1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём)
6  *          Thomas Gleixner
7  *          Frank Haverkamp
8  *          Oliver Lohmann
9  *          Andreas Arnez
10  */
11 
12 /*
13  * This file defines the layout of UBI headers and all the other UBI on-flash
14  * data structures.
15  */
16 
17 #ifndef __UBI_MEDIA_H__
18 #define __UBI_MEDIA_H__
19 
20 #include <asm/byteorder.h>
21 
22 /* The version of UBI images supported by this implementation */
23 #define UBI_VERSION 1
24 
25 /* The highest erase counter value supported by this implementation */
26 #define UBI_MAX_ERASECOUNTER 0x7FFFFFFF
27 
28 /* The initial CRC32 value used when calculating CRC checksums */
29 #define UBI_CRC32_INIT 0xFFFFFFFFU
30 
31 /* Erase counter header magic number (ASCII "UBI#") */
32 #define UBI_EC_HDR_MAGIC  0x55424923
33 /* Volume identifier header magic number (ASCII "UBI!") */
34 #define UBI_VID_HDR_MAGIC 0x55424921
35 
36 /*
37  * Volume type constants used in the volume identifier header.
38  *
39  * @UBI_VID_DYNAMIC: dynamic volume
40  * @UBI_VID_STATIC: static volume
41  */
42 enum {
43 	UBI_VID_DYNAMIC = 1,
44 	UBI_VID_STATIC  = 2
45 };
46 
47 /*
48  * Volume flags used in the volume table record.
49  *
50  * @UBI_VTBL_AUTORESIZE_FLG: auto-resize this volume
51  * @UBI_VTBL_SKIP_CRC_CHECK_FLG: skip the CRC check done on a static volume at
52  *				 open time. Should only be set on volumes that
53  *				 are used by upper layers doing this kind of
54  *				 check. Main use-case for this flag is
55  *				 boot-time reduction
56  *
57  * %UBI_VTBL_AUTORESIZE_FLG flag can be set only for one volume in the volume
58  * table. UBI automatically re-sizes the volume which has this flag and makes
59  * the volume to be of largest possible size. This means that if after the
60  * initialization UBI finds out that there are available physical eraseblocks
61  * present on the device, it automatically appends all of them to the volume
62  * (the physical eraseblocks reserved for bad eraseblocks handling and other
63  * reserved physical eraseblocks are not taken). So, if there is a volume with
64  * the %UBI_VTBL_AUTORESIZE_FLG flag set, the amount of available logical
65  * eraseblocks will be zero after UBI is loaded, because all of them will be
66  * reserved for this volume. Note, the %UBI_VTBL_AUTORESIZE_FLG bit is cleared
67  * after the volume had been initialized.
68  *
69  * The auto-resize feature is useful for device production purposes. For
70  * example, different NAND flash chips may have different amount of initial bad
71  * eraseblocks, depending of particular chip instance. Manufacturers of NAND
72  * chips usually guarantee that the amount of initial bad eraseblocks does not
73  * exceed certain percent, e.g. 2%. When one creates an UBI image which will be
74  * flashed to the end devices in production, he does not know the exact amount
75  * of good physical eraseblocks the NAND chip on the device will have, but this
76  * number is required to calculate the volume sized and put them to the volume
77  * table of the UBI image. In this case, one of the volumes (e.g., the one
78  * which will store the root file system) is marked as "auto-resizable", and
79  * UBI will adjust its size on the first boot if needed.
80  *
81  * Note, first UBI reserves some amount of physical eraseblocks for bad
82  * eraseblock handling, and then re-sizes the volume, not vice-versa. This
83  * means that the pool of reserved physical eraseblocks will always be present.
84  */
85 enum {
86 	UBI_VTBL_AUTORESIZE_FLG = 0x01,
87 	UBI_VTBL_SKIP_CRC_CHECK_FLG = 0x02,
88 };
89 
90 /*
91  * Compatibility constants used by internal volumes.
