1 // esign.h - originally written and placed in the public domain by Wei Dai
2 
3 /// \file esign.h
4 /// \brief Classes providing ESIGN signature schemes as defined in IEEE P1363a
5 /// \since Crypto++ 5.0
6 
7 #ifndef CRYPTOPP_ESIGN_H
8 #define CRYPTOPP_ESIGN_H
9 
10 #include "cryptlib.h"
11 #include "pubkey.h"
12 #include "integer.h"
13 #include "asn.h"
14 #include "misc.h"
15 
NAMESPACE_BEGIN(CryptoPP)16 NAMESPACE_BEGIN(CryptoPP)
17 
18 /// \brief ESIGN trapdoor function using the public key
19 /// \since Crypto++ 5.0
20 class ESIGNFunction : public TrapdoorFunction, public ASN1CryptoMaterial<PublicKey>
21 {
22 	typedef ESIGNFunction ThisClass;
23 
24 public:
25 
26 	/// \brief Initialize a ESIGN public key with {n,e}
27 	/// \param n the modulus
28 	/// \param e the public exponent
29 	void Initialize(const Integer &n, const Integer &e)
30 		{m_n = n; m_e = e;}
31 
32 	// PublicKey
33 	void BERDecode(BufferedTransformation &bt);
34 	void DEREncode(BufferedTransformation &bt) const;
35 
36 	// CryptoMaterial
37 	bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
38 	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
39 	void AssignFrom(const NameValuePairs &source);
40 
41 	// TrapdoorFunction
42 	Integer ApplyFunction(const Integer &x) const;
43 	Integer PreimageBound() const {return m_n;}
44 	Integer ImageBound() const {return Integer::Power2(GetK());}
45 
46 	// non-derived
47 	const Integer & GetModulus() const {return m_n;}
48 	const Integer & GetPublicExponent() const {return m_e;}
49 
50 	void SetModulus(const Integer &n) {m_n = n;}
51 	void SetPublicExponent(const Integer &e) {m_e = e;}
52 
53 protected:
54 	// Covertiy finding on overflow. The library allows small values for research purposes.
55 	unsigned int GetK() const {return SaturatingSubtract(m_n.BitCount()/3, 1U);}
56 
57 	Integer m_n, m_e;
58 };
59 
60 /// \brief ESIGN trapdoor function using the private key
61 /// \since Crypto++ 5.0
62 class InvertibleESIGNFunction : public ESIGNFunction, public RandomizedTrapdoorFunctionInverse, public PrivateKey
63 {
64 	typedef InvertibleESIGNFunction ThisClass;
65 
66 public:
67 
68 	/// \brief Initialize a ESIGN private key with {n,e,p,q}
69 	/// \param n modulus
70 	/// \param e public exponent
71 	/// \param p first prime factor
72 	/// \param q second prime factor
73 	/// \details This Initialize() function overload initializes a private key from existing parameters.
Initialize(const Integer & n,const Integer & e,const Integer & p,const Integer & q)74 	void Initialize(const Integer &n, const Integer &e, const Integer &p, const Integer &q)
75 		{m_n = n; m_e = e; m_p = p; m_q = q;}
76 
77 	/// \brief Create a ESIGN private key
78 	/// \param rng a RandomNumberGenerator derived class
79 	/// \param modulusBits the size of the modulud, in bits
80 	/// \details This function overload of Initialize() creates a new private key because it
81 	///   takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
82 	///   then use one of the other Initialize() overloads.
Initialize(RandomNumberGenerator & rng,unsigned int modulusBits)83 	void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
84 		{GenerateRandomWithKeySize(rng, modulusBits);}
85 
86 	// Squash Visual Studio C4250 warning
Save(BufferedTransformation & bt)87 	void Save(BufferedTransformation &bt) const
88 		{BEREncode(bt);}
89 
90 	// Squash Visual Studio C4250 warning
Load(BufferedTransformation & bt)91 	void Load(BufferedTransformation &bt)
92 		{BERDecode(bt);}
93 
94 	void BERDecode(BufferedTransformation &bt);
95 	void DEREncode(BufferedTransformation &bt) const;
96 
97 	Integer CalculateRandomizedInverse(RandomNumberGenerator &rng, const Integer &x) const;
98 
99 	// GeneratibleCryptoMaterial
100 	bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
101 	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
102 	void AssignFrom(const NameValuePairs &source);
103 	/*! parameters: (ModulusSize) */
104 	void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
105 
GetPrime1()106 	const Integer& GetPrime1() const {return m_p;}
GetPrime2()107 	const Integer& GetPrime2() const {return m_q;}
108 
SetPrime1(const Integer & p)109 	void SetPrime1(const Integer &p) {m_p = p;}
SetPrime2(const Integer & q)110 	void SetPrime2(const Integer &q) {m_q = q;}
111 
112 protected:
113 	Integer m_p, m_q;
114 };
115 
116 /// \brief EMSA5 padding method
117 /// \tparam T Mask Generation Function
118 /// \since Crypto++ 5.0
119 template <class T>
120 class EMSA5Pad : public PK_DeterministicSignatureMessageEncodingMethod
121 {
122 public:
StaticAlgorithmName()123 	CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() {return "EMSA5";}
124 
ComputeMessageRepresentative(RandomNumberGenerator & rng,const byte * recoverableMessage,size_t recoverableMessageLength,HashTransformation & hash,HashIdentifier hashIdentifier,bool messageEmpty,byte * representative,size_t representativeBitLength)125 	void ComputeMessageRepresentative(RandomNumberGenerator &rng,
126 		const byte *recoverableMessage, size_t recoverableMessageLength,
127 		HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
128 		byte *representative, size_t representativeBitLength) const
129 	{
130 		CRYPTOPP_UNUSED(rng), CRYPTOPP_UNUSED(recoverableMessage), CRYPTOPP_UNUSED(recoverableMessageLength);
131 		CRYPTOPP_UNUSED(messageEmpty), CRYPTOPP_UNUSED(hashIdentifier);
132 		SecByteBlock digest(hash.DigestSize());
133 		hash.Final(digest);
134 		size_t representativeByteLength = BitsToBytes(representativeBitLength);
135 		T mgf;
136 		mgf.GenerateAndMask(hash, representative, representativeByteLength, digest, digest.size(), false);
137 		if (representativeBitLength % 8 != 0)
138 			representative[0] = (byte)Crop(representative[0], representativeBitLength % 8);
139 	}
140 };
141 
142 /// \brief EMSA5 padding method, for use with ESIGN
143 /// \since Crypto++ 5.0
144 struct P1363_EMSA5 : public SignatureStandard
145 {
146 	typedef EMSA5Pad<P1363_MGF1> SignatureMessageEncodingMethod;
147 };
148 
149 /// \brief ESIGN keys
150 /// \since Crypto++ 5.0
151 struct ESIGN_Keys
152 {
StaticAlgorithmNameESIGN_Keys153 	CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() {return "ESIGN";}
154 	typedef ESIGNFunction PublicKey;
155 	typedef InvertibleESIGNFunction PrivateKey;
156 };
157 
158 /// \brief ESIGN signature scheme, IEEE P1363a
159 /// \tparam H HashTransformation derived class
160 /// \tparam STANDARD Signature encoding method
161 /// \since Crypto++ 5.0
162 template <class H, class STANDARD = P1363_EMSA5>
163 struct ESIGN : public TF_SS<ESIGN_Keys, STANDARD, H>
164 {
165 };
166 
167 NAMESPACE_END
168 
169 #endif
170