1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2014       Panasonic Corporation
4  * Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
5  * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
6  */
7 
8 #include <common.h>
9 #include <dm.h>
10 #include <malloc.h>
11 #include <nand.h>
12 #include <asm/cache.h>
13 #include <asm/dma-mapping.h>
14 #include <dm/device_compat.h>
15 #include <dm/devres.h>
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <linux/dma-direction.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/err.h>
22 #include <linux/errno.h>
23 #include <linux/io.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/rawnand.h>
26 
27 #include "denali.h"
28 
29 #define DENALI_NAND_NAME    "denali-nand"
30 
31 /* for Indexed Addressing */
32 #define DENALI_INDEXED_CTRL	0x00
33 #define DENALI_INDEXED_DATA	0x10
34 
35 #define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
36 #define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
37 #define DENALI_MAP10		(2 << 26)	/* high-level control plane */
38 #define DENALI_MAP11		(3 << 26)	/* direct controller access */
39 
40 /* MAP11 access cycle type */
41 #define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
42 #define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
43 #define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
44 
45 /* MAP10 commands */
46 #define DENALI_ERASE		0x01
47 
48 #define DENALI_BANK(denali)	((denali)->active_bank << 24)
49 
50 #define DENALI_INVALID_BANK	-1
51 #define DENALI_NR_BANKS		4
52 
mtd_to_denali(struct mtd_info * mtd)53 static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
54 {
55 	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
56 }
57 
58 /*
59  * Direct Addressing - the slave address forms the control information (command
60  * type, bank, block, and page address).  The slave data is the actual data to
61  * be transferred.  This mode requires 28 bits of address region allocated.
62  */
denali_direct_read(struct denali_nand_info * denali,u32 addr)63 static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
64 {
65 	return ioread32(denali->host + addr);
66 }
67 
denali_direct_write(struct denali_nand_info * denali,u32 addr,u32 data)68 static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
69 				u32 data)
70 {
71 	iowrite32(data, denali->host + addr);
72 }
73 
74 /*
75  * Indexed Addressing - address translation module intervenes in passing the
76  * control information.  This mode reduces the required address range.  The
77  * control information and transferred data are latched by the registers in
78  * the translation module.
79  */
denali_indexed_read(struct denali_nand_info * denali,u32 addr)80 static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
81 {
82 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
83 	return ioread32(denali->host + DENALI_INDEXED_DATA);
84 }
85 
denali_indexed_write(struct denali_nand_info * denali,u32 addr,u32 data)86 static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
87 				 u32 data)
88 {
89 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
90 	iowrite32(data, denali->host + DENALI_INDEXED_DATA);
91 }
92 
93 /*
94  * Use the configuration feature register to determine the maximum number of
95  * banks that the hardware supports.
96  */
denali_detect_max_banks(struct denali_nand_info * denali)97 static void denali_detect_max_banks(struct denali_nand_info *denali)
98 {
99 	uint32_t features = ioread32(denali->reg + FEATURES);
100 
101 	denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
102 
103 	/* the encoding changed from rev 5.0 to 5.1 */
104 	if (denali->revision < 0x0501)
105 		denali->max_banks <<= 1;
106 }
107 
denali_enable_irq(struct denali_nand_info * denali)108 static void __maybe_unused denali_enable_irq(struct denali_nand_info *denali)
109 {
110 	int i;
111 
112 	for (i = 0; i < DENALI_NR_BANKS; i++)
113 		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
114 	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
115 }
116 
denali_disable_irq(struct denali_nand_info * denali)117 static void __maybe_unused denali_disable_irq(struct denali_nand_info *denali)
118 {
119 	int i;
120 
121 	for (i = 0; i < DENALI_NR_BANKS; i++)
122 		iowrite32(0, denali->reg + INTR_EN(i));
123 	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
124 }
125 
denali_clear_irq(struct denali_nand_info * denali,int bank,uint32_t irq_status)126 static void denali_clear_irq(struct denali_nand_info *denali,
