1 /*-
2  * Copyright 2009 Colin Percival
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * This file was originally written by Colin Percival as part of the Tarsnap
27  * online backup system.
28  */
29 #include "cpusupport.h"
30 #ifdef CPUSUPPORT_X86_SSE2
31 
32 #include <emmintrin.h>
33 #include <stdint.h>
34 
35 #include "sysendian.h"
36 
37 #include "crypto_scrypt_smix_sse2.h"
38 
39 static void blkcpy(void *, const void *, size_t);
40 static void blkxor(void *, const void *, size_t);
41 static void salsa20_8(__m128i *);
42 static void blockmix_salsa8(const __m128i *, __m128i *, __m128i *, size_t);
43 static uint64_t integerify(const void *, size_t);
44 
45 static void
blkcpy(void * dest,const void * src,size_t len)46 blkcpy(void * dest, const void * src, size_t len)
47 {
48 	__m128i * D = dest;
49 	const __m128i * S = src;
50 	size_t L = len / 16;
51 	size_t i;
52 
53 	for (i = 0; i < L; i++)
54 		D[i] = S[i];
55 }
56 
57 static void
blkxor(void * dest,const void * src,size_t len)58 blkxor(void * dest, const void * src, size_t len)
59 {
60 	__m128i * D = dest;
61 	const __m128i * S = src;
62 	size_t L = len / 16;
63 	size_t i;
64 
65 	for (i = 0; i < L; i++)
66 		D[i] = _mm_xor_si128(D[i], S[i]);
67 }
68 
69 /**
70  * salsa20_8(B):
71  * Apply the salsa20/8 core to the provided block.
72  */
73 static void
salsa20_8(__m128i B[4])74 salsa20_8(__m128i B[4])
75 {
76 	__m128i X0, X1, X2, X3;
77 	__m128i T;
78 	size_t i;
79 
80 	X0 = B[0];
81 	X1 = B[1];
82 	X2 = B[2];
83 	X3 = B[3];
84 
85 	for (i = 0; i < 8; i += 2) {
86 		/* Operate on "columns". */
87 		T = _mm_add_epi32(X0, X3);
88 		X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 7));
89 		X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 25));
90 		T = _mm_add_epi32(X1, X0);
91 		X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
92 		X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
93 		T = _mm_add_epi32(X2, X1);
94 		X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 13));
95 		X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 19));
96 		T = _mm_add_epi32(X3, X2);
97 		X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
98 		X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
99 
100 		/* Rearrange data. */
101 		X1 = _mm_shuffle_epi32(X1, 0x93);
102 		X2 = _mm_shuffle_epi32(X2, 0x4E);
103 		X3 = _mm_shuffle_epi32(X3, 0x39);
104 
105 		/* Operate on "rows". */
106 		T = _mm_add_epi32(X0, X1);
107 		X3 = _mm_xor_si128(X3, _mm_slli_epi32(T, 7));
108 		X3 = _mm_xor_si128(X3, _mm_srli_epi32(T, 25));
109 		T = _mm_add_epi32(X3, X0);
110 		X2 = _mm_xor_si128(X2, _mm_slli_epi32(T, 9));
111 		X2 = _mm_xor_si128(X2, _mm_srli_epi32(T, 23));
112 		T = _mm_add_epi32(X2, X3);
113 		X1 = _mm_xor_si128(X1, _mm_slli_epi32(T, 13));
114 		X1 = _mm_xor_si128(X1, _mm_srli_epi32(T, 19));
115 		T = _mm_add_epi32(X1, X2);
116 		X0 = _mm_xor_si128(X0, _mm_slli_epi32(T, 18));
117 		X0 = _mm_xor_si128(X0, _mm_srli_epi32(T, 14));
118 
119 		/* Rearrange data. */
120 		X1 = _mm_shuffle_epi32(X1, 0x39);
121 		X2 = _mm_shuffle_epi32(X2, 0x4E);
122 		X3 = _mm_shuffle_epi32(X3, 0x93);
123 	}
124 
125 	B[0] = _mm_add_epi32(B[0], X0);
126 	B[1] = _mm_add_epi32(B[1], X1);
127 	B[2] = _mm_add_epi32(B[2], X2);
128 	B[3] = _mm_add_epi32(B[3], X3);
129 }
130 
131 /**
132  * blockmix_salsa8(Bin, Bout, X, r):
133  * Compute Bout = BlockMix_{salsa20/8, r}(Bin).  The input Bin must be 128r
134  * bytes in length; the output Bout must also be the same size.  The
135  * temporary space X must be 64 bytes.
