1// Copyright 2018 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// This file provides the generic implementation of Sum and MAC. Other files
6// might provide optimized assembly implementations of some of this code.
7
8package poly1305
9
10import "encoding/binary"
11
12// Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag
13// for a 64 bytes message is approximately
14//
15//     s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r  mod  2¹³⁰ - 5
16//
17// for some secret r and s. It can be computed sequentially like
18//
19//     for len(msg) > 0:
20//         h += read(msg, 16)
21//         h *= r
22//         h %= 2¹³⁰ - 5
23//     return h + s
24//
25// All the complexity is about doing performant constant-time math on numbers
26// larger than any available numeric type.
27
28func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
29	h := newMACGeneric(key)
30	h.Write(msg)
31	h.Sum(out)
32}
33
34func newMACGeneric(key *[32]byte) macGeneric {
35	m := macGeneric{}
36	initialize(key, &m.macState)
37	return m
38}
39
40// macState holds numbers in saturated 64-bit little-endian limbs. That is,
41// the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
42type macState struct {
43	// h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
44	// can grow larger during and after rounds. It must, however, remain below
45	// 2 * (2¹³⁰ - 5).
46	h [3]uint64
47	// r and s are the private key components.
48	r [2]uint64
49	s [2]uint64
50}
51
52type macGeneric struct {
53	macState
54
55	buffer [TagSize]byte
56	offset int
57}
58
59// Write splits the incoming message into TagSize chunks, and passes them to
60// update. It buffers incomplete chunks.
61func (h *macGeneric) Write(p []byte) (int, error) {
62	nn := len(p)
63	if h.offset > 0 {
64		n := copy(h.buffer[h.offset:], p)
65		if h.offset+n < TagSize {
66			h.offset += n
67			return nn, nil
68		}
69		p = p[n:]
70		h.offset = 0
71		updateGeneric(&h.macState, h.buffer[:])
72	}
73	if n := len(p) - (len(p) % TagSize); n > 0 {
74		updateGeneric(&h.macState, p[:n])
75		p = p[n:]
76	}
77	if len(p) > 0 {
78		h.offset += copy(h.buffer[h.offset:], p)
79	}
80	return nn, nil
81}
82
83// Sum flushes the last incomplete chunk from the buffer, if any, and generates
84// the MAC output. It does not modify its state, in order to allow for multiple
85// calls to Sum, even if no Write is allowed after Sum.
86func (h *macGeneric) Sum(out *[TagSize]byte) {
87	state := h.macState
88	if h.offset > 0 {
89		updateGeneric(&state, h.buffer[:h.offset])
90	}
91	finalize(out, &state.h, &state.s)
92}
93
94// [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It
95// clears some bits of the secret coefficient to make it possible to implement
96// multiplication more efficiently.
97const (
98	rMask0 = 0x0FFFFFFC0FFFFFFF
99	rMask1 = 0x0FFFFFFC0FFFFFFC
100)
101
102// initialize loads the 256-bit key into the two 128-bit secret values r and s.
103func initialize(key *[32]byte, m *macState) {
104	m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
105	m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
106	m.s[0] = binary.LittleEndian.Uint64(key[16:24])
107	m.s[1] = binary.LittleEndian.Uint64(key[24:32])
108}
109
110// uint128 holds a 128-bit number as two 64-bit limbs, for use with the
111// bits.Mul64 and bits.Add64 intrinsics.
112type uint128 struct {
113	lo, hi uint64
114}
115
116func mul64(a, b uint64) uint128 {
117	hi, lo := bitsMul64(a, b)
118	return uint128{lo, hi}
119}
120
121func add128(a, b uint128) uint128 {
122	lo, c := bitsAdd64(a.lo, b.lo, 0)
123	hi, c := bitsAdd64(a.hi, b.hi, c)
124	if c != 0 {
125		panic("poly1305: unexpected overflow")
126	}
127	return uint128{lo, hi}
128}
129
130func shiftRightBy2(a uint128) uint128 {
131	a.lo = a.lo>>2 | (a.hi&3)<<62
132	a.hi = a.hi >> 2
133	return a
134}
135
136// updateGeneric absorbs msg into the state.h accumulator. For each chunk m of
137// 128 bits of message, it computes
138//
139//     h₊ = (h + m) * r  mod  2¹³⁰ - 5
140//
141// If the msg length is not a multiple of TagSize, it assumes the last
142// incomplete chunk is the final one.
143func updateGeneric(state *macState, msg []byte) {
144	h0, h1, h2 := state.h[0], state.h[1], state.h[2]
145	r0, r1 := state.r[0], state.r[1]
146
147	for len(msg) > 0 {
148		var c uint64
149
150		// For the first step, h + m, we use a chain of bits.Add64 intrinsics.
151		// The resulting value of h might exceed 2¹³⁰ - 5, but will be partially
152		// reduced at the end of the multiplication below.
153		//
154		// The spec requires us to set a bit just above the message size, not to
155		// hide leading zeroes. For full chunks, that's 1 << 128, so we can just
156		// add 1 to the most significant (2¹²⁸) limb, h2.
157		if len(msg) >= TagSize {
158			h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0)
159			h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(msg[8:16]), c)
160			h2 += c + 1
161
162			msg = msg[TagSize:]
163		} else {
164			var buf [TagSize]byte
165			copy(buf[:], msg)
166			buf[len(msg)] = 1
167
168			h0, c = bitsAdd64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0)
169			h1, c = bitsAdd64(h1, binary.LittleEndian.Uint64(buf[8:16]), c)
170			h2 += c
171
172			msg = nil
173		}
174
175		// Multiplication of big number limbs is similar to elementary school
176		// columnar multiplication. Instead of digits, there are 64-bit limbs.
