1 /*
2  * Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved.
3  * Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 
10 #include <arch_helpers.h>
11 #include <bl31/bl31.h>
12 #include <bl31/interrupt_mgmt.h>
13 #include <common/bl_common.h>
14 #include <common/debug.h>
15 #include <common/ep_info.h>
16 #include <common/interrupt_props.h>
17 #include <context.h>
18 #include <cortex_a57.h>
19 #include <denver.h>
20 #include <drivers/arm/gic_common.h>
21 #include <drivers/arm/gicv2.h>
22 #include <drivers/console.h>
23 #include <lib/el3_runtime/context_mgmt.h>
24 #include <lib/utils.h>
25 #include <lib/xlat_tables/xlat_tables_v2.h>
26 #include <plat/common/platform.h>
27 
28 #include <mce.h>
29 #include <memctrl.h>
30 #include <smmu.h>
31 #include <tegra_def.h>
32 #include <tegra_platform.h>
33 #include <tegra_private.h>
34 
35 extern void memcpy16(void *dest, const void *src, unsigned int length);
36 
37 /*******************************************************************************
38  * Tegra186 CPU numbers in cluster #0
39  *******************************************************************************
40  */
41 #define TEGRA186_CLUSTER0_CORE2		2U
42 #define TEGRA186_CLUSTER0_CORE3		3U
43 
44 /*******************************************************************************
45  * The Tegra power domain tree has a single system level power domain i.e. a
46  * single root node. The first entry in the power domain descriptor specifies
47  * the number of power domains at the highest power level.
48  *******************************************************************************
49  */
50 static const uint8_t tegra_power_domain_tree_desc[] = {
51 	/* No of root nodes */
52 	1,
53 	/* No of clusters */
54 	PLATFORM_CLUSTER_COUNT,
55 	/* No of CPU cores - cluster0 */
56 	PLATFORM_MAX_CPUS_PER_CLUSTER,
57 	/* No of CPU cores - cluster1 */
58 	PLATFORM_MAX_CPUS_PER_CLUSTER
59 };
60 
61 /*******************************************************************************
62  * This function returns the Tegra default topology tree information.
63  ******************************************************************************/
plat_get_power_domain_tree_desc(void)64 const uint8_t *plat_get_power_domain_tree_desc(void)
65 {
66 	return tegra_power_domain_tree_desc;
67 }
68 
69 /*
70  * Table of regions to map using the MMU.
71  */
72 static const mmap_region_t tegra_mmap[] = {
73 	MAP_REGION_FLAT(TEGRA_MISC_BASE, 0x10000U, /* 64KB */
74 			MT_DEVICE | MT_RW | MT_SECURE),
75 	MAP_REGION_FLAT(TEGRA_TSA_BASE, 0x20000U, /* 128KB */
76 			MT_DEVICE | MT_RW | MT_SECURE),
77 	MAP_REGION_FLAT(TEGRA_MC_STREAMID_BASE, 0x10000U, /* 64KB */
78 			MT_DEVICE | MT_RW | MT_SECURE),
79 	MAP_REGION_FLAT(TEGRA_MC_BASE, 0x10000U, /* 64KB */
80 			MT_DEVICE | MT_RW | MT_SECURE),
81 	MAP_REGION_FLAT(TEGRA_UARTA_BASE, 0x20000U, /* 128KB - UART A, B*/
82 			MT_DEVICE | MT_RW | MT_SECURE),
83 	MAP_REGION_FLAT(TEGRA_UARTC_BASE, 0x20000U, /* 128KB - UART C, G */
84 			MT_DEVICE | MT_RW | MT_SECURE),
85 	MAP_REGION_FLAT(TEGRA_UARTD_BASE, 0x30000U, /* 192KB - UART D, E, F */
86 			MT_DEVICE | MT_RW | MT_SECURE),
87 	MAP_REGION_FLAT(TEGRA_FUSE_BASE, 0x10000U, /* 64KB */
88 			MT_DEVICE | MT_RW | MT_SECURE),
89 	MAP_REGION_FLAT(TEGRA_GICD_BASE, 0x20000U, /* 128KB */
90 			MT_DEVICE | MT_RW | MT_SECURE),
91 	MAP_REGION_FLAT(TEGRA_SE0_BASE, 0x10000U, /* 64KB */
92 			MT_DEVICE | MT_RW | MT_SECURE),
93 	MAP_REGION_FLAT(TEGRA_PKA1_BASE, 0x10000U, /* 64KB */
94 			MT_DEVICE | MT_RW | MT_SECURE),
95 	MAP_REGION_FLAT(TEGRA_RNG1_BASE, 0x10000U, /* 64KB */
96 			MT_DEVICE | MT_RW | MT_SECURE),
97 	MAP_REGION_FLAT(TEGRA_CAR_RESET_BASE, 0x10000U, /* 64KB */
98 			MT_DEVICE | MT_RW | MT_SECURE),
99 	MAP_REGION_FLAT(TEGRA_PMC_BASE, 0x40000U, /* 256KB */
100 			MT_DEVICE | MT_RW | MT_SECURE),
101 	MAP_REGION_FLAT(TEGRA_TMRUS_BASE, 0x1000U, /* 4KB */
102 			MT_DEVICE | MT_RO | MT_SECURE),
103 	MAP_REGION_FLAT(TEGRA_SCRATCH_BASE, 0x10000U, /* 64KB */