92  *
93  * @UBI_COMPAT_DELETE: delete this internal volume before anything is written
94  *                     to the flash
95  * @UBI_COMPAT_RO: attach this device in read-only mode
96  * @UBI_COMPAT_PRESERVE: preserve this internal volume - do not touch its
97  *                       physical eraseblocks, don't allow the wear-leveling
98  *                       sub-system to move them
99  * @UBI_COMPAT_REJECT: reject this UBI image
100  */
101 enum {
102 	UBI_COMPAT_DELETE   = 1,
103 	UBI_COMPAT_RO       = 2,
104 	UBI_COMPAT_PRESERVE = 4,
105 	UBI_COMPAT_REJECT   = 5
106 };
107 
108 /* Sizes of UBI headers */
109 #define UBI_EC_HDR_SIZE  sizeof(struct ubi_ec_hdr)
110 #define UBI_VID_HDR_SIZE sizeof(struct ubi_vid_hdr)
111 
112 /* Sizes of UBI headers without the ending CRC */
113 #define UBI_EC_HDR_SIZE_CRC  (UBI_EC_HDR_SIZE  - sizeof(__be32))
114 #define UBI_VID_HDR_SIZE_CRC (UBI_VID_HDR_SIZE - sizeof(__be32))
115 
116 /**
117  * struct ubi_ec_hdr - UBI erase counter header.
118  * @magic: erase counter header magic number (%UBI_EC_HDR_MAGIC)
119  * @version: version of UBI implementation which is supposed to accept this
120  *           UBI image
121  * @padding1: reserved for future, zeroes
122  * @ec: the erase counter
123  * @vid_hdr_offset: where the VID header starts
124  * @data_offset: where the user data start
125  * @image_seq: image sequence number
126  * @padding2: reserved for future, zeroes
127  * @hdr_crc: erase counter header CRC checksum
128  *
129  * The erase counter header takes 64 bytes and has a plenty of unused space for
130  * future usage. The unused fields are zeroed. The @version field is used to
131  * indicate the version of UBI implementation which is supposed to be able to
132  * work with this UBI image. If @version is greater than the current UBI
133  * version, the image is rejected. This may be useful in future if something
134  * is changed radically. This field is duplicated in the volume identifier
135  * header.
136  *
137  * The @vid_hdr_offset and @data_offset fields contain the offset of the the
138  * volume identifier header and user data, relative to the beginning of the
139  * physical eraseblock. These values have to be the same for all physical
140  * eraseblocks.
141  *
142  * The @image_seq field is used to validate a UBI image that has been prepared
143  * for a UBI device. The @image_seq value can be any value, but it must be the
144  * same on all eraseblocks. UBI will ensure that all new erase counter headers
145  * also contain this value, and will check the value when attaching the flash.
146  * One way to make use of @image_seq is to increase its value by one every time
147  * an image is flashed over an existing image, then, if the flashing does not
148  * complete, UBI will detect the error when attaching the media.
149  */
150 struct ubi_ec_hdr {
151 	__be32  magic;
152 	__u8    version;
153 	__u8    padding1[3];
154 	__be64  ec; /* Warning: the current limit is 31-bit anyway! */
155 	__be32  vid_hdr_offset;
156 	__be32  data_offset;
157 	__be32  image_seq;
158 	__u8    padding2[32];
159 	__be32  hdr_crc;
160 } __packed;
161 
162 /**
163  * struct ubi_vid_hdr - on-flash UBI volume identifier header.
