (sp *sync.Pool, v interface{}) {
2450// 	return &p.buf8k, p.buf8k.Get()
2451// }
2452// func (p *pooler) bytes16k() (sp *sync.Pool, v interface{}) {
2453// 	return &p.buf16k, p.buf16k.Get()
2454// }
2455// func (p *pooler) bytes32k() (sp *sync.Pool, v interface{}) {
2456// 	return &p.buf32k, p.buf32k.Get()
2457// }
2458// func (p *pooler) bytes64k() (sp *sync.Pool, v interface{}) {
2459// 	return &p.buf64k, p.buf64k.Get()
2460// }
2461
2462// func (p *pooler) tiLoad() (sp *sync.Pool, v interface{}) {
2463// 	return &p.tiload, p.tiload.Get()
2464// }
2465
2466// func (p *pooler) decNaked() (sp *sync.Pool, v interface{}) {
2467// 	return &p.dn, p.dn.Get()
2468// }
2469
2470// func (p *pooler) decNaked() (v *decNaked, f func(*decNaked) ) {
2471// 	sp := &(p.dn)
2472// 	vv := sp.Get()
2473// 	return vv.(*decNaked), func(x *decNaked) { sp.Put(vv) }
2474// }
2475// func (p *pooler) decNakedGet() (v interface{}) {
2476// 	return p.dn.Get()
2477// }
2478// func (p *pooler) tiLoadGet() (v interface{}) {
2479// 	return p.tiload.Get()
2480// }
2481// func (p *pooler) decNakedPut(v interface{}) {
2482// 	p.dn.Put(v)
2483// }
2484// func (p *pooler) tiLoadPut(v interface{}) {
2485// 	p.tiload.Put(v)
2486// }
2487
2488// ----------------------------------------------------
2489
2490type panicHdl struct{}
2491
2492func (panicHdl) errorv(err error) {
2493	if err != nil {
2494		panic(err)
2495	}
2496}
2497
2498func (panicHdl) errorstr(message string) {
2499	if message != "" {
2500		panic(message)
2501	}
2502}
2503
2504func (panicHdl) errorf(format string, params ...interface{}) {
2505	if format == "" {
2506	} else if len(params) == 0 {
2507		panic(format)
2508	} else {
2509		panic(fmt.Sprintf(format, params...))
2510	}
2511}
2512
2513// ----------------------------------------------------
2514
2515type errDecorator interface {
2516	wrapErr(in interface{}, out *error)
2517}
2518
2519type errDecoratorDef struct{}
2520
2521func (errDecoratorDef) wrapErr(v interface{}, e *error) { *e = fmt.Errorf("%v", v) }
2522
2523// ----------------------------------------------------
2524
2525type must struct{}
2526
2527func (must) String(s string, err error) string {
2528	if err != nil {
2529		panicv.errorv(err)
2530	}
2531	return s
2532}
2533func (must) Int(s int64, err error) int64 {
2534	if err != nil {
2535		panicv.errorv(err)
2536	}
2537	return s
2538}
2539func (must) Uint(s uint64, err error) uint64 {
2540	if err != nil {
2541		panicv.errorv(err)
2542	}
2543	return s
2544}
2545func (must) Float(s float64, err error) float64 {
2546	if err != nil {
2547		panicv.errorv(err)
2548	}
2549	return s
2550}
2551
2552// -------------------
2553
2554type bytesBufPooler struct {
2555	pool    *sync.Pool
2556	poolbuf interface{}
2557}
2558
2559func (z *bytesBufPooler) end() {
2560	if z.pool != nil {
2561		z.pool.Put(z.poolbuf)
2562		z.pool, z.poolbuf = nil, nil
2563	}
2564}
2565
2566func (z *bytesBufPooler) get(bufsize int) (buf []byte) {
2567	// ensure an end is called first (if necessary)
2568	if z.pool != nil {
2569		z.pool.Put(z.poolbuf)
2570		z.pool, z.poolbuf = nil, nil
2571	}
2572
2573	// // Try to use binary search.