127 			     int bank, uint32_t irq_status)
128 {
129 	/* write one to clear bits */
130 	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
131 }
132 
denali_clear_irq_all(struct denali_nand_info * denali)133 static void denali_clear_irq_all(struct denali_nand_info *denali)
134 {
135 	int i;
136 
137 	for (i = 0; i < DENALI_NR_BANKS; i++)
138 		denali_clear_irq(denali, i, U32_MAX);
139 }
140 
__denali_check_irq(struct denali_nand_info * denali)141 static void __denali_check_irq(struct denali_nand_info *denali)
142 {
143 	uint32_t irq_status;
144 	int i;
145 
146 	for (i = 0; i < DENALI_NR_BANKS; i++) {
147 		irq_status = ioread32(denali->reg + INTR_STATUS(i));
148 		denali_clear_irq(denali, i, irq_status);
149 
150 		if (i != denali->active_bank)
151 			continue;
152 
153 		denali->irq_status |= irq_status;
154 	}
155 }
156 
denali_reset_irq(struct denali_nand_info * denali)157 static void denali_reset_irq(struct denali_nand_info *denali)
158 {
159 	denali->irq_status = 0;
160 	denali->irq_mask = 0;
161 }
162 
denali_wait_for_irq(struct denali_nand_info * denali,uint32_t irq_mask)163 static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
164 				    uint32_t irq_mask)
165 {
166 	unsigned long time_left = 1000000;
167 
168 	while (time_left) {
169 		__denali_check_irq(denali);
170 
171 		if (irq_mask & denali->irq_status)
172 			return denali->irq_status;
173 		udelay(1);
174 		time_left--;
175 	}
176 
177 	if (!time_left) {
178 		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
179 			irq_mask);
180 		return 0;
181 	}
182 
183 	return denali->irq_status;
184 }
185 
denali_check_irq(struct denali_nand_info * denali)186 static uint32_t denali_check_irq(struct denali_nand_info *denali)
187 {
188 	__denali_check_irq(denali);
189 
190 	return denali->irq_status;
191 }
192 
denali_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)193 static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
194 {
195 	struct denali_nand_info *denali = mtd_to_denali(mtd);
196 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
197 	int i;
198 
199 	for (i = 0; i < len; i++)
200 		buf[i] = denali->host_read(denali, addr);
201 }
202 
denali_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)203 static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
204 {
205 	struct denali_nand_info *denali = mtd_to_denali(mtd);
206 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
207 	int i;
208 
209 	for (i = 0; i < len; i++)
210 		denali->host_write(denali, addr, buf[i]);
211 }
212 
denali_read_buf16(struct mtd_info * mtd,uint8_t * buf,int len)213 static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
214 {
215 	struct denali_nand_info *denali = mtd_to_denali(mtd);
216 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
217 	uint16_t *buf16 = (uint16_t *)buf;
218 	int i;
219 
220 	for (i = 0; i < len / 2; i++)
221 		buf16[i] = denali->host_read(denali, addr);
222 }
223 
denali_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)224 static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
225 			       int len)
226 {
227 	struct denali_nand_info *denali = mtd_to_denali(mtd);
228 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
229 	const uint16_t *buf16 = (const uint16_t *)buf;
230 	int i;
231 
232 	for (i = 0; i < len / 2; i++)
233 		denali->host_write(denali, addr, buf16[i]);
234 }
235 
denali_read_byte(struct mtd_info * mtd)236 static uint8_t denali_read_byte(struct mtd_info *mtd)
237 {
238 	uint8_t byte;
239 
240 	denali_read_buf(mtd, &byte, 1);
241 
242 	return byte;
243 }
244 
denali_write_byte(struct mtd_info * mtd,uint8_t byte)245 static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
246 {
247 	denali_write_buf(mtd, &byte, 1);
248 }
249 
denali_read_word(struct mtd_info * mtd)250 static uint16_t denali_read_word(struct mtd_info *mtd)
251 {
252 	uint16_t word;
253 
254 	denali_read_buf16(mtd, (uint8_t *)&word, 2);
255 
256 	return word;
257 }
258 
denali_cmd_ctrl(struct mtd_info * mtd,int dat,unsigned int ctrl)259 static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
260 {
261 	struct denali_nand_info *denali = mtd_to_denali(mtd);
262 	uint32_t type;
263 
264 	if (ctrl & NAND_CLE)
265 		type = DENALI_MAP11_CMD;
266 	else if (ctrl & NAND_ALE)
267 		type = DENALI_MAP11_ADDR;
268 	else
269 		return;
270 
271 	/*
272 	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
273 	 * irq_status must be cleared here to catch the R/B# interrupt later.