136  */
137 static void
blockmix_salsa8(const __m128i * Bin,__m128i * Bout,__m128i * X,size_t r)138 blockmix_salsa8(const __m128i * Bin, __m128i * Bout, __m128i * X, size_t r)
139 {
140 	size_t i;
141 
142 	/* 1: X <-- B_{2r - 1} */
143 	blkcpy(X, &Bin[8 * r - 4], 64);
144 
145 	/* 2: for i = 0 to 2r - 1 do */
146 	for (i = 0; i < r; i++) {
147 		/* 3: X <-- H(X \xor B_i) */
148 		blkxor(X, &Bin[i * 8], 64);
149 		salsa20_8(X);
150 
151 		/* 4: Y_i <-- X */
152 		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
153 		blkcpy(&Bout[i * 4], X, 64);
154 
155 		/* 3: X <-- H(X \xor B_i) */
156 		blkxor(X, &Bin[i * 8 + 4], 64);
157 		salsa20_8(X);
158 
159 		/* 4: Y_i <-- X */
160 		/* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */
161 		blkcpy(&Bout[(r + i) * 4], X, 64);
162 	}
163 }
164 
165 /**
166  * integerify(B, r):
167  * Return the result of parsing B_{2r-1} as a little-endian integer.
168  * Note that B's layout is permuted compared to the generic implementation.
169  */
170 static uint64_t
integerify(const void * B,size_t r)171 integerify(const void * B, size_t r)
172 {
173 	const uint32_t * X = (const void *)((uintptr_t)(B) + (2 * r - 1) * 64);
174 
175 	return (((uint64_t)(X[13]) << 32) + X[0]);
176 }
177 
178 /**
179  * crypto_scrypt_smix_sse2(B, r, N, V, XY):
180  * Compute B = SMix_r(B, N).  The input B must be 128r bytes in length;
181  * the temporary storage V must be 128rN bytes in length; the temporary
182  * storage XY must be 256r + 64 bytes in length.  The value N must be a
183  * power of 2 greater than 1.  The arrays B, V, and XY must be aligned to a
184  * multiple of 64 bytes.
185  *
186  * Use SSE2 instructions.
187  */
188 void
crypto_scrypt_smix_sse2(uint8_t * B,size_t r,uint64_t N,void * V,void * XY)189 crypto_scrypt_smix_sse2(uint8_t * B, size_t r, uint64_t N, void * V, void * XY)
190 {
191 	__m128i * X = XY;
192 	__m128i * Y = (void *)((uintptr_t)(XY) + 128 * r);
193 	__m128i * Z = (void *)((uintptr_t)(XY) + 256 * r);
194 	uint32_t * X32 = (void *)X;
195 	uint64_t i, j;
196 	size_t k;
197 
198 	/* 1: X <-- B */
199 	for (k = 0; k < 2 * r; k++) {
200 		for (i = 0; i < 16; i++) {
201 			X32[k * 16 + i] =
202 			    le32dec(&B[(k * 16 + (i * 5 % 16)) * 4]);
203 		}
204 	}
205 
206 	/* 2: for i = 0 to N - 1 do */
207 	for (i = 0; i < N; i += 2) {
208 		/* 3: V_i <-- X */
209 		blkcpy((void *)((uintptr_t)(V) + i * 128 * r), X, 128 * r);
210 
211 		/* 4: X <-- H(X) */
212 		blockmix_salsa8(X, Y, Z, r);
213 
214 		/* 3: V_i <-- X */
215 		blkcpy((void *)((uintptr_t)(V) + (i + 1) * 128 * r),
216 		    Y, 128 * r);
217 
218 		/* 4: X <-- H(X) */
219 		blockmix_salsa8(Y, X, Z, r);
220 	}
221 
222 	/* 6: for i = 0 to N - 1 do */
223 	for (i = 0; i < N; i += 2) {
224 		/* 7: j <-- Integerify(X) mod N */
225 		j = integerify(X, r) & (N - 1);
226 
227 		/* 8: X <-- H(X \xor V_j) */
228 		blkxor(X, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
229 		blockmix_salsa8(X, Y, Z, r);
230 
231 		/* 7: j <-- Integerify(X) mod N */
232 		j = integerify(Y, r) & (N - 1);
233 
234 		/* 8: X <-- H(X \xor V_j) */
235 		blkxor(Y, (void *)((uintptr_t)(V) + j * 128 * r), 128 * r);
236 		blockmix_salsa8(Y, X, Z, r);
237 	}
238 
239 	/* 10: B' <-- X */
240 	for (k = 0; k < 2 * r; k++) {
241 		for (i = 0; i < 16; i++) {
242 			le32enc(&B[(k * 16 + (i * 5 % 16)) * 4],
243 			    X32[k * 16 + i]);
244 		}
245 	}
246 }
247 
248 #endif /* CPUSUPPORT_X86_SSE2 */
249