2574	// // This is not optimal, as most folks select 1k or 2k buffers
2575	// // so a linear search is better (sequence of if/else blocks)
2576	// if bufsize < 1 {
2577	// 	bufsize = 0
2578	// } else {
2579	// 	bufsize--
2580	// 	bufsize /= 1024
2581	// }
2582	// switch bufsize {
2583	// case 0:
2584	// 	z.pool, z.poolbuf = pool.bytes1k()
2585	// 	buf = z.poolbuf.(*[1 * 1024]byte)[:]
2586	// case 1:
2587	// 	z.pool, z.poolbuf = pool.bytes2k()
2588	// 	buf = z.poolbuf.(*[2 * 1024]byte)[:]
2589	// case 2, 3:
2590	// 	z.pool, z.poolbuf = pool.bytes4k()
2591	// 	buf = z.poolbuf.(*[4 * 1024]byte)[:]
2592	// case 4, 5, 6, 7:
2593	// 	z.pool, z.poolbuf = pool.bytes8k()
2594	// 	buf = z.poolbuf.(*[8 * 1024]byte)[:]
2595	// case 8, 9, 10, 11, 12, 13, 14, 15:
2596	// 	z.pool, z.poolbuf = pool.bytes16k()
2597	// 	buf = z.poolbuf.(*[16 * 1024]byte)[:]
2598	// case 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31:
2599	// 	z.pool, z.poolbuf = pool.bytes32k()
2600	// 	buf = z.poolbuf.(*[32 * 1024]byte)[:]
2601	// default:
2602	// 	z.pool, z.poolbuf = pool.bytes64k()
2603	// 	buf = z.poolbuf.(*[64 * 1024]byte)[:]
2604	// }
2605	// return
2606
2607	if bufsize <= 1*1024 {
2608		z.pool, z.poolbuf = &pool.buf1k, pool.buf1k.Get() // pool.bytes1k()
2609		buf = z.poolbuf.(*[1 * 1024]byte)[:]
2610	} else if bufsize <= 2*1024 {
2611		z.pool, z.poolbuf = &pool.buf2k, pool.buf2k.Get() // pool.bytes2k()
2612		buf = z.poolbuf.(*[2 * 1024]byte)[:]
2613	} else if bufsize <= 4*1024 {
2614		z.pool, z.poolbuf = &pool.buf4k, pool.buf4k.Get() // pool.bytes4k()
2615		buf = z.poolbuf.(*[4 * 1024]byte)[:]
2616	} else if bufsize <= 8*1024 {
2617		z.pool, z.poolbuf = &pool.buf8k, pool.buf8k.Get() // pool.bytes8k()
2618		buf = z.poolbuf.(*[8 * 1024]byte)[:]
2619	} else if bufsize <= 16*1024 {
2620		z.pool, z.poolbuf = &pool.buf16k, pool.buf16k.Get() // pool.bytes16k()
2621		buf = z.poolbuf.(*[16 * 1024]byte)[:]
2622	} else if bufsize <= 32*1024 {
2623		z.pool, z.poolbuf = &pool.buf32k, pool.buf32k.Get() // pool.bytes32k()
2624		buf = z.poolbuf.(*[32 * 1024]byte)[:]
2625	} else {
2626		z.pool, z.poolbuf = &pool.buf64k, pool.buf64k.Get() // pool.bytes64k()
2627		buf = z.poolbuf.(*[64 * 1024]byte)[:]
2628	}
2629	return
2630}
2631
2632// ----------------
2633
2634type sfiRvPooler struct {
2635	pool  *sync.Pool
2636	poolv interface{}
2637}
2638
2639func (z *sfiRvPooler) end() {
2640	if z.pool != nil {
2641		z.pool.Put(z.poolv)
2642		z.pool, z.poolv = nil, nil
2643	}
2644}
2645
2646func (z *sfiRvPooler) get(newlen int) (fkvs []sfiRv) {
2647	if newlen < 0 { // bounds-check-elimination