274 	 */
275 	if (ctrl & NAND_CTRL_CHANGE)
276 		denali_reset_irq(denali);
277 
278 	denali->host_write(denali, DENALI_BANK(denali) | type, dat);
279 }
280 
denali_dev_ready(struct mtd_info * mtd)281 static int denali_dev_ready(struct mtd_info *mtd)
282 {
283 	struct denali_nand_info *denali = mtd_to_denali(mtd);
284 
285 	return !!(denali_check_irq(denali) & INTR__INT_ACT);
286 }
287 
denali_check_erased_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,unsigned long uncor_ecc_flags,unsigned int max_bitflips)288 static int denali_check_erased_page(struct mtd_info *mtd,
289 				    struct nand_chip *chip, uint8_t *buf,
290 				    unsigned long uncor_ecc_flags,
291 				    unsigned int max_bitflips)
292 {
293 	uint8_t *ecc_code = chip->buffers->ecccode;
294 	int ecc_steps = chip->ecc.steps;
295 	int ecc_size = chip->ecc.size;
296 	int ecc_bytes = chip->ecc.bytes;
297 	int i, ret, stat;
298 
299 	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
300 					 chip->ecc.total);
301 	if (ret)
302 		return ret;
303 
304 	for (i = 0; i < ecc_steps; i++) {
305 		if (!(uncor_ecc_flags & BIT(i)))
306 			continue;
307 
308 		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
309 						  ecc_code, ecc_bytes,
310 						  NULL, 0,
311 						  chip->ecc.strength);
312 		if (stat < 0) {
313 			mtd->ecc_stats.failed++;
314 		} else {
315 			mtd->ecc_stats.corrected += stat;
316 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
317 		}
318 
319 		buf += ecc_size;
320 		ecc_code += ecc_bytes;
321 	}
322 
323 	return max_bitflips;
324 }
325 
denali_hw_ecc_fixup(struct mtd_info * mtd,struct denali_nand_info * denali,unsigned long * uncor_ecc_flags)326 static int denali_hw_ecc_fixup(struct mtd_info *mtd,
327 			       struct denali_nand_info *denali,
328 			       unsigned long *uncor_ecc_flags)
329 {
330 	struct nand_chip *chip = mtd_to_nand(mtd);
331 	int bank = denali->active_bank;
332 	uint32_t ecc_cor;
333 	unsigned int max_bitflips;
334 
335 	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
336 	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
337 
338 	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
339 		/*
340 		 * This flag is set when uncorrectable error occurs at least in
341 		 * one ECC sector.  We can not know "how many sectors", or
342 		 * "which sector(s)".  We need erase-page check for all sectors.
343 		 */
344 		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
345 		return 0;
346 	}
347 
348 	max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
349 
350 	/*
351 	 * The register holds the maximum of per-sector corrected bitflips.
352 	 * This is suitable for the return value of the ->read_page() callback.
353 	 * Unfortunately, we can not know the total number of corrected bits in
354 	 * the page.  Increase the stats by max_bitflips. (compromised solution)
355 	 */
356 	mtd->ecc_stats.corrected += max_bitflips;
357 
358 	return max_bitflips;
359 }
360 
denali_sw_ecc_fixup(struct mtd_info * mtd,struct denali_nand_info * denali,unsigned long * uncor_ecc_flags,uint8_t * buf)361 static int denali_sw_ecc_fixup(struct mtd_info *mtd,
362 			       struct denali_nand_info *denali,
363 			       unsigned long *uncor_ecc_flags, uint8_t *buf)
364 {
365 	unsigned int ecc_size = denali->nand.ecc.size;
366 	unsigned int bitflips = 0;
367 	unsigned int max_bitflips = 0;
368 	uint32_t err_addr, err_cor_info;
369 	unsigned int err_byte, err_sector, err_device;
370 	uint8_t err_cor_value;
371 	unsigned int prev_sector = 0;
372 	uint32_t irq_status;
373 
374 	denali_reset_irq(denali);
375 
376 	do {
377 		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
378 		err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
379 		err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
380 
381 		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
382 		err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
383 					  err_cor_info);
384 		err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
385 				       err_cor_info);
386 
387 		/* reset the bitflip counter when crossing ECC sector */
388 		if (err_sector != prev_sector)
389 			bitflips = 0;
390 
391 		if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
392 			/*
393 			 * Check later if this is a real ECC error, or
394 			 * an erased sector.