104 			MT_DEVICE | MT_RW | MT_SECURE),
105 	MAP_REGION_FLAT(TEGRA_MMCRAB_BASE, 0x60000U, /* 384KB */
106 			MT_DEVICE | MT_RW | MT_SECURE),
107 	MAP_REGION_FLAT(TEGRA_ARM_ACTMON_CTR_BASE, 0x20000U, /* 128KB - ARM/Denver */
108 			MT_DEVICE | MT_RW | MT_SECURE),
109 	MAP_REGION_FLAT(TEGRA_SMMU0_BASE, 0x1000000U, /* 64KB */
110 			MT_DEVICE | MT_RW | MT_SECURE),
111 	MAP_REGION_FLAT(TEGRA_HSP_DBELL_BASE, 0x10000U, /* 64KB */
112 			MT_DEVICE | MT_RW | MT_SECURE),
113 	MAP_REGION_FLAT(TEGRA_BPMP_IPC_TX_PHYS_BASE, TEGRA_BPMP_IPC_CH_MAP_SIZE, /* 4KB */
114 			MT_DEVICE | MT_RW | MT_SECURE),
115 	MAP_REGION_FLAT(TEGRA_BPMP_IPC_RX_PHYS_BASE, TEGRA_BPMP_IPC_CH_MAP_SIZE, /* 4KB */
116 			MT_DEVICE | MT_RW | MT_SECURE),
117 	{0}
118 };
119 
120 /*******************************************************************************
121  * Set up the pagetables as per the platform memory map & initialize the MMU
122  ******************************************************************************/
plat_get_mmio_map(void)123 const mmap_region_t *plat_get_mmio_map(void)
124 {
125 	/* MMIO space */
126 	return tegra_mmap;
127 }
128 
129 /*******************************************************************************
130  * Handler to get the System Counter Frequency
131  ******************************************************************************/
plat_get_syscnt_freq2(void)132 uint32_t plat_get_syscnt_freq2(void)
133 {
134 	return 31250000;
135 }
136 
137 /*******************************************************************************
138  * Maximum supported UART controllers
139  ******************************************************************************/
140 #define TEGRA186_MAX_UART_PORTS		7
141 
142 /*******************************************************************************
143  * This variable holds the UART port base addresses
144  ******************************************************************************/
145 static uint32_t tegra186_uart_addresses[TEGRA186_MAX_UART_PORTS + 1] = {
146 	0,	/* undefined - treated as an error case */
147 	TEGRA_UARTA_BASE,
148 	TEGRA_UARTB_BASE,
149 	TEGRA_UARTC_BASE,
150 	TEGRA_UARTD_BASE,
151 	TEGRA_UARTE_BASE,
152 	TEGRA_UARTF_BASE,
153 	TEGRA_UARTG_BASE,
154 };
155 
156 /*******************************************************************************
157  * Enable console corresponding to the console ID
158  ******************************************************************************/
plat_enable_console(int32_t id)159 void plat_enable_console(int32_t id)
160 {
161 	static console_t uart_console;
162 	uint32_t console_clock;
163 
164 	if ((id > 0) && (id < TEGRA186_MAX_UART_PORTS)) {
165 		/*
166 		 * Reference clock used by the FPGAs is a lot slower.
167 		 */
168 		if (tegra_platform_is_fpga()) {
169 			console_clock = TEGRA_BOOT_UART_CLK_13_MHZ;
170 		} else {
171 			console_clock = TEGRA_BOOT_UART_CLK_408_MHZ;
172 		}
173 
174 		(void)console_16550_register(tegra186_uart_addresses[id],
175 					     console_clock,
176 					     TEGRA_CONSOLE_BAUDRATE,
177 					     &uart_console);
178 		console_set_scope(&uart_console, CONSOLE_FLAG_BOOT |
179 			CONSOLE_FLAG_RUNTIME | CONSOLE_FLAG_CRASH);
180 	}
181 }
182 
183 /*******************************************************************************
184  * Handler for early platform setup
185  ******************************************************************************/
plat_early_platform_setup(void)186 void plat_early_platform_setup(void)
187 {
188 	uint64_t impl, val;
189 	const plat_params_from_bl2_t *plat_params = bl31_get_plat_params();
190 	const struct tegra_bl31_params *arg_from_bl2 = plat_get_bl31_params();
191 
192 	/* Verify chip id is t186 */
193 	assert(tegra_chipid_is_t186());
194 
195 	/* sanity check MCE firmware compatibility */
196 	mce_verify_firmware_version();
197 
198 	/*
199 	 * Do initial security configuration to allow DRAM/device access.