177		//
178		// We are multiplying a 3 limbs number, h, by a 2 limbs number, r.
179		//
180		//                        h2    h1    h0  x
181		//                              r1    r0  =
182		//                       ----------------
183		//                      h2r0  h1r0  h0r0     <-- individual 128-bit products
184		//            +   h2r1  h1r1  h0r1
185		//               ------------------------
186		//                 m3    m2    m1    m0      <-- result in 128-bit overlapping limbs
187		//               ------------------------
188		//         m3.hi m2.hi m1.hi m0.hi           <-- carry propagation
189		//     +         m3.lo m2.lo m1.lo m0.lo
190		//        -------------------------------
191		//           t4    t3    t2    t1    t0      <-- final result in 64-bit limbs
192		//
193		// The main difference from pen-and-paper multiplication is that we do
194		// carry propagation in a separate step, as if we wrote two digit sums
195		// at first (the 128-bit limbs), and then carried the tens all at once.
196
197		h0r0 := mul64(h0, r0)
198		h1r0 := mul64(h1, r0)
199		h2r0 := mul64(h2, r0)
200		h0r1 := mul64(h0, r1)
201		h1r1 := mul64(h1, r1)
202		h2r1 := mul64(h2, r1)
203
204		// Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their
205		// top 4 bits cleared by rMask{0,1}, we know that their product is not going
206		// to overflow 64 bits, so we can ignore the high part of the products.
207		//
208		// This also means that the product doesn't have a fifth limb (t4).
209		if h2r0.hi != 0 {
210			panic("poly1305: unexpected overflow")
211		}
212		if h2r1.hi != 0 {
213			panic("poly1305: unexpected overflow")
214		}
215
216		m0 := h0r0
217		m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again
218		m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1.
219		m3 := h2r1
220
221		t0 := m0.lo
222		t1, c := bitsAdd64(m1.lo, m0.hi, 0)
223		t2, c := bitsAdd64(m2.lo, m1.hi, c)
224		t3, _ := bitsAdd64(m3.lo, m2.hi, c)
225
226		// Now we have the result as 4 64-bit limbs, and we need to reduce it
227		// modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do
228		// a cheap partial reduction according to the reduction identity
229		//
230		//     c * 2¹³⁰ + n  =  c * 5 + n  mod  2¹³⁰ - 5
231		//
232		// because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is
233		// likely to be larger than 2¹³⁰ - 5, but still small enough to fit the
234		// assumptions we make about h in the rest of the code.
235		//
236		// See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23
237
238		// We split the final result at the 2¹³⁰ mark into h and cc, the carry.
239		// Note that the carry bits are effectively shifted left by 2, in other
240		// words, cc = c * 4 for the c in the reduction identity.
241		h0, h1, h2 = t0, t1, t2&maskLow2Bits
242		cc := uint128{t2 & maskNotLow2Bits, t3}
243
244		// To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c.
245
246		h0, c = bitsAdd64(h0, cc.lo, 0)
247		h1, c = bitsAdd64(h1, cc.hi, c)
248		h2 += c
249
250		cc = shiftRightBy2(cc)
251
252		h0, c = bitsAdd64(h0, cc.lo, 0)
253		h1, c = bitsAdd64(h1, cc.hi, c)
254		h2 += c
255
256		// h2 is at most 3 + 1 + 1 = 5, making the whole of h at most
257		//
258		//     5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1
259	}
260
261	state.h[0], state.h[1], state.h[2] = h0, h1, h2
262}
263
264const (
265	maskLow2Bits    uint64 = 0x0000000000000003
266	maskNotLow2Bits uint64 = ^maskLow2Bits
267)
268
269// select64 returns x if v == 1 and y if v == 0, in constant time.
270func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y }
271
272// [p0, p1, p2] is 2¹³⁰ - 5 in little endian order.
273const (
274	p0 = 0xFFFFFFFFFFFFFFFB
275	p1 = 0xFFFFFFFFFFFFFFFF
276	p2 = 0x0000000000000003
277)
278
279// finalize completes the modular reduction of h and computes
280//
281//     out = h + s  mod  2¹²⁸
282//
283func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) {
284	h0, h1, h2 := h[0], h[1], h[2]
285
286	// After the partial reduction in updateGeneric, h might be more than
287	// 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction
288	// in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the
289	// result if the subtraction underflows, and t otherwise.
290
291	hMinusP0, b := bitsSub64(h0, p0, 0)
292	hMinusP1, b := bitsSub64(h1, p1, b)
293	_, b = bitsSub64(h2, p2, b)
294
295	// h = h if h < p else h - p
296	h0 = select64(b, h0, hMinusP0)
297	h1 = select64(b, h1, hMinusP1)
298
299	// Finally, we compute the last Poly1305 step
300	//
301	//     tag = h + s  mod  2¹²⁸
302	//
303	// by just doing a wide addition with the 128 low bits of h and discarding
304	// the overflow.
305	h0, c := bitsAdd64(h0, s[0], 0)
306	h1, _ = bitsAdd64(h1, s[1], c)
307
308	binary.LittleEndian.PutUint64(out[0:8], h0)
309	binary.LittleEndian.PutUint64(out[8:16], h1)
310}
311