1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS initialization and VFS superblock operations. Some
13  * initialization stuff which is rather large and complex is placed at
14  * corresponding subsystems, but most of it is here.
15  */
16 
17 #ifndef __UBOOT__
18 #include <log.h>
19 #include <dm/devres.h>
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/module.h>
23 #include <linux/ctype.h>
24 #include <linux/kthread.h>
25 #include <linux/parser.h>
26 #include <linux/seq_file.h>
27 #include <linux/mount.h>
28 #include <linux/math64.h>
29 #include <linux/writeback.h>
30 #else
31 
32 #include <common.h>
33 #include <malloc.h>
34 #include <memalign.h>
35 #include <linux/bitops.h>
36 #include <linux/bug.h>
37 #include <linux/log2.h>
38 #include <linux/stat.h>
39 #include <linux/err.h>
40 #include "ubifs.h"
41 #include <ubi_uboot.h>
42 #include <linux/stringify.h>
43 #include <mtd/ubi-user.h>
44 
45 struct dentry;
46 struct file;
47 struct iattr;
48 struct kstat;
49 struct vfsmount;
50 
51 #define INODE_LOCKED_MAX	64
52 
53 struct super_block *ubifs_sb;
54 
55 static struct inode *inodes_locked_down[INODE_LOCKED_MAX];
56 
set_anon_super(struct super_block * s,void * data)57 int set_anon_super(struct super_block *s, void *data)
58 {
59 	return 0;
60 }
61 
iget_locked(struct super_block * sb,unsigned long ino)62 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
63 {
64 	struct inode *inode;
65 
66 	inode = (struct inode *)malloc_cache_aligned(
67 			sizeof(struct ubifs_inode));
68 	if (inode) {
69 		inode->i_ino = ino;
70 		inode->i_sb = sb;
71 		list_add(&inode->i_sb_list, &sb->s_inodes);
72 		inode->i_state = I_LOCK | I_NEW;
73 	}
74 
75 	return inode;
76 }
77 
iget_failed(struct inode * inode)78 void iget_failed(struct inode *inode)
79 {
80 }
81 
ubifs_iput(struct inode * inode)82 int ubifs_iput(struct inode *inode)
83 {
84 	list_del_init(&inode->i_sb_list);
85 
86 	free(inode);
87 	return 0;
88 }
89 
90 /*
91  * Lock (save) inode in inode array for readback after recovery
92  */
iput(struct inode * inode)93 void iput(struct inode *inode)
94 {
95 	int i;
96 	struct inode *ino;
97 
98 	/*
99 	 * Search end of list
100 	 */
101 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
102 		if (inodes_locked_down[i] == NULL)
103 			break;
104 	}
105 
106 	if (i >= INODE_LOCKED_MAX) {
107 		dbg_gen("Error, can't lock (save) more inodes while recovery!!!");
108 		return;
109 	}
110 
111 	/*
112 	 * Allocate and use new inode
113 	 */
114 	ino = (struct inode *)malloc_cache_aligned(sizeof(struct ubifs_inode));
115 	memcpy(ino, inode, sizeof(struct ubifs_inode));
116 
117 	/*
118 	 * Finally save inode in array
119 	 */
120 	inodes_locked_down[i] = ino;
121 }
122 
123 /* from fs/inode.c */
124 /**
125  * clear_nlink - directly zero an inode's link count
126  * @inode: inode
127  *
128  * This is a low-level filesystem helper to replace any
129  * direct filesystem manipulation of i_nlink.  See
130  * drop_nlink() for why we care about i_nlink hitting zero.
131  */
clear_nlink(struct inode * inode)132 void clear_nlink(struct inode *inode)
133 {
134 	if (inode->i_nlink) {
135 		inode->__i_nlink = 0;
136 		atomic_long_inc(&inode->i_sb->s_remove_count);
137 	}
138 }
139 EXPORT_SYMBOL(clear_nlink);
140 
141 /**
142  * set_nlink - directly set an inode's link count
143  * @inode: inode
144  * @nlink: new nlink (should be non-zero)
145  *
146  * This is a low-level filesystem helper to replace any
147  * direct filesystem manipulation of i_nlink.
148  */
set_nlink(struct inode * inode,unsigned int nlink)149 void set_nlink(struct inode *inode, unsigned int nlink)
150 {
151 	if (!nlink) {
152 		clear_nlink(inode);
153 	} else {
154 		/* Yes, some filesystems do change nlink from zero to one */
155 		if (inode->i_nlink == 0)
156 			atomic_long_dec(&inode->i_sb->s_remove_count);
157 
158 		inode->__i_nlink = nlink;
159 	}
160 }
161 EXPORT_SYMBOL(set_nlink);
162 
163 /* from include/linux/fs.h */
i_uid_write(struct inode * inode,uid_t uid)164 static inline void i_uid_write(struct inode *inode, uid_t uid)
165 {
166 	inode->i_uid.val = uid;
167 }
168 
i_gid_write(struct inode * inode,gid_t gid)169 static inline void i_gid_write(struct inode *inode, gid_t gid)
170 {
171 	inode->i_gid.val = gid;
172 }
173 
unlock_new_inode(struct inode * inode)174 void unlock_new_inode(struct inode *inode)
175 {
176 	return;
177 }
178 #endif
179 
180 /*
181  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
182  * allocating too much.
183  */
184 #define UBIFS_KMALLOC_OK (128*1024)
185 
186 /* Slab cache for UBIFS inodes */
187 struct kmem_cache *ubifs_inode_slab;
188 
189 #ifndef __UBOOT__
190 /* UBIFS TNC shrinker description */
191 static struct shrinker ubifs_shrinker_info = {
192 	.scan_objects = ubifs_shrink_scan,
193 	.count_objects = ubifs_shrink_count,
194 	.seeks = DEFAULT_SEEKS,
195 };
196 #endif
197 
198 /**
199  * validate_inode - validate inode.
200  * @c: UBIFS file-system description object
201  * @inode: the inode to validate
202  *
203  * This is a helper function for 'ubifs_iget()' which validates various fields
204  * of a newly built inode to make sure they contain sane values and prevent
205  * possible vulnerabilities. Returns zero if the inode is all right and
206  * a non-zero error code if not.
207  */
validate_inode(struct ubifs_info * c,const struct inode * inode)208 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
209 {
210 	int err;
211 	const struct ubifs_inode *ui = ubifs_inode(inode);
212 
213 	if (inode->i_size > c->max_inode_sz) {
214 		ubifs_err(c, "inode is too large (%lld)",
215 			  (long long)inode->i_size);
216 		return 1;
217 	}
218 
219 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
220 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
221 		return 2;
222 	}
223 
224 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
225 		return 3;
226 
227 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
228 		return 4;
229 
230 	if (ui->xattr && !S_ISREG(inode->i_mode))
231 		return 5;
232 
233 	if (!ubifs_compr_present(ui->compr_type)) {
234 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
235 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
236 	}
237 
238 	err = dbg_check_dir(c, inode);
239 	return err;
240 }
241 
ubifs_iget(struct super_block * sb,unsigned long inum)242 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
243 {
244 	int err;
245 	union ubifs_key key;
246 	struct ubifs_ino_node *ino;
247 	struct ubifs_info *c = sb->s_fs_info;
248 	struct inode *inode;
249 	struct ubifs_inode *ui;
250 #ifdef __UBOOT__
251 	int i;
252 #endif
253 
254 	dbg_gen("inode %lu", inum);
255 
256 #ifdef __UBOOT__
257 	/*
258 	 * U-Boot special handling of locked down inodes via recovery
259 	 * e.g. ubifs_recover_size()
260 	 */
261 	for (i = 0; i < INODE_LOCKED_MAX; i++) {
262 		/*
263 		 * Exit on last entry (NULL), inode not found in list
264 		 */
265 		if (inodes_locked_down[i] == NULL)
266 			break;
267 
268 		if (inodes_locked_down[i]->i_ino == inum) {
269 			/*
270 			 * We found the locked down inode in our array,
271 			 * so just return this pointer instead of creating
272 			 * a new one.