164  * @magic: volume identifier header magic number (%UBI_VID_HDR_MAGIC)
165  * @version: UBI implementation version which is supposed to accept this UBI
166  *           image (%UBI_VERSION)
167  * @vol_type: volume type (%UBI_VID_DYNAMIC or %UBI_VID_STATIC)
168  * @copy_flag: if this logical eraseblock was copied from another physical
169  *             eraseblock (for wear-leveling reasons)
170  * @compat: compatibility of this volume (%0, %UBI_COMPAT_DELETE,
171  *          %UBI_COMPAT_IGNORE, %UBI_COMPAT_PRESERVE, or %UBI_COMPAT_REJECT)
172  * @vol_id: ID of this volume
173  * @lnum: logical eraseblock number
174  * @padding1: reserved for future, zeroes
175  * @data_size: how many bytes of data this logical eraseblock contains
176  * @used_ebs: total number of used logical eraseblocks in this volume
177  * @data_pad: how many bytes at the end of this physical eraseblock are not
178  *            used
179  * @data_crc: CRC checksum of the data stored in this logical eraseblock
180  * @padding2: reserved for future, zeroes
181  * @sqnum: sequence number
182  * @padding3: reserved for future, zeroes
183  * @hdr_crc: volume identifier header CRC checksum
184  *
185  * The @sqnum is the value of the global sequence counter at the time when this
186  * VID header was created. The global sequence counter is incremented each time
187  * UBI writes a new VID header to the flash, i.e. when it maps a logical
188  * eraseblock to a new physical eraseblock. The global sequence counter is an
189  * unsigned 64-bit integer and we assume it never overflows. The @sqnum
190  * (sequence number) is used to distinguish between older and newer versions of
191  * logical eraseblocks.
192  *
193  * There are 2 situations when there may be more than one physical eraseblock
194  * corresponding to the same logical eraseblock, i.e., having the same @vol_id
195  * and @lnum values in the volume identifier header. Suppose we have a logical
196  * eraseblock L and it is mapped to the physical eraseblock P.
197  *
198  * 1. Because UBI may erase physical eraseblocks asynchronously, the following
199  * situation is possible: L is asynchronously erased, so P is scheduled for
200  * erasure, then L is written to,i.e. mapped to another physical eraseblock P1,
201  * so P1 is written to, then an unclean reboot happens. Result - there are 2
202  * physical eraseblocks P and P1 corresponding to the same logical eraseblock
203  * L. But P1 has greater sequence number, so UBI picks P1 when it attaches the
204  * flash.
205  *
206  * 2. From time to time UBI moves logical eraseblocks to other physical
207  * eraseblocks for wear-leveling reasons. If, for example, UBI moves L from P
208  * to P1, and an unclean reboot happens before P is physically erased, there
209  * are two physical eraseblocks P and P1 corresponding to L and UBI has to
210  * select one of them when the flash is attached. The @sqnum field says which
211  * PEB is the original (obviously P will have lower @sqnum) and the copy. But
212  * it is not enough to select the physical eraseblock with the higher sequence
213  * number, because the unclean reboot could have happen in the middle of the
214  * copying process, so the data in P is corrupted. It is also not enough to
215  * just select the physical eraseblock with lower sequence number, because the
216  * data there may be old (consider a case if more data was added to P1 after
217  * the copying). Moreover, the unclean reboot may happen when the erasure of P
218  * was just started, so it result in unstable P, which is "mostly" OK, but
219  * still has unstable bits.
220  *
221  * UBI uses the @copy_flag field to indicate that this logical eraseblock is a
222  * copy. UBI also calculates data CRC when the data is moved and stores it at
223  * the @data_crc field of the copy (P1). So when UBI needs to pick one physical
224  * eraseblock of two (P or P1), the @copy_flag of the newer one (P1) is
225  * examined. If it is cleared, the situation* is simple and the newer one is
226  * picked. If it is set, the data CRC of the copy (P1) is examined. If the CRC
227  * checksum is correct, this physical eraseblock is selected (P1). Otherwise
228  * the older one (P) is selected.
229  *
230  * There are 2 sorts of volumes in UBI: user volumes and internal volumes.
231  * Internal volumes are not seen from outside and are used for various internal
232  * UBI purposes. In this implementation there is only one internal volume - the
233  * layout volume. Internal volumes are the main mechanism of UBI extensions.
234  * For example, in future one may introduce a journal internal volume. Internal
235  * volumes have their own reserved range of IDs.
236  *
237  * The @compat field is only used for internal volumes and contains the "degree
238  * of their compatibility". It is always zero for user volumes. This field
239  * provides a mechanism to introduce UBI extensions and to be still compatible
240  * with older UBI binaries. For example, if someone introduced a journal in
241  * future, he would probably use %UBI_COMPAT_DELETE compatibility for the
242  * journal volume.  And in this case, older UBI binaries, which know nothing
243  * about the journal volume, would just delete this volume and work perfectly
244  * fine. This is similar to what Ext2fs does when it is fed by an Ext3fs image
245  * - it just ignores the Ext3fs journal.
