1 #include "string_util.h"
2
3 #include <array>
4 #include <cmath>
5 #include <cstdarg>
6 #include <cstdio>
7 #include <memory>
8 #include <sstream>
9
10 #include "arraysize.h"
11
12 namespace benchmark {
13 namespace {
14
15 // kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta.
16 const char kBigSIUnits[] = "kMGTPEZY";
17 // Kibi, Mebi, Gibi, Tebi, Pebi, Exbi, Zebi, Yobi.
18 const char kBigIECUnits[] = "KMGTPEZY";
19 // milli, micro, nano, pico, femto, atto, zepto, yocto.
20 const char kSmallSIUnits[] = "munpfazy";
21
22 // We require that all three arrays have the same size.
23 static_assert(arraysize(kBigSIUnits) == arraysize(kBigIECUnits),
24 "SI and IEC unit arrays must be the same size");
25 static_assert(arraysize(kSmallSIUnits) == arraysize(kBigSIUnits),
26 "Small SI and Big SI unit arrays must be the same size");
27
28 static const int64_t kUnitsSize = arraysize(kBigSIUnits);
29
30 } // end anonymous namespace
31
ToExponentAndMantissa(double val,double thresh,int precision,double one_k,std::string * mantissa,int64_t * exponent)32 void ToExponentAndMantissa(double val, double thresh, int precision,
33 double one_k, std::string* mantissa,
34 int64_t* exponent) {
35 std::stringstream mantissa_stream;
36
37 if (val < 0) {
38 mantissa_stream << "-";
39 val = -val;
40 }
41
42 // Adjust threshold so that it never excludes things which can't be rendered
43 // in 'precision' digits.
44 const double adjusted_threshold =
45 std::max(thresh, 1.0 / std::pow(10.0, precision));
46 const double big_threshold = adjusted_threshold * one_k;
47 const double small_threshold = adjusted_threshold;
48 // Values in ]simple_threshold,small_threshold[ will be printed as-is
49 const double simple_threshold = 0.01;
50
51 if (val > big_threshold) {
52 // Positive powers
53 double scaled = val;
54 for (size_t i = 0; i < arraysize(kBigSIUnits); ++i) {
55 scaled /= one_k;
56 if (scaled <= big_threshold) {
57 mantissa_stream << scaled;
58 *exponent = i + 1;
59 *mantissa = mantissa_stream.str();
60 return;
61 }
62 }
63 mantissa_stream << val;
64 *exponent = 0;
65 } else if (val < small_threshold) {
66 // Negative powers
67 if (val < simple_threshold) {
68 double scaled = val;
69 for (size_t i = 0; i < arraysize(kSmallSIUnits); ++i) {
70 scaled *= one_k;
71 if (scaled >= small_threshold) {
72 mantissa_stream << scaled;
73 *exponent = -static_cast<int64_t>(i + 1);
74 *mantissa = mantissa_stream.str();
75 return;
76 }
77 }
78 }
79 mantissa_stream << val;
80 *exponent = 0;
81 } else {
82 mantissa_stream << val;
83 *exponent = 0;
84 }
85 *mantissa = mantissa_stream.str();
86 }
87
ExponentToPrefix(int64_t exponent,bool iec)88 std::string ExponentToPrefix(int64_t exponent, bool iec) {
89 if (exponent == 0) return "";
90
91 const int64_t index = (exponent > 0 ? exponent - 1 : -exponent - 1);
92 if (index >= kUnitsSize) return "";
93
94 const char* array =
95 (exponent > 0 ? (iec ? kBigIECUnits : kBigSIUnits) : kSmallSIUnits);
96 if (iec)
97 return array[index] + std::string("i");
98 else
99 return std::string(1, array[index]);
100 }
101
ToBinaryStringFullySpecified(double value,double threshold,int precision)102 std::string ToBinaryStringFullySpecified(double value, double threshold,
103 int precision) {
104 std::string mantissa;
105 int64_t exponent;
106 ToExponentAndMantissa(value, threshold, precision, 1024.0, &mantissa,
107 &exponent);
108 return mantissa + ExponentToPrefix(exponent, false);
109 }
110
AppendHumanReadable(int n,std::string * str)111 void AppendHumanReadable(int n, std::string* str) {
112 std::stringstream ss;
113 // Round down to the nearest SI prefix.
114 ss << ToBinaryStringFullySpecified(n, 1.0, 0);
115 *str += ss.str();
116 }
117
HumanReadableNumber(double n)118 std::string HumanReadableNumber(double n) {
119 // 1.1 means that figures up to 1.1k should be shown with the next unit down;
120 // this softens edge effects.
121 // 1 means that we should show one decimal place of precision.
122 return ToBinaryStringFullySpecified(n, 1.1, 1);
123 }
124
StringPrintFImp(const char * msg,va_list args)125 std::string StringPrintFImp(const char* msg, va_list args) {
126 // we might need a second shot at this, so pre-emptivly make a copy
127 va_list args_cp;
128 va_copy(args_cp, args);
129
130 // TODO(ericwf): use std::array for first attempt to avoid one memory
131 // allocation guess what the size might be
132 std::array<char, 256> local_buff;
133 std::size_t size = local_buff.size();
134 // 2015-10-08: vsnprintf is used instead of snd::vsnprintf due to a limitation
135 // in the android-ndk
136 auto ret = vsnprintf(local_buff.data(), size, msg, args_cp);
137
138 va_end(args_cp);
139
140 // handle empty expansion
141 if (ret == 0) return std::string{};
142 if (static_cast<std::size_t>(ret) < size)
143 return std::string(local_buff.data());
144
145 // we did not provide a long enough buffer on our first attempt.
146 // add 1 to size to account for null-byte in size cast to prevent overflow
147 size = static_cast<std::size_t>(ret) + 1;
148 auto buff_ptr = std::unique_ptr<char[]>(new char[size]);
149 // 2015-10-08: vsnprintf is used instead of snd::vsnprintf due to a limitation
150 // in the android-ndk
151 ret = vsnprintf(buff_ptr.get(), size, msg, args);
152 return std::string(buff_ptr.get());
153 }
154
StringPrintF(const char * format,...)155 std::string StringPrintF(const char* format, ...) {
156 va_list args;
157 va_start(args, format);
158 std::string tmp = StringPrintFImp(format, args);
159 va_end(args);
160 return tmp;
161 }
162
ReplaceAll(std::string * str,const std::string & from,const std::string & to)163 void ReplaceAll(std::string* str, const std::string& from,
164 const std::string& to) {
165 std::size_t start = 0;
166 while ((start = str->find(from, start)) != std::string::npos) {
167 str->replace(start, from.length(), to);
168 start += to.length();
169 }
170 }
171
172 } // end namespace benchmark
173