273 			 */
274 			return inodes_locked_down[i];
275 		}
276 	}
277 #endif
278 
279 	inode = iget_locked(sb, inum);
280 	if (!inode)
281 		return ERR_PTR(-ENOMEM);
282 	if (!(inode->i_state & I_NEW))
283 		return inode;
284 	ui = ubifs_inode(inode);
285 
286 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
287 	if (!ino) {
288 		err = -ENOMEM;
289 		goto out;
290 	}
291 
292 	ino_key_init(c, &key, inode->i_ino);
293 
294 	err = ubifs_tnc_lookup(c, &key, ino);
295 	if (err)
296 		goto out_ino;
297 
298 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
299 	set_nlink(inode, le32_to_cpu(ino->nlink));
300 	i_uid_write(inode, le32_to_cpu(ino->uid));
301 	i_gid_write(inode, le32_to_cpu(ino->gid));
302 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
303 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
304 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
305 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
306 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
307 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
308 	inode->i_mode = le32_to_cpu(ino->mode);
309 	inode->i_size = le64_to_cpu(ino->size);
310 
311 	ui->data_len    = le32_to_cpu(ino->data_len);
312 	ui->flags       = le32_to_cpu(ino->flags);
313 	ui->compr_type  = le16_to_cpu(ino->compr_type);
314 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
315 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
316 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
317 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
318 	ui->synced_i_size = ui->ui_size = inode->i_size;
319 
320 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
321 
322 	err = validate_inode(c, inode);
323 	if (err)
324 		goto out_invalid;
325 
326 #ifndef __UBOOT__
327 	switch (inode->i_mode & S_IFMT) {
328 	case S_IFREG:
329 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
330 		inode->i_op = &ubifs_file_inode_operations;
331 		inode->i_fop = &ubifs_file_operations;
332 		if (ui->xattr) {
333 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
334 			if (!ui->data) {
335 				err = -ENOMEM;
336 				goto out_ino;
337 			}
338 			memcpy(ui->data, ino->data, ui->data_len);
339 			((char *)ui->data)[ui->data_len] = '\0';
340 		} else if (ui->data_len != 0) {
341 			err = 10;
342 			goto out_invalid;
343 		}
344 		break;
345 	case S_IFDIR:
346 		inode->i_op  = &ubifs_dir_inode_operations;
347 		inode->i_fop = &ubifs_dir_operations;
348 		if (ui->data_len != 0) {
349 			err = 11;
350 			goto out_invalid;
351 		}
352 		break;
353 	case S_IFLNK:
354 		inode->i_op = &ubifs_symlink_inode_operations;
355 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
356 			err = 12;
357 			goto out_invalid;
358 		}
359 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
360 		if (!ui->data) {
361 			err = -ENOMEM;
362 			goto out_ino;
363 		}
364 		memcpy(ui->data, ino->data, ui->data_len);
365 		((char *)ui->data)[ui->data_len] = '\0';
366 		inode->i_link = ui->data;
367 		break;
368 	case S_IFBLK:
369 	case S_IFCHR:
370 	{
371 		dev_t rdev;
372 		union ubifs_dev_desc *dev;
373 
374 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
375 		if (!ui->data) {
376 			err = -ENOMEM;
377 			goto out_ino;
378 		}
379 
380 		dev = (union ubifs_dev_desc *)ino->data;
381 		if (ui->data_len == sizeof(dev->new))
382 			rdev = new_decode_dev(le32_to_cpu(dev->new));
383 		else if (ui->data_len == sizeof(dev->huge))
384 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
385 		else {
386 			err = 13;
387 			goto out_invalid;
388 		}
389 		memcpy(ui->data, ino->data, ui->data_len);
390 		inode->i_op = &ubifs_file_inode_operations;
391 		init_special_inode(inode, inode->i_mode, rdev);
392 		break;
393 	}
394 	case S_IFSOCK:
395 	case S_IFIFO:
396 		inode->i_op = &ubifs_file_inode_operations;
397 		init_special_inode(inode, inode->i_mode, 0);
398 		if (ui->data_len != 0) {
399 			err = 14;
400 			goto out_invalid;
401 		}
402 		break;
403 	default:
404 		err = 15;
405 		goto out_invalid;
406 	}
407 #else
408 	if ((inode->i_mode & S_IFMT) == S_IFLNK) {
409 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
410 			err = 12;
411 			goto out_invalid;
412 		}
413 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
414 		if (!ui->data) {
415 			err = -ENOMEM;
416 			goto out_ino;
417 		}
418 		memcpy(ui->data, ino->data, ui->data_len);
419 		((char *)ui->data)[ui->data_len] = '\0';
420 	}
421 #endif
422 
423 	kfree(ino);
424 #ifndef __UBOOT__
425 	ubifs_set_inode_flags(inode);
426 #endif
427 	unlock_new_inode(inode);
428 	return inode;
429 
430 out_invalid:
431 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
432 	ubifs_dump_node(c, ino);
433 	ubifs_dump_inode(c, inode);
434 	err = -EINVAL;
435 out_ino:
436 	kfree(ino);
437 out:
438 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
439 	iget_failed(inode);
440 	return ERR_PTR(err);
441 }
442 
ubifs_alloc_inode(struct super_block * sb)443 static struct inode *ubifs_alloc_inode(struct super_block *sb)
444 {
445 	struct ubifs_inode *ui;
446 
447 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
448 	if (!ui)
449 		return NULL;
450 
451 	memset((void *)ui + sizeof(struct inode), 0,
452 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
453 	mutex_init(&ui->ui_mutex);
454 	spin_lock_init(&ui->ui_lock);
455 	return &ui->vfs_inode;
456 };
457 
458 #ifndef __UBOOT__
ubifs_i_callback(struct rcu_head * head)459 static void ubifs_i_callback(struct rcu_head *head)
460 {
461 	struct inode *inode = container_of(head, struct inode, i_rcu);
462 	struct ubifs_inode *ui = ubifs_inode(inode);
463 	kmem_cache_free(ubifs_inode_slab, ui);
464 }
465 
ubifs_destroy_inode(struct inode * inode)466 static void ubifs_destroy_inode(struct inode *inode)
467 {
468 	struct ubifs_inode *ui = ubifs_inode(inode);
469 
470 	kfree(ui->data);
471 	call_rcu(&inode->i_rcu, ubifs_i_callback);
472 }
473 
474 /*
475  * Note, Linux write-back code calls this without 'i_mutex'.
476  */
ubifs_write_inode(struct inode * inode,struct writeback_control * wbc)477 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
478 {
479 	int err = 0;
480 	struct ubifs_info *c = inode->i_sb->s_fs_info;
481 	struct ubifs_inode *ui = ubifs_inode(inode);
482 
483 	ubifs_assert(!ui->xattr);
484 	if (is_bad_inode(inode))
485 		return 0;
486 
487 	mutex_lock(&ui->ui_mutex);
488 	/*
489 	 * Due to races between write-back forced by budgeting
490 	 * (see 'sync_some_inodes()') and background write-back, the inode may
491 	 * have already been synchronized, do not do this again. This might
492 	 * also happen if it was synchronized in an VFS operation, e.g.
493 	 * 'ubifs_link()'.
494 	 */
495 	if (!ui->dirty) {
496 		mutex_unlock(&ui->ui_mutex);
497 		return 0;
498 	}
499 
500 	/*
501 	 * As an optimization, do not write orphan inodes to the media just
502 	 * because this is not needed.
503 	 */
504 	dbg_gen("inode %lu, mode %#x, nlink %u",
505 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
506 	if (inode->i_nlink) {
507 		err = ubifs_jnl_write_inode(c, inode);
508 		if (err)
509 			ubifs_err(c, "can't write inode %lu, error %d",
510 				  inode->i_ino, err);
511 		else
512 			err = dbg_check_inode_size(c, inode, ui->ui_size);
513 	}
514 
515 	ui->dirty = 0;
516 	mutex_unlock(&ui->ui_mutex);
517 	ubifs_release_dirty_inode_budget(c, ui);
518 	return err;
519 }
520 
ubifs_evict_inode(struct inode * inode)521 static void ubifs_evict_inode(struct inode *inode)
522 {
523 	int err;
524 	struct ubifs_info *c = inode->i_sb->s_fs_info;
525 	struct ubifs_inode *ui = ubifs_inode(inode);
526 
527 	if (ui->xattr)
528 		/*
529 		 * Extended attribute inode deletions are fully handled in
530 		 * 'ubifs_removexattr()'. These inodes are special and have
531 		 * limited usage, so there is nothing to do here.
532 		 */
533 		goto out;
534 
535 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
536 	ubifs_assert(!atomic_read(&inode->i_count));
537 
538 	truncate_inode_pages_final(&inode->i_data);
539 
540 	if (inode->i_nlink)
541 		goto done;
542 
543 	if (is_bad_inode(inode))
544 		goto out;
545 
546 	ui->ui_size = inode->i_size = 0;
547 	err = ubifs_jnl_delete_inode(c, inode);
548 	if (err)
549 		/*
550 		 * Worst case we have a lost orphan inode wasting space, so a
551 		 * simple error message is OK here.
552 		 */
553 		ubifs_err(c, "can't delete inode %lu, error %d",
554 			  inode->i_ino, err);
555 
556 out:
557 	if (ui->dirty)
558 		ubifs_release_dirty_inode_budget(c, ui);
559 	else {
560 		/* We've deleted something - clean the "no space" flags */
561 		c->bi.nospace = c->bi.nospace_rp = 0;
562 		smp_wmb();
563 	}
564 done:
565 	clear_inode(inode);
566 }
567 #endif
568 
ubifs_dirty_inode(struct inode * inode,int flags)569 static void ubifs_dirty_inode(struct inode *inode, int flags)
570 {
571 	struct ubifs_inode *ui = ubifs_inode(inode);
572 
573 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
574 	if (!ui->dirty) {
575 		ui->dirty = 1;
576 		dbg_gen("inode %lu",  inode->i_ino);
577 	}
578 }
579 
580 #ifndef __UBOOT__
ubifs_statfs(struct dentry * dentry,struct kstatfs * buf)581 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
582 {
583 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
584 	unsigned long long free;
585 	__le32 *uuid = (__le32 *)c->uuid;
586 
587 	free = ubifs_get_free_space(c);
588 	dbg_gen("free space %lld bytes (%lld blocks)",
589 		free, free >> UBIFS_BLOCK_SHIFT);
590 
591 	buf->f_type = UBIFS_SUPER_MAGIC;
592 	buf->f_bsize = UBIFS_BLOCK_SIZE;
593 	buf->f_blocks = c->block_cnt;
594 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
595 	if (free > c->report_rp_size)
596 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
597 	else
598 		buf->f_bavail = 0;
599 	buf->f_files = 0;
600 	buf->f_ffree = 0;
601 	buf->f_namelen = UBIFS_MAX_NLEN;
602 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
603 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
604 	ubifs_assert(buf->f_bfree <= c->block_cnt);
605 	return 0;
606 }
607 
ubifs_show_options(struct seq_file * s,struct dentry * root)608 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
609 {
610 	struct ubifs_info *c = root->d_sb->s_fs_info;
611 
612 	if (c->mount_opts.unmount_mode == 2)
613 		seq_puts(s, ",fast_unmount");
614 	else if (c->mount_opts.unmount_mode == 1)
615 		seq_puts(s, ",norm_unmount");
616 
617 	if (c->mount_opts.bulk_read == 2)
618 		seq_puts(s, ",bulk_read");
619 	else if (c->mount_opts.bulk_read == 1)
620 		seq_puts(s, ",no_bulk_read");
621 
622 	if (c->mount_opts.chk_data_crc == 2)
623 		seq_puts(s, ",chk_data_crc");
624 	else if (c->mount_opts.chk_data_crc == 1)
625 		seq_puts(s, ",no_chk_data_crc");
626 
627 	if (c->mount_opts.override_compr) {
628 		seq_printf(s, ",compr=%s",
629 			   ubifs_compr_name(c->mount_opts.compr_type));
630 	}
631 
632 	return 0;
633 }
634 
ubifs_sync_fs(struct super_block * sb,int wait)635 static int ubifs_sync_fs(struct super_block *sb, int wait)
636 {
637 	int i, err;
638 	struct ubifs_info *c = sb->s_fs_info;
639 
640 	/*
641 	 * Zero @wait is just an advisory thing to help the file system shove
642 	 * lots of data into the queues, and there will be the second
643 	 * '->sync_fs()' call, with non-zero @wait.
644 	 */
645 	if (!wait)
646 		return 0;
647 
648 	/*
649 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
650 	 * do this if it waits for an already running commit.
651 	 */
652 	for (i = 0; i < c->jhead_cnt; i++) {
653 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
654 		if (err)
655 			return err;
656 	}
657 
658 	/*
659 	 * Strictly speaking, it is not necessary to commit the journal here,
660 	 * synchronizing write-buffers would be enough. But committing makes
661 	 * UBIFS free space predictions much more accurate, so we want to let
662 	 * the user be able to get more accurate results of 'statfs()' after
663 	 * they synchronize the file system.
664 	 */
665 	err = ubifs_run_commit(c);
666 	if (err)
667 		return err;
668 
669 	return ubi_sync(c->vi.ubi_num);
670 }
671 #endif
672 
673 /**
674  * init_constants_early - initialize UBIFS constants.
675  * @c: UBIFS file-system description object
676  *
677  * This function initialize UBIFS constants which do not need the superblock to
678  * be read. It also checks that the UBI volume satisfies basic UBIFS
679  * requirements. Returns zero in case of success and a negative error code in
680  * case of failure.