200 	 */
201 	tegra_memctrl_tzdram_setup(plat_params->tzdram_base,
202 			(uint32_t)plat_params->tzdram_size);
203 
204 	impl = (read_midr() >> MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK;
205 
206 	/*
207 	 * Enable ECC and Parity Protection for Cortex-A57 CPUs (Tegra186
208 	 * A02p and beyond).
209 	 */
210 	if ((plat_params->l2_ecc_parity_prot_dis != 1) &&
211 	    (impl != (uint64_t)DENVER_IMPL)) {
212 
213 		val = read_l2ctlr_el1();
214 		val |= CORTEX_A57_L2_ECC_PARITY_PROTECTION_BIT;
215 		write_l2ctlr_el1(val);
216 	}
217 
218 	/*
219 	 * The previous bootloader might not have placed the BL32 image
220 	 * inside the TZDRAM. Platform handler to allow relocation of BL32
221 	 * image to TZDRAM memory. This behavior might change per platform.
222 	 */
223 	plat_relocate_bl32_image(arg_from_bl2->bl32_image_info);
224 }
225 
226 /*******************************************************************************
227  * Handler for late platform setup
228  ******************************************************************************/
plat_late_platform_setup(void)229 void plat_late_platform_setup(void)
230 {
231 	; /* do nothing */
232 }
233 
234 /* Secure IRQs for Tegra186 */
235 static const interrupt_prop_t tegra186_interrupt_props[] = {
236 	INTR_PROP_DESC(TEGRA_SDEI_SGI_PRIVATE, PLAT_SDEI_CRITICAL_PRI,
237 			GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE),
238 	INTR_PROP_DESC(TEGRA186_TOP_WDT_IRQ, PLAT_TEGRA_WDT_PRIO,
239 			GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE),
240 	INTR_PROP_DESC(TEGRA186_AON_WDT_IRQ, PLAT_TEGRA_WDT_PRIO,
241 			GICV2_INTR_GROUP0, GIC_INTR_CFG_EDGE)
242 };
243 
244 /*******************************************************************************
245  * Initialize the GIC and SGIs
246  ******************************************************************************/
plat_gic_setup(void)247 void plat_gic_setup(void)
248 {
249 	tegra_gic_setup(tegra186_interrupt_props, ARRAY_SIZE(tegra186_interrupt_props));
250 	tegra_gic_init();
251 
252 	/*
253 	 * Initialize the FIQ handler only if the platform supports any
254 	 * FIQ interrupt sources.
255 	 */
256 	tegra_fiq_handler_setup();
257 }
258 
259 /*******************************************************************************
260  * Return pointer to the BL31 params from previous bootloader
261  ******************************************************************************/
plat_get_bl31_params(void)262 struct tegra_bl31_params *plat_get_bl31_params(void)
263 {
264 	uint32_t val;
265 
266 	val = mmio_read_32(TEGRA_SCRATCH_BASE + SCRATCH_BL31_PARAMS_ADDR);
267 
268 	return (struct tegra_bl31_params *)(uintptr_t)val;
269 }
270 
271 /*******************************************************************************
272  * Return pointer to the BL31 platform params from previous bootloader
273  ******************************************************************************/
plat_get_bl31_plat_params(void)274 plat_params_from_bl2_t *plat_get_bl31_plat_params(void)
275 {
276 	uint32_t val;
277 
278 	val = mmio_read_32(TEGRA_SCRATCH_BASE + SCRATCH_BL31_PLAT_PARAMS_ADDR);
279 
280 	return (plat_params_from_bl2_t *)(uintptr_t)val;
281 }
282 
283 /*******************************************************************************
284  * This function implements a part of the critical interface between the psci
285  * generic layer and the platform that allows the former to query the platform
286  * to convert an MPIDR to a unique linear index. An error code (-1) is returned
287  * in case the MPIDR is invalid.