2648		// cannot happen // here for bounds-check-elimination
2649	} else if newlen <= 8 {
2650		z.pool, z.poolv = &pool.sfiRv8, pool.sfiRv8.Get() // pool.sfiRv8()
2651		fkvs = z.poolv.(*[8]sfiRv)[:newlen]
2652	} else if newlen <= 16 {
2653		z.pool, z.poolv = &pool.sfiRv16, pool.sfiRv16.Get() // pool.sfiRv16()
2654		fkvs = z.poolv.(*[16]sfiRv)[:newlen]
2655	} else if newlen <= 32 {
2656		z.pool, z.poolv = &pool.sfiRv32, pool.sfiRv32.Get() // pool.sfiRv32()
2657		fkvs = z.poolv.(*[32]sfiRv)[:newlen]
2658	} else if newlen <= 64 {
2659		z.pool, z.poolv = &pool.sfiRv64, pool.sfiRv64.Get() // pool.sfiRv64()
2660		fkvs = z.poolv.(*[64]sfiRv)[:newlen]
2661	} else if newlen <= 128 {
2662		z.pool, z.poolv = &pool.sfiRv128, pool.sfiRv128.Get() // pool.sfiRv128()
2663		fkvs = z.poolv.(*[128]sfiRv)[:newlen]
2664	} else {
2665		fkvs = make([]sfiRv, newlen)
2666	}
2667	return
2668}
2669
2670// xdebugf printf. the message in red on the terminal.
2671// Use it in place of fmt.Printf (which it calls internally)
2672func xdebugf(pattern string, args ...interface{}) {
2673	var delim string
2674	if len(pattern) > 0 && pattern[len(pattern)-1] != '\n' {
2675		delim = "\n"
2676	}
2677	fmt.Printf("\033[1;31m"+pattern+delim+"\033[0m", args...)
2678}
2679
2680// func isImmutableKind(k reflect.Kind) (v bool) {
2681// 	return false ||
2682// 		k == reflect.Int ||
2683// 		k == reflect.Int8 ||
2684// 		k == reflect.Int16 ||
2685// 		k == reflect.Int32 ||
2686// 		k == reflect.Int64 ||
2687// 		k == reflect.Uint ||
2688// 		k == reflect.Uint8 ||
2689// 		k == reflect.Uint16 ||
2690// 		k == reflect.Uint32 ||
2691// 		k == reflect.Uint64 ||
2692// 		k == reflect.Uintptr ||
2693// 		k == reflect.Float32 ||
2694// 		k == reflect.Float64 ||
2695// 		k == reflect.Bool ||
2696// 		k == reflect.String
2697// }
2698
2699// func timeLocUTCName(tzint int16) string {
2700// 	if tzint == 0 {
2701// 		return "UTC"
2702// 	}
2703// 	var tzname = []byte("UTC+00:00")
2704// 	//tzname := fmt.Sprintf("UTC%s%02d:%02d", tzsign, tz/60, tz%60) //perf issue using Sprintf.. inline below.
2705// 	//tzhr, tzmin := tz/60, tz%60 //faster if u convert to int first
2706// 	var tzhr, tzmin int16
2707// 	if tzint < 0 {
2708// 		tzname[3] = '-' // (TODO: verify. this works here)
2709// 		tzhr, tzmin = -tzint/60, (-tzint)%60
2710// 	} else {
2711// 		tzhr, tzmin = tzint/60, tzint%60
2712// 	}
2713// 	tzname[4] = timeDigits[tzhr/10]
2714// 	tzname[5] = timeDigits[tzhr%10]
2715// 	tzname[7] = timeDigits[tzmin/10]
2716// 	tzname[8] = timeDigits[tzmin%10]
2717// 	return string(tzname)
2718// 	//return time.FixedZone(string(tzname), int(tzint)*60)
2719// }
2720