681  */
init_constants_early(struct ubifs_info * c)682 static int init_constants_early(struct ubifs_info *c)
683 {
684 	if (c->vi.corrupted) {
685 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
686 		c->ro_media = 1;
687 	}
688 
689 	if (c->di.ro_mode) {
690 		ubifs_msg(c, "read-only UBI device");
691 		c->ro_media = 1;
692 	}
693 
694 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
695 		ubifs_msg(c, "static UBI volume - read-only mode");
696 		c->ro_media = 1;
697 	}
698 
699 	c->leb_cnt = c->vi.size;
700 	c->leb_size = c->vi.usable_leb_size;
701 	c->leb_start = c->di.leb_start;
702 	c->half_leb_size = c->leb_size / 2;
703 	c->min_io_size = c->di.min_io_size;
704 	c->min_io_shift = fls(c->min_io_size) - 1;
705 	c->max_write_size = c->di.max_write_size;
706 	c->max_write_shift = fls(c->max_write_size) - 1;
707 
708 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
709 		ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
710 			  c->leb_size, UBIFS_MIN_LEB_SZ);
711 		return -EINVAL;
712 	}
713 
714 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
715 		ubifs_err(c, "too few LEBs (%d), min. is %d",
716 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
717 		return -EINVAL;
718 	}
719 
720 	if (!is_power_of_2(c->min_io_size)) {
721 		ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
722 		return -EINVAL;
723 	}
724 
725 	/*
726 	 * Maximum write size has to be greater or equivalent to min. I/O
727 	 * size, and be multiple of min. I/O size.
728 	 */
729 	if (c->max_write_size < c->min_io_size ||
730 	    c->max_write_size % c->min_io_size ||
731 	    !is_power_of_2(c->max_write_size)) {
732 		ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
733 			  c->max_write_size, c->min_io_size);
734 		return -EINVAL;
735 	}
736 
737 	/*
738 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
739 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
740 	 * less than 8.
741 	 */
742 	if (c->min_io_size < 8) {
743 		c->min_io_size = 8;
744 		c->min_io_shift = 3;
745 		if (c->max_write_size < c->min_io_size) {
746 			c->max_write_size = c->min_io_size;
747 			c->max_write_shift = c->min_io_shift;
748 		}
749 	}
750 
751 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
752 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
753 
754 	/*
755 	 * Initialize node length ranges which are mostly needed for node
756 	 * length validation.
757 	 */
758 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
759 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
760 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
761 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
762 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
763 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
764 
765 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
766 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
767 	c->ranges[UBIFS_ORPH_NODE].min_len =
768 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
769 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
770 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
771 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
772 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
773 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
774 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
775 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
776 	/*
777 	 * Minimum indexing node size is amended later when superblock is
778 	 * read and the key length is known.
779 	 */
780 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
781 	/*
782 	 * Maximum indexing node size is amended later when superblock is
783 	 * read and the fanout is known.
784 	 */
785 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
786 
787 	/*
788 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
789 	 * about these values.
790 	 */
791 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
792 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
793 
794 	/*
795 	 * Calculate how many bytes would be wasted at the end of LEB if it was
796 	 * fully filled with data nodes of maximum size. This is used in
797 	 * calculations when reporting free space.
798 	 */
799 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
800 
801 	/* Buffer size for bulk-reads */
802 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
803 	if (c->max_bu_buf_len > c->leb_size)
804 		c->max_bu_buf_len = c->leb_size;
805 	return 0;
806 }
807 
808 /**
809  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
810  * @c: UBIFS file-system description object
811  * @lnum: LEB the write-buffer was synchronized to
812  * @free: how many free bytes left in this LEB
813  * @pad: how many bytes were padded
814  *
815  * This is a callback function which is called by the I/O unit when the
816  * write-buffer is synchronized. We need this to correctly maintain space
817  * accounting in bud logical eraseblocks. This function returns zero in case of
818  * success and a negative error code in case of failure.
819  *
820  * This function actually belongs to the journal, but we keep it here because
821  * we want to keep it static.
822  */
bud_wbuf_callback(struct ubifs_info * c,int lnum,int free,int pad)823 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
824 {
825 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
826 }
827 
828 /*
829  * init_constants_sb - initialize UBIFS constants.
830  * @c: UBIFS file-system description object
831  *
832  * This is a helper function which initializes various UBIFS constants after
833  * the superblock has been read. It also checks various UBIFS parameters and
834  * makes sure they are all right. Returns zero in case of success and a
835  * negative error code in case of failure.
836  */
init_constants_sb(struct ubifs_info * c)837 static int init_constants_sb(struct ubifs_info *c)
838 {
839 	int tmp, err;
840 	long long tmp64;
841 
842 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
843 	c->max_znode_sz = sizeof(struct ubifs_znode) +
844 				c->fanout * sizeof(struct ubifs_zbranch);
845 
846 	tmp = ubifs_idx_node_sz(c, 1);
847 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
848 	c->min_idx_node_sz = ALIGN(tmp, 8);
849 
850 	tmp = ubifs_idx_node_sz(c, c->fanout);
851 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
852 	c->max_idx_node_sz = ALIGN(tmp, 8);
853 
854 	/* Make sure LEB size is large enough to fit full commit */
855 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
856 	tmp = ALIGN(tmp, c->min_io_size);
857 	if (tmp > c->leb_size) {
858 		ubifs_err(c, "too small LEB size %d, at least %d needed",
859 			  c->leb_size, tmp);
860 		return -EINVAL;
861 	}
862 
863 	/*
864 	 * Make sure that the log is large enough to fit reference nodes for
865 	 * all buds plus one reserved LEB.
866 	 */
867 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
868 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
869 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
870 	tmp /= c->leb_size;
871 	tmp += 1;
872 	if (c->log_lebs < tmp) {
873 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
874 			  c->log_lebs, tmp);
875 		return -EINVAL;
876 	}
877 
878 	/*
879 	 * When budgeting we assume worst-case scenarios when the pages are not
880 	 * be compressed and direntries are of the maximum size.
881 	 *
882 	 * Note, data, which may be stored in inodes is budgeted separately, so
883 	 * it is not included into 'c->bi.inode_budget'.
884 	 */
885 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
886 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
887 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
888 
889 	/*
890 	 * When the amount of flash space used by buds becomes
891 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
892 	 * The writers are unblocked when the commit is finished. To avoid
893 	 * writers to be blocked UBIFS initiates background commit in advance,
894 	 * when number of bud bytes becomes above the limit defined below.
895 	 */
896 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
897 
898 	/*
899 	 * Ensure minimum journal size. All the bytes in the journal heads are
900 	 * considered to be used, when calculating the current journal usage.
901 	 * Consequently, if the journal is too small, UBIFS will treat it as
902 	 * always full.
903 	 */
904 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
905 	if (c->bg_bud_bytes < tmp64)
906 		c->bg_bud_bytes = tmp64;
907 	if (c->max_bud_bytes < tmp64 + c->leb_size)
908 		c->max_bud_bytes = tmp64 + c->leb_size;
909 
910 	err = ubifs_calc_lpt_geom(c);
911 	if (err)
912 		return err;
913 
914 	/* Initialize effective LEB size used in budgeting calculations */
915 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
916 	return 0;
917 }
918 
919 /*
920  * init_constants_master - initialize UBIFS constants.
921  * @c: UBIFS file-system description object
922  *
923  * This is a helper function which initializes various UBIFS constants after
924  * the master node has been read. It also checks various UBIFS parameters and
925  * makes sure they are all right.
926  */
init_constants_master(struct ubifs_info * c)927 static void init_constants_master(struct ubifs_info *c)
928 {
929 	long long tmp64;
930 
931 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
932 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
933 
934 	/*
935 	 * Calculate total amount of FS blocks. This number is not used
936 	 * internally because it does not make much sense for UBIFS, but it is
937 	 * necessary to report something for the 'statfs()' call.
938 	 *
939 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
940 	 * deletions, minimum LEBs for the index, and assume only one journal
941 	 * head is available.
942 	 */
943 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
944 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
945 	tmp64 = ubifs_reported_space(c, tmp64);
946 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
947 }
948 
949 /**
950  * take_gc_lnum - reserve GC LEB.
951  * @c: UBIFS file-system description object
952  *
953  * This function ensures that the LEB reserved for garbage collection is marked
954  * as "taken" in lprops. We also have to set free space to LEB size and dirty
955  * space to zero, because lprops may contain out-of-date information if the
956  * file-system was un-mounted before it has been committed. This function
957  * returns zero in case of success and a negative error code in case of
958  * failure.
959  */
take_gc_lnum(struct ubifs_info * c)960 static int take_gc_lnum(struct ubifs_info *c)
961 {
962 	int err;
963 
964 	if (c->gc_lnum == -1) {
965 		ubifs_err(c, "no LEB for GC");
966 		return -EINVAL;
967 	}
968 
969 	/* And we have to tell lprops that this LEB is taken */
970 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
971 				  LPROPS_TAKEN, 0, 0);
972 	return err;
973 }
974 
975 /**
976  * alloc_wbufs - allocate write-buffers.
977  * @c: UBIFS file-system description object
978  *
979  * This helper function allocates and initializes UBIFS write-buffers. Returns
980  * zero in case of success and %-ENOMEM in case of failure.
981  */
alloc_wbufs(struct ubifs_info * c)982 static int alloc_wbufs(struct ubifs_info *c)
983 {
984 	int i, err;
985 
986 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
987 			    GFP_KERNEL);
988 	if (!c->jheads)
989 		return -ENOMEM;
990 
991 	/* Initialize journal heads */
992 	for (i = 0; i < c->jhead_cnt; i++) {
993 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
994 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
995 		if (err)
996 			return err;
997 
998 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
999 		c->jheads[i].wbuf.jhead = i;
1000 		c->jheads[i].grouped = 1;
1001 	}
1002 
1003 	/*
1004 	 * Garbage Collector head does not need to be synchronized by timer.
1005 	 * Also GC head nodes are not grouped.
1006 	 */
1007 	c->jheads[GCHD].wbuf.no_timer = 1;
1008 	c->jheads[GCHD].grouped = 0;
1009 
1010 	return 0;
1011 }
1012 
1013 /**
1014  * free_wbufs - free write-buffers.
1015  * @c: UBIFS file-system description object
1016  */
free_wbufs(struct ubifs_info * c)1017 static void free_wbufs(struct ubifs_info *c)
1018 {
1019 	int i;
1020 
1021 	if (c->jheads) {
1022 		for (i = 0; i < c->jhead_cnt; i++) {
1023 			kfree(c->jheads[i].wbuf.buf);
1024 			kfree(c->jheads[i].wbuf.inodes);
1025 		}
1026 		kfree(c->jheads);
1027 		c->jheads = NULL;
1028 	}
1029 }
1030 
1031 /**
1032  * free_orphans - free orphans.