288  ******************************************************************************/
plat_core_pos_by_mpidr(u_register_t mpidr)289 int32_t plat_core_pos_by_mpidr(u_register_t mpidr)
290 {
291 	u_register_t cluster_id, cpu_id, pos;
292 	int32_t ret;
293 
294 	cluster_id = (mpidr >> (u_register_t)MPIDR_AFF1_SHIFT) & (u_register_t)MPIDR_AFFLVL_MASK;
295 	cpu_id = (mpidr >> (u_register_t)MPIDR_AFF0_SHIFT) & (u_register_t)MPIDR_AFFLVL_MASK;
296 
297 	/*
298 	 * Validate cluster_id by checking whether it represents
299 	 * one of the two clusters present on the platform.
300 	 * Validate cpu_id by checking whether it represents a CPU in
301 	 * one of the two clusters present on the platform.
302 	 */
303 	if ((cluster_id >= (u_register_t)PLATFORM_CLUSTER_COUNT) ||
304 	    (cpu_id >= (u_register_t)PLATFORM_MAX_CPUS_PER_CLUSTER)) {
305 		ret = PSCI_E_NOT_PRESENT;
306 	} else {
307 		/* calculate the core position */
308 		pos = cpu_id + (cluster_id << 2U);
309 
310 		/* check for non-existent CPUs */
311 		if ((pos == TEGRA186_CLUSTER0_CORE2) || (pos == TEGRA186_CLUSTER0_CORE3)) {
312 			ret = PSCI_E_NOT_PRESENT;
313 		} else {
314 			ret = (int32_t)pos;
315 		}
316 	}
317 
318 	return ret;
319 }
320 
321 /*******************************************************************************
322  * Handler to relocate BL32 image to TZDRAM
323  ******************************************************************************/
plat_relocate_bl32_image(const image_info_t * bl32_img_info)324 void plat_relocate_bl32_image(const image_info_t *bl32_img_info)
325 {
326 	const plat_params_from_bl2_t *plat_bl31_params = plat_get_bl31_plat_params();
327 	const entry_point_info_t *bl32_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
328 	uint64_t tzdram_start, tzdram_end, bl32_start, bl32_end;
329 
330 	if ((bl32_img_info != NULL) && (bl32_ep_info != NULL)) {
331 
332 		/* Relocate BL32 if it resides outside of the TZDRAM */
333 		tzdram_start = plat_bl31_params->tzdram_base;
334 		tzdram_end = plat_bl31_params->tzdram_base +
335 				plat_bl31_params->tzdram_size;
336 		bl32_start = bl32_img_info->image_base;
337 		bl32_end = bl32_img_info->image_base + bl32_img_info->image_size;
338 
339 		assert(tzdram_end > tzdram_start);
340 		assert(bl32_end > bl32_start);
341 		assert(bl32_ep_info->pc > tzdram_start);
342 		assert(bl32_ep_info->pc < tzdram_end);
343 
344 		/* relocate BL32 */
345 		if ((bl32_start >= tzdram_end) || (bl32_end <= tzdram_start)) {
346 
347 			INFO("Relocate BL32 to TZDRAM\n");
348 
349 			(void)memcpy16((void *)(uintptr_t)bl32_ep_info->pc,
350 				(void *)(uintptr_t)bl32_start,
351 				bl32_img_info->image_size);
352 
353 			/* clean up non-secure intermediate buffer */
354 			zeromem((void *)(uintptr_t)bl32_start,
355 				bl32_img_info->image_size);
356 		}
357 	}
358 }
359 
360 /*******************************************************************************
361  * Handler to indicate support for System Suspend
362  ******************************************************************************/
plat_supports_system_suspend(void)363 bool plat_supports_system_suspend(void)
364 {
365 	return true;
366 }
367 /*******************************************************************************
368  * Platform specific runtime setup.
369  ******************************************************************************/
plat_runtime_setup(void)370 void plat_runtime_setup(void)
371 {
372 	/*
373 	 * During cold boot, it is observed that the arbitration
374 	 * bit is set in the Memory controller leading to false
375 	 * error interrupts in the non-secure world. To avoid
376 	 * this, clean the interrupt status register before
377 	 * booting into the non-secure world
378 	 */
379 	tegra_memctrl_clear_pending_interrupts();
380 
381 	/*
382 	 * During boot, USB3 and flash media (SDMMC/SATA) devices need
383 	 * access to IRAM. Because these clients connect to the MC and
384 	 * do not have a direct path to the IRAM, the MC implements AHB
385 	 * redirection during boot to allow path to IRAM. In this mode
386 	 * accesses to a programmed memory address aperture are directed
387 	 * to the AHB bus, allowing access to the IRAM. This mode must be
388 	 * disabled before we jump to the non-secure world.
389 	 */
390 	tegra_memctrl_disable_ahb_redirection();
391 
392 	/*
393 	 * Verify the integrity of the previously configured SMMU(s)
394 	 * settings
395 	 */
396 	tegra_smmu_verify();
397 }
398