246  *
247  * The @data_crc field contains the CRC checksum of the contents of the logical
248  * eraseblock if this is a static volume. In case of dynamic volumes, it does
249  * not contain the CRC checksum as a rule. The only exception is when the
250  * data of the physical eraseblock was moved by the wear-leveling sub-system,
251  * then the wear-leveling sub-system calculates the data CRC and stores it in
252  * the @data_crc field. And of course, the @copy_flag is %in this case.
253  *
254  * The @data_size field is used only for static volumes because UBI has to know
255  * how many bytes of data are stored in this eraseblock. For dynamic volumes,
256  * this field usually contains zero. The only exception is when the data of the
257  * physical eraseblock was moved to another physical eraseblock for
258  * wear-leveling reasons. In this case, UBI calculates CRC checksum of the
259  * contents and uses both @data_crc and @data_size fields. In this case, the
260  * @data_size field contains data size.
261  *
262  * The @used_ebs field is used only for static volumes and indicates how many
263  * eraseblocks the data of the volume takes. For dynamic volumes this field is
264  * not used and always contains zero.
265  *
266  * The @data_pad is calculated when volumes are created using the alignment
267  * parameter. So, effectively, the @data_pad field reduces the size of logical
268  * eraseblocks of this volume. This is very handy when one uses block-oriented
269  * software (say, cramfs) on top of the UBI volume.
270  */
271 struct ubi_vid_hdr {
272 	__be32  magic;
273 	__u8    version;
274 	__u8    vol_type;
275 	__u8    copy_flag;
276 	__u8    compat;
277 	__be32  vol_id;
278 	__be32  lnum;
279 	__u8    padding1[4];
280 	__be32  data_size;
281 	__be32  used_ebs;
282 	__be32  data_pad;
283 	__be32  data_crc;
284 	__u8    padding2[4];
285 	__be64  sqnum;
286 	__u8    padding3[12];
287 	__be32  hdr_crc;
288 } __packed;
289 
290 /* Internal UBI volumes count */
291 #define UBI_INT_VOL_COUNT 1
292 
293 /*
294  * Starting ID of internal volumes: 0x7fffefff.
295  * There is reserved room for 4096 internal volumes.
296  */
297 #define UBI_INTERNAL_VOL_START (0x7FFFFFFF - 4096)
298 
299 /* The layout volume contains the volume table */
300 
301 #define UBI_LAYOUT_VOLUME_ID     UBI_INTERNAL_VOL_START
302 #define UBI_LAYOUT_VOLUME_TYPE   UBI_VID_DYNAMIC
303 #define UBI_LAYOUT_VOLUME_ALIGN  1
304 #define UBI_LAYOUT_VOLUME_EBS    2
305 #define UBI_LAYOUT_VOLUME_NAME   "layout volume"
306 #define UBI_LAYOUT_VOLUME_COMPAT UBI_COMPAT_REJECT
307 
308 /* The maximum number of volumes per one UBI device */
309 #define UBI_MAX_VOLUMES 128
310 
311 /* The maximum volume name length */
312 #define UBI_VOL_NAME_MAX 127
313 
314 /* Size of the volume table record */
315 #define UBI_VTBL_RECORD_SIZE sizeof(struct ubi_vtbl_record)
316 
317 /* Size of the volume table record without the ending CRC */
318 #define UBI_VTBL_RECORD_SIZE_CRC (UBI_VTBL_RECORD_SIZE - sizeof(__be32))
319 
320 /**
321  * struct ubi_vtbl_record - a record in the volume table.