1033  * @c: UBIFS file-system description object
1034  */
free_orphans(struct ubifs_info * c)1035 static void free_orphans(struct ubifs_info *c)
1036 {
1037 	struct ubifs_orphan *orph;
1038 
1039 	while (c->orph_dnext) {
1040 		orph = c->orph_dnext;
1041 		c->orph_dnext = orph->dnext;
1042 		list_del(&orph->list);
1043 		kfree(orph);
1044 	}
1045 
1046 	while (!list_empty(&c->orph_list)) {
1047 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
1048 		list_del(&orph->list);
1049 		kfree(orph);
1050 		ubifs_err(c, "orphan list not empty at unmount");
1051 	}
1052 
1053 	vfree(c->orph_buf);
1054 	c->orph_buf = NULL;
1055 }
1056 
1057 /**
1058  * free_buds - free per-bud objects.
1059  * @c: UBIFS file-system description object
1060  */
free_buds(struct ubifs_info * c)1061 static void free_buds(struct ubifs_info *c)
1062 {
1063 	struct ubifs_bud *bud, *n;
1064 
1065 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
1066 		kfree(bud);
1067 }
1068 
1069 /**
1070  * check_volume_empty - check if the UBI volume is empty.
1071  * @c: UBIFS file-system description object
1072  *
1073  * This function checks if the UBIFS volume is empty by looking if its LEBs are
1074  * mapped or not. The result of checking is stored in the @c->empty variable.
1075  * Returns zero in case of success and a negative error code in case of
1076  * failure.
1077  */
check_volume_empty(struct ubifs_info * c)1078 static int check_volume_empty(struct ubifs_info *c)
1079 {
1080 	int lnum, err;
1081 
1082 	c->empty = 1;
1083 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
1084 		err = ubifs_is_mapped(c, lnum);
1085 		if (unlikely(err < 0))
1086 			return err;
1087 		if (err == 1) {
1088 			c->empty = 0;
1089 			break;
1090 		}
1091 
1092 		cond_resched();
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /*
1099  * UBIFS mount options.
1100  *
1101  * Opt_fast_unmount: do not run a journal commit before un-mounting
1102  * Opt_norm_unmount: run a journal commit before un-mounting
1103  * Opt_bulk_read: enable bulk-reads
1104  * Opt_no_bulk_read: disable bulk-reads
1105  * Opt_chk_data_crc: check CRCs when reading data nodes
1106  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
1107  * Opt_override_compr: override default compressor
1108  * Opt_err: just end of array marker
1109  */
1110 enum {
1111 	Opt_fast_unmount,
1112 	Opt_norm_unmount,
1113 	Opt_bulk_read,
1114 	Opt_no_bulk_read,
1115 	Opt_chk_data_crc,
1116 	Opt_no_chk_data_crc,
1117 	Opt_override_compr,
1118 	Opt_err,
1119 };
1120 
1121 #ifndef __UBOOT__
1122 static const match_table_t tokens = {
1123 	{Opt_fast_unmount, "fast_unmount"},
1124 	{Opt_norm_unmount, "norm_unmount"},
1125 	{Opt_bulk_read, "bulk_read"},
1126 	{Opt_no_bulk_read, "no_bulk_read"},
1127 	{Opt_chk_data_crc, "chk_data_crc"},
1128 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
1129 	{Opt_override_compr, "compr=%s"},
1130 	{Opt_err, NULL},
1131 };
1132 
1133 /**
1134  * parse_standard_option - parse a standard mount option.
1135  * @option: the option to parse
1136  *
1137  * Normally, standard mount options like "sync" are passed to file-systems as
1138  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1139  * be present in the options string. This function tries to deal with this
1140  * situation and parse standard options. Returns 0 if the option was not
1141  * recognized, and the corresponding integer flag if it was.
1142  *
1143  * UBIFS is only interested in the "sync" option, so do not check for anything
1144  * else.
1145  */
parse_standard_option(const char * option)1146 static int parse_standard_option(const char *option)
1147 {
1148 
1149 	pr_notice("UBIFS: parse %s\n", option);
1150 	if (!strcmp(option, "sync"))
1151 		return MS_SYNCHRONOUS;
1152 	return 0;
1153 }
1154 
1155 /**
1156  * ubifs_parse_options - parse mount parameters.
1157  * @c: UBIFS file-system description object
1158  * @options: parameters to parse
1159  * @is_remount: non-zero if this is FS re-mount
1160  *
1161  * This function parses UBIFS mount options and returns zero in case success
1162  * and a negative error code in case of failure.
1163  */
ubifs_parse_options(struct ubifs_info * c,char * options,int is_remount)1164 static int ubifs_parse_options(struct ubifs_info *c, char *options,
1165 			       int is_remount)
1166 {
1167 	char *p;
1168 	substring_t args[MAX_OPT_ARGS];
1169 
1170 	if (!options)
1171 		return 0;
1172 
1173 	while ((p = strsep(&options, ","))) {
1174 		int token;
1175 
1176 		if (!*p)
1177 			continue;
1178 
1179 		token = match_token(p, tokens, args);
1180 		switch (token) {
1181 		/*
1182 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1183 		 * We accept them in order to be backward-compatible. But this
1184 		 * should be removed at some point.
1185 		 */
1186 		case Opt_fast_unmount:
1187 			c->mount_opts.unmount_mode = 2;
1188 			break;
1189 		case Opt_norm_unmount:
1190 			c->mount_opts.unmount_mode = 1;
1191 			break;
1192 		case Opt_bulk_read:
1193 			c->mount_opts.bulk_read = 2;
1194 			c->bulk_read = 1;
1195 			break;
1196 		case Opt_no_bulk_read:
1197 			c->mount_opts.bulk_read = 1;
1198 			c->bulk_read = 0;
1199 			break;
1200 		case Opt_chk_data_crc:
1201 			c->mount_opts.chk_data_crc = 2;
1202 			c->no_chk_data_crc = 0;
1203 			break;
1204 		case Opt_no_chk_data_crc:
1205 			c->mount_opts.chk_data_crc = 1;
1206 			c->no_chk_data_crc = 1;
1207 			break;
1208 		case Opt_override_compr:
1209 		{
1210 			char *name = match_strdup(&args[0]);
1211 
1212 			if (!name)
1213 				return -ENOMEM;
1214 			if (!strcmp(name, "none"))
1215 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1216 			else if (!strcmp(name, "lzo"))
1217 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1218 			else if (!strcmp(name, "zlib"))
1219 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1220 			else {
1221 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1222 				kfree(name);
1223 				return -EINVAL;
1224 			}
1225 			kfree(name);
1226 			c->mount_opts.override_compr = 1;
1227 			c->default_compr = c->mount_opts.compr_type;
1228 			break;
1229 		}
1230 		default:
1231 		{
1232 			unsigned long flag;
1233 			struct super_block *sb = c->vfs_sb;
1234 
1235 			flag = parse_standard_option(p);
1236 			if (!flag) {
1237 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1238 					  p);
1239 				return -EINVAL;
1240 			}
1241 			sb->s_flags |= flag;
1242 			break;
1243 		}
1244 		}
1245 	}
1246 
1247 	return 0;
1248 }
1249 #endif
1250 
1251 /**
1252  * destroy_journal - destroy journal data structures.
1253  * @c: UBIFS file-system description object
1254  *
1255  * This function destroys journal data structures including those that may have
1256  * been created by recovery functions.
1257  */
destroy_journal(struct ubifs_info * c)1258 static void destroy_journal(struct ubifs_info *c)
1259 {
1260 	while (!list_empty(&c->unclean_leb_list)) {
1261 		struct ubifs_unclean_leb *ucleb;
1262 
1263 		ucleb = list_entry(c->unclean_leb_list.next,
1264 				   struct ubifs_unclean_leb, list);
1265 		list_del(&ucleb->list);
1266 		kfree(ucleb);
1267 	}
1268 	while (!list_empty(&c->old_buds)) {
1269 		struct ubifs_bud *bud;
1270 
1271 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1272 		list_del(&bud->list);
1273 		kfree(bud);
1274 	}
1275 	ubifs_destroy_idx_gc(c);
1276 	ubifs_destroy_size_tree(c);
1277 	ubifs_tnc_close(c);
1278 	free_buds(c);
1279 }
1280 
1281 /**
1282  * bu_init - initialize bulk-read information.
1283  * @c: UBIFS file-system description object
1284  */
bu_init(struct ubifs_info * c)1285 static void bu_init(struct ubifs_info *c)
1286 {
1287 	ubifs_assert(c->bulk_read == 1);
1288 
1289 	if (c->bu.buf)
1290 		return; /* Already initialized */
1291 
1292 again:
1293 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1294 	if (!c->bu.buf) {
1295 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1296 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1297 			goto again;
1298 		}
1299 
1300 		/* Just disable bulk-read */
1301 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1302 			   c->max_bu_buf_len);
1303 		c->mount_opts.bulk_read = 1;
1304 		c->bulk_read = 0;
1305 		return;
1306 	}
1307 }
1308 
1309 #ifndef __UBOOT__
1310 /**
1311  * check_free_space - check if there is enough free space to mount.
1312  * @c: UBIFS file-system description object
1313  *
1314  * This function makes sure UBIFS has enough free space to be mounted in
1315  * read/write mode. UBIFS must always have some free space to allow deletions.
1316  */
check_free_space(struct ubifs_info * c)1317 static int check_free_space(struct ubifs_info *c)
1318 {
1319 	ubifs_assert(c->dark_wm > 0);
1320 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1321 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1322 		ubifs_dump_budg(c, &c->bi);
1323 		ubifs_dump_lprops(c);
1324 		return -ENOSPC;
1325 	}
1326 	return 0;
1327 }
1328 #endif
1329 
1330 /**
1331  * mount_ubifs - mount UBIFS file-system.
1332  * @c: UBIFS file-system description object
1333  *
1334  * This function mounts UBIFS file system. Returns zero in case of success and
1335  * a negative error code in case of failure.
1336  */
mount_ubifs(struct ubifs_info * c)1337 static int mount_ubifs(struct ubifs_info *c)
1338 {
1339 	int err;
1340 	long long x;
1341 #ifndef CONFIG_UBIFS_SILENCE_MSG
1342 	long long y;
1343 #endif
1344 	size_t sz;
1345 
1346 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1347 	/* Suppress error messages while probing if MS_SILENT is set */
1348 	c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1349 #ifdef __UBOOT__
1350 	if (!c->ro_mount) {
1351 		printf("UBIFS: only ro mode in U-Boot allowed.\n");
1352 		return -EACCES;
1353 	}
1354 #endif
1355 
1356 	err = init_constants_early(c);
1357 	if (err)
1358 		return err;
1359 
1360 	err = ubifs_debugging_init(c);
1361 	if (err)
1362 		return err;
1363 
1364 	err = check_volume_empty(c);
1365 	if (err)
1366 		goto out_free;
1367 
1368 	if (c->empty && (c->ro_mount || c->ro_media)) {
1369 		/*
1370 		 * This UBI volume is empty, and read-only, or the file system
1371 		 * is mounted read-only - we cannot format it.
1372 		 */
1373 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1374 			  c->ro_media ? "UBI volume" : "mount");
1375 		err = -EROFS;
1376 		goto out_free;
1377 	}
1378 
1379 	if (c->ro_media && !c->ro_mount) {
1380 		ubifs_err(c, "cannot mount read-write - read-only media");
1381 		err = -EROFS;
1382 		goto out_free;
1383 	}
1384 
1385 	/*
1386 	 * The requirement for the buffer is that it should fit indexing B-tree
1387 	 * height amount of integers. We assume the height if the TNC tree will
1388 	 * never exceed 64.
1389 	 */
1390 	err = -ENOMEM;
1391 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1392 	if (!c->bottom_up_buf)
1393 		goto out_free;
1394 
1395 	c->sbuf = vmalloc(c->leb_size);
1396 	if (!c->sbuf)
1397 		goto out_free;
1398 
1399 #ifndef __UBOOT__
1400 	if (!c->ro_mount) {
1401 		c->ileb_buf = vmalloc(c->leb_size);
1402 		if (!c->ileb_buf)
1403 			goto out_free;
1404 	}
1405 #endif
1406 
1407 	if (c->bulk_read == 1)
1408 		bu_init(c);
1409 
1410 #ifndef __UBOOT__
1411 	if (!c->ro_mount) {
1412 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1413 					       GFP_KERNEL);
1414 		if (!c->write_reserve_buf)
1415 			goto out_free;
1416 	}
1417 #endif
1418 
1419 	c->mounting = 1;
1420 
1421 	err = ubifs_read_superblock(c);
1422 	if (err)
1423 		goto out_free;
1424 
1425 	c->probing = 0;
1426 
1427 	/*
1428 	 * Make sure the compressor which is set as default in the superblock
1429 	 * or overridden by mount options is actually compiled in.
1430 	 */
1431 	if (!ubifs_compr_present(c->default_compr)) {
1432 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1433 			  ubifs_compr_name(c->default_compr));
1434 		err = -ENOTSUPP;
1435 		goto out_free;
1436 	}
1437 
1438 	err = init_constants_sb(c);
1439 	if (err)
1440 		goto out_free;
1441 
1442 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1443 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1444 	c->cbuf = kmalloc(sz, GFP_NOFS);
1445 	if (!c->cbuf) {
1446 		err = -ENOMEM;
1447 		goto out_free;
1448 	}
1449 
1450 	err = alloc_wbufs(c);
1451 	if (err)
1452 		goto out_cbuf;
1453 
1454 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1455 #ifndef __UBOOT__
1456 	if (!c->ro_mount) {
1457 		/* Create background thread */
1458 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1459 		if (IS_ERR(c->bgt)) {
1460 			err = PTR_ERR(c->bgt);
1461 			c->bgt = NULL;
1462 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1463 				  c->bgt_name, err);
1464 			goto out_wbufs;
1465 		}
1466 		wake_up_process(c->bgt);
1467 	}
1468 #endif
1469 
1470 	err = ubifs_read_master(c);
1471 	if (err)
1472 		goto out_master;
1473 
1474 	init_constants_master(c);
1475 
1476 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1477 		ubifs_msg(c, "recovery needed");
1478 		c->need_recovery = 1;
1479 	}
1480 
1481 #ifndef __UBOOT__
1482 	if (c->need_recovery && !c->ro_mount) {
1483 		err = ubifs_recover_inl_heads(c, c->sbuf);
1484 		if (err)
1485 			goto out_master;
1486 	}
1487 #endif
1488 
1489 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1490 	if (err)
1491 		goto out_master;
1492 
1493 #ifndef __UBOOT__
1494 	if (!c->ro_mount && c->space_fixup) {
1495 		err = ubifs_fixup_free_space(c);
1496 		if (err)
1497 			goto out_lpt;
1498 	}
1499 
1500 	if (!c->ro_mount && !c->need_recovery) {
1501 		/*
1502 		 * Set the "dirty" flag so that if we reboot uncleanly we
1503 		 * will notice this immediately on the next mount.
1504 		 */
1505 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1506 		err = ubifs_write_master(c);
1507 		if (err)
1508 			goto out_lpt;
1509 	}
1510 #endif
1511 
1512 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1513 	if (err)
1514 		goto out_lpt;
1515 
1516 	err = ubifs_replay_journal(c);
1517 	if (err)
1518 		goto out_journal;
1519 
1520 	/* Calculate 'min_idx_lebs' after journal replay */
1521 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1522 
1523 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1524 	if (err)
1525 		goto out_orphans;
1526 
1527 	if (!c->ro_mount) {
1528 #ifndef __UBOOT__
1529 		int lnum;
1530 
1531 		err = check_free_space(c);
1532 		if (err)
1533 			goto out_orphans;
1534 
1535 		/* Check for enough log space */
1536 		lnum = c->lhead_lnum + 1;
1537 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1538 			lnum = UBIFS_LOG_LNUM;
1539 		if (lnum == c->ltail_lnum) {
1540 			err = ubifs_consolidate_log(c);
1541 			if (err)
1542 				goto out_orphans;
1543 		}
1544 
1545 		if (c->need_recovery) {
1546 			err = ubifs_recover_size(c);
1547 			if (err)
1548 				goto out_orphans;
1549 			err = ubifs_rcvry_gc_commit(c);
1550 			if (err)
1551 				goto out_orphans;
1552 		} else {
1553 			err = take_gc_lnum(c);
1554 			if (err)
1555 				goto out_orphans;
1556 
1557 			/*
1558 			 * GC LEB may contain garbage if there was an unclean
1559 			 * reboot, and it should be un-mapped.
1560 			 */
1561 			err = ubifs_leb_unmap(c, c->gc_lnum);
1562 			if (err)
1563 				goto out_orphans;
1564 		}
1565 
1566 		err = dbg_check_lprops(c);
1567 		if (err)
1568 			goto out_orphans;
1569 #endif
1570 	} else if (c->need_recovery) {
1571 		err = ubifs_recover_size(c);
1572 		if (err)
1573 			goto out_orphans;
1574 	} else {
1575 		/*
1576 		 * Even if we mount read-only, we have to set space in GC LEB
1577 		 * to proper value because this affects UBIFS free space
1578 		 * reporting. We do not want to have a situation when
1579 		 * re-mounting from R/O to R/W changes amount of free space.
1580 		 */
1581 		err = take_gc_lnum(c);
1582 		if (err)
1583 			goto out_orphans;
1584 	}
1585 
1586 #ifndef __UBOOT__
1587 	spin_lock(&ubifs_infos_lock);
1588 	list_add_tail(&c->infos_list, &ubifs_infos);
1589 	spin_unlock(&ubifs_infos_lock);
1590 #endif
1591 
1592 	if (c->need_recovery) {
1593 		if (c->ro_mount)
1594 			ubifs_msg(c, "recovery deferred");
1595 		else {
1596 			c->need_recovery = 0;
1597 			ubifs_msg(c, "recovery completed");
1598 			/*
1599 			 * GC LEB has to be empty and taken at this point. But
1600 			 * the journal head LEBs may also be accounted as
1601 			 * "empty taken" if they are empty.
1602 			 */
1603 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1604 		}
1605 	} else
1606 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1607 
1608 	err = dbg_check_filesystem(c);
1609 	if (err)
1610 		goto out_infos;
1611 
1612 	err = dbg_debugfs_init_fs(c);
1613 	if (err)
1614 		goto out_infos;
1615 
1616 	c->mounting = 0;
1617 
1618 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1619 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1620 		  c->ro_mount ? ", R/O mode" : "");
1621 	x = (long long)c->main_lebs * c->leb_size;
1622 #ifndef CONFIG_UBIFS_SILENCE_MSG
1623 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1624 #endif
1625 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1626 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1627 		  c->max_write_size);
1628 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1629 		  x, x >> 20, c->main_lebs,
1630 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1631 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1632 		  c->report_rp_size, c->report_rp_size >> 10);
1633 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1634 		  c->fmt_version, c->ro_compat_version,
1635 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1636 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1637 
1638 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1639 	dbg_gen("data journal heads:  %d",
1640 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1641 	dbg_gen("log LEBs:            %d (%d - %d)",
1642 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1643 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1644 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1645 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1646 		c->orph_lebs, c->orph_first, c->orph_last);
1647 	dbg_gen("main area LEBs:      %d (%d - %d)",
1648 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1649 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1650 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1651 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1652 		c->bi.old_idx_sz >> 20);
1653 	dbg_gen("key hash type:       %d", c->key_hash_type);
1654 	dbg_gen("tree fanout:         %d", c->fanout);
1655 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1656 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1657 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1658 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1659 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1660 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1661 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1662 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1663 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1664 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1665 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1666 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1667 	dbg_gen("dead watermark:      %d", c->dead_wm);
1668 	dbg_gen("dark watermark:      %d", c->dark_wm);
1669 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1670 	x = (long long)c->main_lebs * c->dark_wm;
1671 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1672 		x, x >> 10, x >> 20);
1673 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1674 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1675 		c->max_bud_bytes >> 20);
1676 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1677 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1678 		c->bg_bud_bytes >> 20);
1679 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1680 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1681 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1682 	dbg_gen("commit number:       %llu", c->cmt_no);
1683 
1684 	return 0;
1685 
1686 out_infos:
1687 	spin_lock(&ubifs_infos_lock);
1688 	list_del(&c->infos_list);
1689 	spin_unlock(&ubifs_infos_lock);
1690 out_orphans:
1691 	free_orphans(c);
1692 out_journal:
1693 	destroy_journal(c);
1694 out_lpt:
1695 	ubifs_lpt_free(c, 0);
1696 out_master:
1697 	kfree(c->mst_node);
1698 	kfree(c->rcvrd_mst_node);
1699 	if (c->bgt)
1700 		kthread_stop(c->bgt);
1701 #ifndef __UBOOT__
1702 out_wbufs:
1703 #endif
1704 	free_wbufs(c);
1705 out_cbuf:
1706 	kfree(c->cbuf);
1707 out_free:
1708 	kfree(c->write_reserve_buf);
1709 	kfree(c->bu.buf);
1710 	vfree(c->ileb_buf);
1711 	vfree(c->sbuf);
1712 	kfree(c->bottom_up_buf);
1713 	ubifs_debugging_exit(c);
1714 	return err;
1715 }
1716 
1717 /**
1718  * ubifs_umount - un-mount UBIFS file-system.
1719  * @c: UBIFS file-system description object
1720  *
1721  * Note, this function is called to free allocated resourced when un-mounting,
1722  * as well as free resources when an error occurred while we were half way
1723  * through mounting (error path cleanup function). So it has to make sure the
1724  * resource was actually allocated before freeing it.