322  * @reserved_pebs: how many physical eraseblocks are reserved for this volume
323  * @alignment: volume alignment
324  * @data_pad: how many bytes are unused at the end of the each physical
325  * eraseblock to satisfy the requested alignment
326  * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
327  * @upd_marker: if volume update was started but not finished
328  * @name_len: volume name length
329  * @name: the volume name
330  * @flags: volume flags (%UBI_VTBL_AUTORESIZE_FLG)
331  * @padding: reserved, zeroes
332  * @crc: a CRC32 checksum of the record
333  *
334  * The volume table records are stored in the volume table, which is stored in
335  * the layout volume. The layout volume consists of 2 logical eraseblock, each
336  * of which contains a copy of the volume table (i.e., the volume table is
337  * duplicated). The volume table is an array of &struct ubi_vtbl_record
338  * objects indexed by the volume ID.
339  *
340  * If the size of the logical eraseblock is large enough to fit
341  * %UBI_MAX_VOLUMES records, the volume table contains %UBI_MAX_VOLUMES
342  * records. Otherwise, it contains as many records as it can fit (i.e., size of
343  * logical eraseblock divided by sizeof(struct ubi_vtbl_record)).
344  *
345  * The @upd_marker flag is used to implement volume update. It is set to %1
346  * before update and set to %0 after the update. So if the update operation was
347  * interrupted, UBI knows that the volume is corrupted.
348  *
349  * The @alignment field is specified when the volume is created and cannot be
350  * later changed. It may be useful, for example, when a block-oriented file
351  * system works on top of UBI. The @data_pad field is calculated using the
352  * logical eraseblock size and @alignment. The alignment must be multiple to the
353  * minimal flash I/O unit. If @alignment is 1, all the available space of
354  * the physical eraseblocks is used.
355  *
356  * Empty records contain all zeroes and the CRC checksum of those zeroes.
357  */
358 struct ubi_vtbl_record {
359 	__be32  reserved_pebs;
360 	__be32  alignment;
361 	__be32  data_pad;
362 	__u8    vol_type;
363 	__u8    upd_marker;
364 	__be16  name_len;
365 #ifndef __UBOOT__
366 	__u8    name[UBI_VOL_NAME_MAX+1];
367 #else
368 	char    name[UBI_VOL_NAME_MAX+1];
369 #endif
370 	__u8    flags;
371 	__u8    padding[23];
372 	__be32  crc;
373 } __packed;
374 
375 /* UBI fastmap on-flash data structures */
376 
377 #define UBI_FM_SB_VOLUME_ID	(UBI_LAYOUT_VOLUME_ID + 1)
378 #define UBI_FM_DATA_VOLUME_ID	(UBI_LAYOUT_VOLUME_ID + 2)
379 
380 /* fastmap on-flash data structure format version */
381 #define UBI_FM_FMT_VERSION	1
382 
383 #define UBI_FM_SB_MAGIC		0x7B11D69F
384 #define UBI_FM_HDR_MAGIC	0xD4B82EF7
385 #define UBI_FM_VHDR_MAGIC	0xFA370ED1
386 #define UBI_FM_POOL_MAGIC	0x67AF4D08
387 #define UBI_FM_EBA_MAGIC	0xf0c040a8
388 
389 /* A fastmap supber block can be located between PEB 0 and
390  * UBI_FM_MAX_START */
391 #define UBI_FM_MAX_START	64
392 
393 /* A fastmap can use up to UBI_FM_MAX_BLOCKS PEBs */
394 #define UBI_FM_MAX_BLOCKS	32
395 
396 /* 5% of the total number of PEBs have to be scanned while attaching
397  * from a fastmap.