1725  */
1726 #ifndef __UBOOT__
ubifs_umount(struct ubifs_info * c)1727 static void ubifs_umount(struct ubifs_info *c)
1728 #else
1729 void ubifs_umount(struct ubifs_info *c)
1730 #endif
1731 {
1732 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1733 		c->vi.vol_id);
1734 
1735 	dbg_debugfs_exit_fs(c);
1736 	spin_lock(&ubifs_infos_lock);
1737 	list_del(&c->infos_list);
1738 	spin_unlock(&ubifs_infos_lock);
1739 
1740 #ifndef __UBOOT__
1741 	if (c->bgt)
1742 		kthread_stop(c->bgt);
1743 
1744 	destroy_journal(c);
1745 #endif
1746 	free_wbufs(c);
1747 	free_orphans(c);
1748 	ubifs_lpt_free(c, 0);
1749 
1750 	kfree(c->cbuf);
1751 	kfree(c->rcvrd_mst_node);
1752 	kfree(c->mst_node);
1753 	kfree(c->write_reserve_buf);
1754 	kfree(c->bu.buf);
1755 	vfree(c->ileb_buf);
1756 	vfree(c->sbuf);
1757 	kfree(c->bottom_up_buf);
1758 	ubifs_debugging_exit(c);
1759 #ifdef __UBOOT__
1760 	/* Finally free U-Boot's global copy of superblock */
1761 	if (ubifs_sb != NULL) {
1762 		free(ubifs_sb->s_fs_info);
1763 		free(ubifs_sb);
1764 	}
1765 #endif
1766 }
1767 
1768 #ifndef __UBOOT__
1769 /**
1770  * ubifs_remount_rw - re-mount in read-write mode.
1771  * @c: UBIFS file-system description object
1772  *
1773  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1774  * mode. This function allocates the needed resources and re-mounts UBIFS in
1775  * read-write mode.
1776  */
ubifs_remount_rw(struct ubifs_info * c)1777 static int ubifs_remount_rw(struct ubifs_info *c)
1778 {
1779 	int err, lnum;
1780 
1781 	if (c->rw_incompat) {
1782 		ubifs_err(c, "the file-system is not R/W-compatible");
1783 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1784 			  c->fmt_version, c->ro_compat_version,
1785 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1786 		return -EROFS;
1787 	}
1788 
1789 	mutex_lock(&c->umount_mutex);
1790 	dbg_save_space_info(c);
1791 	c->remounting_rw = 1;
1792 	c->ro_mount = 0;
1793 
1794 	if (c->space_fixup) {
1795 		err = ubifs_fixup_free_space(c);
1796 		if (err)
1797 			goto out;
1798 	}
1799 
1800 	err = check_free_space(c);
1801 	if (err)
1802 		goto out;
1803 
1804 	if (c->old_leb_cnt != c->leb_cnt) {
1805 		struct ubifs_sb_node *sup;
1806 
1807 		sup = ubifs_read_sb_node(c);
1808 		if (IS_ERR(sup)) {
1809 			err = PTR_ERR(sup);
1810 			goto out;
1811 		}
1812 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1813 		err = ubifs_write_sb_node(c, sup);
1814 		kfree(sup);
1815 		if (err)
1816 			goto out;
1817 	}
1818 
1819 	if (c->need_recovery) {
1820 		ubifs_msg(c, "completing deferred recovery");
1821 		err = ubifs_write_rcvrd_mst_node(c);
1822 		if (err)
1823 			goto out;
1824 		err = ubifs_recover_size(c);
1825 		if (err)
1826 			goto out;
1827 		err = ubifs_clean_lebs(c, c->sbuf);
1828 		if (err)
1829 			goto out;
1830 		err = ubifs_recover_inl_heads(c, c->sbuf);
1831 		if (err)
1832 			goto out;
1833 	} else {
1834 		/* A readonly mount is not allowed to have orphans */
1835 		ubifs_assert(c->tot_orphans == 0);
1836 		err = ubifs_clear_orphans(c);
1837 		if (err)
1838 			goto out;
1839 	}
1840 
1841 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1842 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1843 		err = ubifs_write_master(c);
1844 		if (err)
1845 			goto out;
1846 	}
1847 
1848 	c->ileb_buf = vmalloc(c->leb_size);
1849 	if (!c->ileb_buf) {
1850 		err = -ENOMEM;
1851 		goto out;
1852 	}
1853 
1854 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1855 	if (!c->write_reserve_buf) {
1856 		err = -ENOMEM;
1857 		goto out;
1858 	}
1859 
1860 	err = ubifs_lpt_init(c, 0, 1);
1861 	if (err)
1862 		goto out;
1863 
1864 	/* Create background thread */
1865 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1866 	if (IS_ERR(c->bgt)) {
1867 		err = PTR_ERR(c->bgt);
1868 		c->bgt = NULL;
1869 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1870 			  c->bgt_name, err);
1871 		goto out;
1872 	}
1873 	wake_up_process(c->bgt);
1874 
1875 	c->orph_buf = vmalloc(c->leb_size);
1876 	if (!c->orph_buf) {
1877 		err = -ENOMEM;
1878 		goto out;
1879 	}
1880 
1881 	/* Check for enough log space */
1882 	lnum = c->lhead_lnum + 1;
1883 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1884 		lnum = UBIFS_LOG_LNUM;
1885 	if (lnum == c->ltail_lnum) {
1886 		err = ubifs_consolidate_log(c);
1887 		if (err)
1888 			goto out;
1889 	}
1890 
1891 	if (c->need_recovery)
1892 		err = ubifs_rcvry_gc_commit(c);
1893 	else
1894 		err = ubifs_leb_unmap(c, c->gc_lnum);
1895 	if (err)
1896 		goto out;
1897 
1898 	dbg_gen("re-mounted read-write");
1899 	c->remounting_rw = 0;
1900 
1901 	if (c->need_recovery) {
1902 		c->need_recovery = 0;
1903 		ubifs_msg(c, "deferred recovery completed");
1904 	} else {
1905 		/*
1906 		 * Do not run the debugging space check if the were doing
1907 		 * recovery, because when we saved the information we had the
1908 		 * file-system in a state where the TNC and lprops has been
1909 		 * modified in memory, but all the I/O operations (including a
1910 		 * commit) were deferred. So the file-system was in
1911 		 * "non-committed" state. Now the file-system is in committed
1912 		 * state, and of course the amount of free space will change
1913 		 * because, for example, the old index size was imprecise.
1914 		 */
1915 		err = dbg_check_space_info(c);
1916 	}
1917 
1918 	mutex_unlock(&c->umount_mutex);
1919 	return err;
1920 
1921 out:
1922 	c->ro_mount = 1;
1923 	vfree(c->orph_buf);
1924 	c->orph_buf = NULL;
1925 	if (c->bgt) {
1926 		kthread_stop(c->bgt);
1927 		c->bgt = NULL;
1928 	}
1929 	free_wbufs(c);
1930 	kfree(c->write_reserve_buf);
1931 	c->write_reserve_buf = NULL;
1932 	vfree(c->ileb_buf);
1933 	c->ileb_buf = NULL;
1934 	ubifs_lpt_free(c, 1);
1935 	c->remounting_rw = 0;
1936 	mutex_unlock(&c->umount_mutex);
1937 	return err;
1938 }
1939 
1940 /**
1941  * ubifs_remount_ro - re-mount in read-only mode.
1942  * @c: UBIFS file-system description object
1943  *
1944  * We assume VFS has stopped writing. Possibly the background thread could be
1945  * running a commit, however kthread_stop will wait in that case.
1946  */
ubifs_remount_ro(struct ubifs_info * c)1947 static void ubifs_remount_ro(struct ubifs_info *c)
1948 {
1949 	int i, err;
1950 
1951 	ubifs_assert(!c->need_recovery);
1952 	ubifs_assert(!c->ro_mount);
1953 
1954 	mutex_lock(&c->umount_mutex);
1955 	if (c->bgt) {
1956 		kthread_stop(c->bgt);
1957 		c->bgt = NULL;
1958 	}
1959 
1960 	dbg_save_space_info(c);
1961 
1962 	for (i = 0; i < c->jhead_cnt; i++)
1963 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1964 
1965 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1966 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1967 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1968 	err = ubifs_write_master(c);
1969 	if (err)
1970 		ubifs_ro_mode(c, err);
1971 
1972 	vfree(c->orph_buf);
1973 	c->orph_buf = NULL;
1974 	kfree(c->write_reserve_buf);
1975 	c->write_reserve_buf = NULL;
1976 	vfree(c->ileb_buf);
1977 	c->ileb_buf = NULL;
1978 	ubifs_lpt_free(c, 1);
1979 	c->ro_mount = 1;
1980 	err = dbg_check_space_info(c);
1981 	if (err)
1982 		ubifs_ro_mode(c, err);
1983 	mutex_unlock(&c->umount_mutex);
1984 }
1985 
ubifs_put_super(struct super_block * sb)1986 static void ubifs_put_super(struct super_block *sb)
1987 {
1988 	int i;
1989 	struct ubifs_info *c = sb->s_fs_info;
1990 
1991 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1992 
1993 	/*
1994 	 * The following asserts are only valid if there has not been a failure
1995 	 * of the media. For example, there will be dirty inodes if we failed
1996 	 * to write them back because of I/O errors.
1997 	 */
1998 	if (!c->ro_error) {
1999 		ubifs_assert(c->bi.idx_growth == 0);
2000 		ubifs_assert(c->bi.dd_growth == 0);
2001 		ubifs_assert(c->bi.data_growth == 0);
2002 	}
2003 
2004 	/*
2005 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
2006 	 * and file system un-mount. Namely, it prevents the shrinker from
2007 	 * picking this superblock for shrinking - it will be just skipped if
2008 	 * the mutex is locked.
2009 	 */
2010 	mutex_lock(&c->umount_mutex);
2011 	if (!c->ro_mount) {
2012 		/*
2013 		 * First of all kill the background thread to make sure it does
2014 		 * not interfere with un-mounting and freeing resources.
2015 		 */
2016 		if (c->bgt) {
2017 			kthread_stop(c->bgt);
2018 			c->bgt = NULL;
2019 		}
2020 
2021 		/*
2022 		 * On fatal errors c->ro_error is set to 1, in which case we do
2023 		 * not write the master node.
2024 		 */
2025 		if (!c->ro_error) {
2026 			int err;
2027 
2028 			/* Synchronize write-buffers */
2029 			for (i = 0; i < c->jhead_cnt; i++)
2030 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
2031 
2032 			/*
2033 			 * We are being cleanly unmounted which means the
2034 			 * orphans were killed - indicate this in the master
2035 			 * node. Also save the reserved GC LEB number.
2036 			 */
2037 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
2038 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
2039 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
2040 			err = ubifs_write_master(c);
2041 			if (err)
2042 				/*
2043 				 * Recovery will attempt to fix the master area
2044 				 * next mount, so we just print a message and
2045 				 * continue to unmount normally.
2046 				 */
2047 				ubifs_err(c, "failed to write master node, error %d",
2048 					  err);
2049 		} else {
2050 #ifndef __UBOOT__
2051 			for (i = 0; i < c->jhead_cnt; i++)
2052 				/* Make sure write-buffer timers are canceled */
2053 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
2054 #endif
2055 		}
2056 	}
2057 
2058 	ubifs_umount(c);
2059 #ifndef __UBOOT__
2060 	bdi_destroy(&c->bdi);
2061 #endif
2062 	ubi_close_volume(c->ubi);
2063 	mutex_unlock(&c->umount_mutex);
2064 }
2065 #endif
2066 
2067 #ifndef __UBOOT__
ubifs_remount_fs(struct super_block * sb,int * flags,char * data)2068 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2069 {
2070 	int err;
2071 	struct ubifs_info *c = sb->s_fs_info;
2072 
2073 	sync_filesystem(sb);
2074 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2075 
2076 	err = ubifs_parse_options(c, data, 1);
2077 	if (err) {
2078 		ubifs_err(c, "invalid or unknown remount parameter");
2079 		return err;
2080 	}
2081 
2082 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
2083 		if (c->ro_error) {
2084 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2085 			return -EROFS;
2086 		}
2087 		if (c->ro_media) {
2088 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2089 			return -EROFS;
2090 		}
2091 		err = ubifs_remount_rw(c);
2092 		if (err)
2093 			return err;
2094 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
2095 		if (c->ro_error) {
2096 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2097 			return -EROFS;
2098 		}
2099 		ubifs_remount_ro(c);
2100 	}
2101 
2102 	if (c->bulk_read == 1)
2103 		bu_init(c);
2104 	else {
2105 		dbg_gen("disable bulk-read");
2106 		kfree(c->bu.buf);
2107 		c->bu.buf = NULL;
2108 	}
2109 
2110 	ubifs_assert(c->lst.taken_empty_lebs > 0);
2111 	return 0;
2112 }
2113 #endif
2114 
2115 const struct super_operations ubifs_super_operations = {
2116 	.alloc_inode   = ubifs_alloc_inode,
2117 #ifndef __UBOOT__
2118 	.destroy_inode = ubifs_destroy_inode,
2119 	.put_super     = ubifs_put_super,
2120 	.write_inode   = ubifs_write_inode,
2121 	.evict_inode   = ubifs_evict_inode,
2122 	.statfs        = ubifs_statfs,
2123 #endif
2124 	.dirty_inode   = ubifs_dirty_inode,
2125 #ifndef __UBOOT__
2126 	.remount_fs    = ubifs_remount_fs,
2127 	.show_options  = ubifs_show_options,
2128 	.sync_fs       = ubifs_sync_fs,
2129 #endif
2130 };
2131 
2132 /**
2133  * open_ubi - parse UBI device name string and open the UBI device.
2134  * @name: UBI volume name
2135  * @mode: UBI volume open mode
2136  *
2137  * The primary method of mounting UBIFS is by specifying the UBI volume
2138  * character device node path. However, UBIFS may also be mounted withoug any
2139  * character device node using one of the following methods:
2140  *
2141  * o ubiX_Y    - mount UBI device number X, volume Y;
2142  * o ubiY      - mount UBI device number 0, volume Y;
2143  * o ubiX:NAME - mount UBI device X, volume with name NAME;
2144  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
2145  *
2146  * Alternative '!' separator may be used instead of ':' (because some shells
2147  * like busybox may interpret ':' as an NFS host name separator). This function
2148  * returns UBI volume description object in case of success and a negative
2149  * error code in case of failure.
2150  */
open_ubi(const char * name,int mode)2151 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2152 {
2153 #ifndef __UBOOT__
2154 	struct ubi_volume_desc *ubi;
2155 #endif
2156 	int dev, vol;
2157 	char *endptr;
2158 
2159 #ifndef __UBOOT__
2160 	/* First, try to open using the device node path method */
2161 	ubi = ubi_open_volume_path(name, mode);
2162 	if (!IS_ERR(ubi))
2163 		return ubi;
2164 #endif
2165 
2166 	/* Try the "nodev" method */
2167 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2168 		return ERR_PTR(-EINVAL);
2169 
2170 	/* ubi:NAME method */
2171 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2172 		return ubi_open_volume_nm(0, name + 4, mode);
2173 
2174 	if (!isdigit(name[3]))
2175 		return ERR_PTR(-EINVAL);
2176 
2177 	dev = simple_strtoul(name + 3, &endptr, 0);
2178 
2179 	/* ubiY method */
2180 	if (*endptr == '\0')
2181 		return ubi_open_volume(0, dev, mode);
2182 
2183 	/* ubiX_Y method */
2184 	if (*endptr == '_' && isdigit(endptr[1])) {
2185 		vol = simple_strtoul(endptr + 1, &endptr, 0);
2186 		if (*endptr != '\0')
2187 			return ERR_PTR(-EINVAL);
2188 		return ubi_open_volume(dev, vol, mode);
2189 	}
2190 
2191 	/* ubiX:NAME method */
2192 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2193 		return ubi_open_volume_nm(dev, ++endptr, mode);
2194 
2195 	return ERR_PTR(-EINVAL);
2196 }
2197 
alloc_ubifs_info(struct ubi_volume_desc * ubi)2198 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2199 {
2200 	struct ubifs_info *c;
2201 
2202 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2203 	if (c) {
2204 		spin_lock_init(&c->cnt_lock);
2205 		spin_lock_init(&c->cs_lock);
2206 		spin_lock_init(&c->buds_lock);
2207 		spin_lock_init(&c->space_lock);
2208 		spin_lock_init(&c->orphan_lock);
2209 		init_rwsem(&c->commit_sem);
2210 		mutex_init(&c->lp_mutex);
2211 		mutex_init(&c->tnc_mutex);
2212 		mutex_init(&c->log_mutex);
2213 		mutex_init(&c->umount_mutex);
2214 		mutex_init(&c->bu_mutex);
2215 		mutex_init(&c->write_reserve_mutex);
2216 		init_waitqueue_head(&c->cmt_wq);
2217 		c->buds = RB_ROOT;
2218 		c->old_idx = RB_ROOT;
2219 		c->size_tree = RB_ROOT;
2220 		c->orph_tree = RB_ROOT;
2221 		INIT_LIST_HEAD(&c->infos_list);
2222 		INIT_LIST_HEAD(&c->idx_gc);
2223 		INIT_LIST_HEAD(&c->replay_list);
2224 		INIT_LIST_HEAD(&c->replay_buds);
2225 		INIT_LIST_HEAD(&c->uncat_list);
2226 		INIT_LIST_HEAD(&c->empty_list);
2227 		INIT_LIST_HEAD(&c->freeable_list);
2228 		INIT_LIST_HEAD(&c->frdi_idx_list);
2229 		INIT_LIST_HEAD(&c->unclean_leb_list);
2230 		INIT_LIST_HEAD(&c->old_buds);
2231 		INIT_LIST_HEAD(&c->orph_list);
2232 		INIT_LIST_HEAD(&c->orph_new);
2233 		c->no_chk_data_crc = 1;
2234 
2235 		c->highest_inum = UBIFS_FIRST_INO;
2236 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2237 
2238 		ubi_get_volume_info(ubi, &c->vi);
2239 		ubi_get_device_info(c->vi.ubi_num, &c->di);
2240 	}
2241 	return c;
2242 }
2243 
ubifs_fill_super(struct super_block * sb,void * data,int silent)2244 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2245 {
2246 	struct ubifs_info *c = sb->s_fs_info;
2247 	struct inode *root;
2248 	int err;
2249 
2250 	c->vfs_sb = sb;
2251 #ifndef __UBOOT__
2252 	/* Re-open the UBI device in read-write mode */
2253 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2254 #else
2255 	/* U-Boot read only mode */
2256 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READONLY);
2257 #endif
2258 
2259 	if (IS_ERR(c->ubi)) {
2260 		err = PTR_ERR(c->ubi);
2261 		goto out;
2262 	}
2263 
2264 #ifndef __UBOOT__
2265 	/*
2266 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2267 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2268 	 * which means the user would have to wait not just for their own I/O
2269 	 * but the read-ahead I/O as well i.e. completely pointless.