398  * But the size of this pool is limited to be between UBI_FM_MIN_POOL_SIZE and
399  * UBI_FM_MAX_POOL_SIZE */
400 #define UBI_FM_MIN_POOL_SIZE	8
401 #define UBI_FM_MAX_POOL_SIZE	256
402 
403 /**
404  * struct ubi_fm_sb - UBI fastmap super block
405  * @magic: fastmap super block magic number (%UBI_FM_SB_MAGIC)
406  * @version: format version of this fastmap
407  * @data_crc: CRC over the fastmap data
408  * @used_blocks: number of PEBs used by this fastmap
409  * @block_loc: an array containing the location of all PEBs of the fastmap
410  * @block_ec: the erase counter of each used PEB
411  * @sqnum: highest sequence number value at the time while taking the fastmap
412  *
413  */
414 struct ubi_fm_sb {
415 	__be32 magic;
416 	__u8 version;
417 	__u8 padding1[3];
418 	__be32 data_crc;
419 	__be32 used_blocks;
420 	__be32 block_loc[UBI_FM_MAX_BLOCKS];
421 	__be32 block_ec[UBI_FM_MAX_BLOCKS];
422 	__be64 sqnum;
423 	__u8 padding2[32];
424 } __packed;
425 
426 /**
427  * struct ubi_fm_hdr - header of the fastmap data set
428  * @magic: fastmap header magic number (%UBI_FM_HDR_MAGIC)
429  * @free_peb_count: number of free PEBs known by this fastmap
430  * @used_peb_count: number of used PEBs known by this fastmap
431  * @scrub_peb_count: number of to be scrubbed PEBs known by this fastmap
432  * @bad_peb_count: number of bad PEBs known by this fastmap
433  * @erase_peb_count: number of bad PEBs which have to be erased
434  * @vol_count: number of UBI volumes known by this fastmap
435  */
436 struct ubi_fm_hdr {
437 	__be32 magic;
438 	__be32 free_peb_count;
439 	__be32 used_peb_count;
440 	__be32 scrub_peb_count;
441 	__be32 bad_peb_count;
442 	__be32 erase_peb_count;
443 	__be32 vol_count;
444 	__u8 padding[4];
445 } __packed;
446 
447 /* struct ubi_fm_hdr is followed by two struct ubi_fm_scan_pool */
448 
449 /**
450  * struct ubi_fm_scan_pool - Fastmap pool PEBs to be scanned while attaching
451  * @magic: pool magic numer (%UBI_FM_POOL_MAGIC)
452  * @size: current pool size
453  * @max_size: maximal pool size
454  * @pebs: an array containing the location of all PEBs in this pool
455  */
456 struct ubi_fm_scan_pool {
457 	__be32 magic;
458 	__be16 size;
459 	__be16 max_size;
460 	__be32 pebs[UBI_FM_MAX_POOL_SIZE];
461 	__be32 padding[4];
462 } __packed;
463 
464 /* ubi_fm_scan_pool is followed by nfree+nused struct ubi_fm_ec records */
465 
466 /**
467  * struct ubi_fm_ec - stores the erase counter of a PEB
468  * @pnum: PEB number
469  * @ec: ec of this PEB
470  */
471 struct ubi_fm_ec {
472 	__be32 pnum;
473 	__be32 ec;
474 } __packed;
475 
476 /**
477  * struct ubi_fm_volhdr - Fastmap volume header
478  * it identifies the start of an eba table
479  * @magic: Fastmap volume header magic number (%UBI_FM_VHDR_MAGIC)
480  * @vol_id: volume id of the fastmapped volume
481  * @vol_type: type of the fastmapped volume
482  * @data_pad: data_pad value of the fastmapped volume
483  * @used_ebs: number of used LEBs within this volume
484  * @last_eb_bytes: number of bytes used in the last LEB
485  */
486 struct ubi_fm_volhdr {
487 	__be32 magic;
488 	__be32 vol_id;
489 	__u8 vol_type;
490 	__u8 padding1[3];
491 	__be32 data_pad;
492 	__be32 used_ebs;
493 	__be32 last_eb_bytes;
494 	__u8 padding2[8];
495 } __packed;
496 
497 /* struct ubi_fm_volhdr is followed by one struct ubi_fm_eba records */
498 
499 /**
500  * struct ubi_fm_eba - denotes an association beween a PEB and LEB
501  * @magic: EBA table magic number
502  * @reserved_pebs: number of table entries
503  * @pnum: PEB number of LEB (LEB is the index)
504  */
505 struct ubi_fm_eba {
506 	__be32 magic;
507 	__be32 reserved_pebs;
508 	__be32 pnum[0];
509 } __packed;
510 #endif /* !__UBI_MEDIA_H__ */
511