2270 	 *
2271 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2272 	 */
2273 	c->bdi.name = "ubifs",
2274 	c->bdi.capabilities = 0;
2275 	err  = bdi_init(&c->bdi);
2276 	if (err)
2277 		goto out_close;
2278 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2279 			   c->vi.ubi_num, c->vi.vol_id);
2280 	if (err)
2281 		goto out_bdi;
2282 
2283 	err = ubifs_parse_options(c, data, 0);
2284 	if (err)
2285 		goto out_bdi;
2286 
2287 	sb->s_bdi = &c->bdi;
2288 #endif
2289 	sb->s_fs_info = c;
2290 	sb->s_magic = UBIFS_SUPER_MAGIC;
2291 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2292 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2293 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2294 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2295 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2296 	sb->s_op = &ubifs_super_operations;
2297 #ifndef __UBOOT__
2298 	sb->s_xattr = ubifs_xattr_handlers;
2299 #endif
2300 
2301 	mutex_lock(&c->umount_mutex);
2302 	err = mount_ubifs(c);
2303 	if (err) {
2304 		ubifs_assert(err < 0);
2305 		goto out_unlock;
2306 	}
2307 
2308 	/* Read the root inode */
2309 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2310 	if (IS_ERR(root)) {
2311 		err = PTR_ERR(root);
2312 		goto out_umount;
2313 	}
2314 
2315 #ifndef __UBOOT__
2316 	sb->s_root = d_make_root(root);
2317 	if (!sb->s_root) {
2318 		err = -ENOMEM;
2319 		goto out_umount;
2320 	}
2321 #else
2322 	sb->s_root = NULL;
2323 #endif
2324 
2325 	mutex_unlock(&c->umount_mutex);
2326 	return 0;
2327 
2328 out_umount:
2329 	ubifs_umount(c);
2330 out_unlock:
2331 	mutex_unlock(&c->umount_mutex);
2332 #ifndef __UBOOT__
2333 out_bdi:
2334 	bdi_destroy(&c->bdi);
2335 out_close:
2336 #endif
2337 	ubi_close_volume(c->ubi);
2338 out:
2339 	return err;
2340 }
2341 
sb_test(struct super_block * sb,void * data)2342 static int sb_test(struct super_block *sb, void *data)
2343 {
2344 	struct ubifs_info *c1 = data;
2345 	struct ubifs_info *c = sb->s_fs_info;
2346 
2347 	return c->vi.cdev == c1->vi.cdev;
2348 }
2349 
sb_set(struct super_block * sb,void * data)2350 static int sb_set(struct super_block *sb, void *data)
2351 {
2352 	sb->s_fs_info = data;
2353 	return set_anon_super(sb, NULL);
2354 }
2355 
alloc_super(struct file_system_type * type,int flags)2356 static struct super_block *alloc_super(struct file_system_type *type, int flags)
2357 {
2358 	struct super_block *s;
2359 	int err;
2360 
2361 	s = kzalloc(sizeof(struct super_block),  GFP_USER);
2362 	if (!s) {
2363 		err = -ENOMEM;
2364 		return ERR_PTR(err);
2365 	}
2366 
2367 #ifndef __UBOOT__
2368 	INIT_HLIST_NODE(&s->s_instances);
2369 #endif
2370 	INIT_LIST_HEAD(&s->s_inodes);
2371 	s->s_time_gran = 1000000000;
2372 	s->s_flags = flags;
2373 
2374 	return s;
2375 }
2376 
2377 /**
2378  *	sget	-	find or create a superblock
2379  *	@type:	filesystem type superblock should belong to
2380  *	@test:	comparison callback
2381  *	@set:	setup callback
2382  *	@flags:	mount flags
2383  *	@data:	argument to each of them
2384  */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)2385 struct super_block *sget(struct file_system_type *type,
2386 			int (*test)(struct super_block *,void *),
2387 			int (*set)(struct super_block *,void *),
2388 			int flags,
2389 			void *data)
2390 {
2391 	struct super_block *s = NULL;
2392 #ifndef __UBOOT__
2393 	struct super_block *old;
2394 #endif
2395 	int err;
2396 
2397 #ifndef __UBOOT__
2398 retry:
2399 	spin_lock(&sb_lock);
2400 	if (test) {
2401 		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
2402 			if (!test(old, data))
2403 				continue;
2404 			if (!grab_super(old))
2405 				goto retry;
2406 			if (s) {
2407 				up_write(&s->s_umount);
2408 				destroy_super(s);
2409 				s = NULL;
2410 			}
2411 			return old;
2412 		}
2413 	}
2414 #endif
2415 	if (!s) {
2416 		spin_unlock(&sb_lock);
2417 		s = alloc_super(type, flags);
2418 		if (!s)
2419 			return ERR_PTR(-ENOMEM);
2420 #ifndef __UBOOT__
2421 		goto retry;
2422 #endif
2423 	}
2424 
2425 	err = set(s, data);
2426 	if (err) {
2427 #ifndef __UBOOT__
2428 		spin_unlock(&sb_lock);
2429 		up_write(&s->s_umount);
2430 		destroy_super(s);
2431 #endif
2432 		return ERR_PTR(err);
2433 	}
2434 	s->s_type = type;
2435 #ifndef __UBOOT__
2436 	strlcpy(s->s_id, type->name, sizeof(s->s_id));
2437 	list_add_tail(&s->s_list, &super_blocks);
2438 	hlist_add_head(&s->s_instances, &type->fs_supers);
2439 	spin_unlock(&sb_lock);
2440 	get_filesystem(type);
2441 	register_shrinker(&s->s_shrink);
2442 #else
2443 	strncpy(s->s_id, type->name, sizeof(s->s_id));
2444 #endif
2445 	return s;
2446 }
2447 
2448 EXPORT_SYMBOL(sget);
2449 
2450 
ubifs_mount(struct file_system_type * fs_type,int flags,const char * name,void * data)2451 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2452 			const char *name, void *data)
2453 {
2454 	struct ubi_volume_desc *ubi;
2455 	struct ubifs_info *c;
2456 	struct super_block *sb;
2457 	int err;
2458 
2459 	dbg_gen("name %s, flags %#x", name, flags);
2460 
2461 	/*
2462 	 * Get UBI device number and volume ID. Mount it read-only so far
2463 	 * because this might be a new mount point, and UBI allows only one
2464 	 * read-write user at a time.
2465 	 */
2466 	ubi = open_ubi(name, UBI_READONLY);
2467 	if (IS_ERR(ubi)) {
2468 		pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d\n",
2469 		       current->pid, name, (int)PTR_ERR(ubi));
2470 		return ERR_CAST(ubi);
2471 	}
2472 
2473 	c = alloc_ubifs_info(ubi);
2474 	if (!c) {
2475 		err = -ENOMEM;
2476 		goto out_close;
2477 	}
2478 
2479 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2480 
2481 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2482 	if (IS_ERR(sb)) {
2483 		err = PTR_ERR(sb);
2484 		kfree(c);
2485 		goto out_close;
2486 	}
2487 
2488 	if (sb->s_root) {
2489 		struct ubifs_info *c1 = sb->s_fs_info;
2490 		kfree(c);
2491 		/* A new mount point for already mounted UBIFS */
2492 		dbg_gen("this ubi volume is already mounted");
2493 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2494 			err = -EBUSY;
2495 			goto out_deact;
2496 		}
2497 	} else {
2498 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2499 		if (err)
2500 			goto out_deact;
2501 		/* We do not support atime */
2502 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2503 	}
2504 
2505 	/* 'fill_super()' opens ubi again so we must close it here */
2506 	ubi_close_volume(ubi);
2507 
2508 #ifdef __UBOOT__
2509 	ubifs_sb = sb;
2510 	return 0;
2511 #else
2512 	return dget(sb->s_root);
2513 #endif
2514 
2515 out_deact:
2516 #ifndef __UBOOT__
2517 	deactivate_locked_super(sb);
2518 #endif
2519 out_close:
2520 	ubi_close_volume(ubi);
2521 	return ERR_PTR(err);
2522 }
2523 
kill_ubifs_super(struct super_block * s)2524 static void kill_ubifs_super(struct super_block *s)
2525 {
2526 	struct ubifs_info *c = s->s_fs_info;
2527 #ifndef __UBOOT__
2528 	kill_anon_super(s);
2529 #endif
2530 	kfree(c);
2531 }
2532 
2533 static struct file_system_type ubifs_fs_type = {
2534 	.name    = "ubifs",
2535 	.owner   = THIS_MODULE,
2536 	.mount   = ubifs_mount,
2537 	.kill_sb = kill_ubifs_super,
2538 };
2539 #ifndef __UBOOT__
2540 MODULE_ALIAS_FS("ubifs");
2541 
2542 /*
2543  * Inode slab cache constructor.
2544  */
inode_slab_ctor(void * obj)2545 static void inode_slab_ctor(void *obj)
2546 {
2547 	struct ubifs_inode *ui = obj;
2548 	inode_init_once(&ui->vfs_inode);
2549 }
2550 
ubifs_init(void)2551 static int __init ubifs_init(void)
2552 #else
2553 int ubifs_init(void)
2554 #endif
2555 {
2556 	int err;
2557 
2558 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2559 
2560 	/* Make sure node sizes are 8-byte aligned */
2561 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2562 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2563 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2564 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2565 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2566 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2567 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2568 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2569 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2570 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2571 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2572 
2573 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2574 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2575 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2576 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2577 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2578 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2579 
2580 	/* Check min. node size */
2581 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2582 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2583 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2584 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2585 
2586 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2587 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2588 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2589 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2590 
2591 	/* Defined node sizes */
2592 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2593 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2594 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2595 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2596 
2597 	/*
2598 	 * We use 2 bit wide bit-fields to store compression type, which should
2599 	 * be amended if more compressors are added. The bit-fields are:
2600 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2601 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2602 	 */
2603 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2604 
2605 	/*
2606 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2607 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2608 	 */
2609 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2610 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes\n",
2611 		       current->pid, (unsigned int)PAGE_CACHE_SIZE);
2612 		return -EINVAL;
2613 	}
2614 
2615 #ifndef __UBOOT__
2616 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2617 				sizeof(struct ubifs_inode), 0,
2618 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2619 				&inode_slab_ctor);
2620 	if (!ubifs_inode_slab)
2621 		return -ENOMEM;
2622 
2623 	err = register_shrinker(&ubifs_shrinker_info);
2624 	if (err)
2625 		goto out_slab;
2626 #endif
2627 
2628 	err = ubifs_compressors_init();
2629 	if (err)
2630 		goto out_shrinker;
2631 
2632 #ifndef __UBOOT__
2633 	err = dbg_debugfs_init();
2634 	if (err)
2635 		goto out_compr;
2636 
2637 	err = register_filesystem(&ubifs_fs_type);
2638 	if (err) {
2639 		pr_err("UBIFS error (pid %d): cannot register file system, error %d\n",
2640 		       current->pid, err);
2641 		goto out_dbg;
2642 	}
2643 #endif
2644 	return 0;
2645 
2646 #ifndef __UBOOT__
2647 out_dbg:
2648 	dbg_debugfs_exit();
2649 out_compr:
2650 	ubifs_compressors_exit();
2651 #endif
2652 out_shrinker:
2653 #ifndef __UBOOT__
2654 	unregister_shrinker(&ubifs_shrinker_info);
2655 out_slab:
2656 #endif
2657 	kmem_cache_destroy(ubifs_inode_slab);
2658 	return err;
2659 }
2660 /* late_initcall to let compressors initialize first */
2661 late_initcall(ubifs_init);
2662 
2663 #ifndef __UBOOT__
ubifs_exit(void)2664 static void __exit ubifs_exit(void)
2665 {
2666 	ubifs_assert(list_empty(&ubifs_infos));
2667 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2668 
2669 	dbg_debugfs_exit();
2670 	ubifs_compressors_exit();
2671 	unregister_shrinker(&ubifs_shrinker_info);
2672 
2673 	/*
2674 	 * Make sure all delayed rcu free inodes are flushed before we
2675 	 * destroy cache.
2676 	 */
2677 	rcu_barrier();
2678 	kmem_cache_destroy(ubifs_inode_slab);
2679 	unregister_filesystem(&ubifs_fs_type);
2680 }
2681 module_exit(ubifs_exit);
2682 
2683 MODULE_LICENSE("GPL");
2684 MODULE_VERSION(__stringify(UBIFS_VERSION));
2685 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2686 MODULE_DESCRIPTION("UBIFS - UBI File System");
2687 #else
uboot_ubifs_mount(char * vol_name)2688 int uboot_ubifs_mount(char *vol_name)
2689 {
2690 	struct dentry *ret;
2691 	int flags;
2692 
2693 	/*
2694 	 * First unmount if allready mounted
2695 	 */
2696 	if (ubifs_sb)
2697 		ubifs_umount(ubifs_sb->s_fs_info);
2698 
2699 	/*
2700 	 * Mount in read-only mode
2701 	 */
2702 	flags = MS_RDONLY;
2703 	ret = ubifs_mount(&ubifs_fs_type, flags, vol_name, NULL);
2704 	if (IS_ERR(ret)) {
2705 		printf("Error reading superblock on volume '%s' " \
2706 			"errno=%d!\n", vol_name, (int)PTR_ERR(ret));
2707 		return -1;
2708 	}
2709 
2710 	return 0;
2711 }
2712 #endif
2713