395 			 */
396 			*uncor_ecc_flags |= BIT(err_sector);
397 		} else if (err_byte < ecc_size) {
398 			/*
399 			 * If err_byte is larger than ecc_size, means error
400 			 * happened in OOB, so we ignore it. It's no need for
401 			 * us to correct it err_device is represented the NAND
402 			 * error bits are happened in if there are more than
403 			 * one NAND connected.
404 			 */
405 			int offset;
406 			unsigned int flips_in_byte;
407 
408 			offset = (err_sector * ecc_size + err_byte) *
409 					denali->devs_per_cs + err_device;
410 
411 			/* correct the ECC error */
412 			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
413 			buf[offset] ^= err_cor_value;
414 			mtd->ecc_stats.corrected += flips_in_byte;
415 			bitflips += flips_in_byte;
416 
417 			max_bitflips = max(max_bitflips, bitflips);
418 		}
419 
420 		prev_sector = err_sector;
421 	} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
422 
423 	/*
424 	 * Once handle all ECC errors, controller will trigger an
425 	 * ECC_TRANSACTION_DONE interrupt.
426 	 */
427 	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
428 	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
429 		return -EIO;
430 
431 	return max_bitflips;
432 }
433 
denali_setup_dma64(struct denali_nand_info * denali,dma_addr_t dma_addr,int page,int write)434 static void denali_setup_dma64(struct denali_nand_info *denali,
435 			       dma_addr_t dma_addr, int page, int write)
436 {
437 	uint32_t mode;
438 	const int page_count = 1;
439 
440 	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
441 
442 	/* DMA is a three step process */
443 
444 	/*
445 	 * 1. setup transfer type, interrupt when complete,
446 	 *    burst len = 64 bytes, the number of pages
447 	 */
448 	denali->host_write(denali, mode,
449 			   0x01002000 | (64 << 16) | (write << 8) | page_count);
450 
451 	/* 2. set memory low address */
452 	denali->host_write(denali, mode, lower_32_bits(dma_addr));
453 
454 	/* 3. set memory high address */
455 	denali->host_write(denali, mode, upper_32_bits(dma_addr));
456 }
457 
denali_setup_dma32(struct denali_nand_info * denali,dma_addr_t dma_addr,int page,int write)458 static void denali_setup_dma32(struct denali_nand_info *denali,
459 			       dma_addr_t dma_addr, int page, int write)
460 {
461 	uint32_t mode;
462 	const int page_count = 1;
463 
464 	mode = DENALI_MAP10 | DENALI_BANK(denali);
465 
466 	/* DMA is a four step process */
467 
468 	/* 1. setup transfer type and # of pages */
469 	denali->host_write(denali, mode | page,
470 			   0x2000 | (write << 8) | page_count);
471 
472 	/* 2. set memory high address bits 23:8 */
473 	denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
474 
475 	/* 3. set memory low address bits 23:8 */
476 	denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
477 
478 	/* 4. interrupt when complete, burst len = 64 bytes */
479 	denali->host_write(denali, mode | 0x14000, 0x2400);
480 }
481 
denali_pio_read(struct denali_nand_info * denali,void * buf,size_t size,int page,int raw)482 static int denali_pio_read(struct denali_nand_info *denali, void *buf,
483 			   size_t size, int page, int raw)
484 {
485 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
486 	uint32_t *buf32 = (uint32_t *)buf;
487 	uint32_t irq_status, ecc_err_mask;
488 	int i;
489 
490 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
491 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
492 	else
493 		ecc_err_mask = INTR__ECC_ERR;
494 
495 	denali_reset_irq(denali);
496 
497 	for (i = 0; i < size / 4; i++)
498 		*buf32++ = denali->host_read(denali, addr);
499 
500 	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
501 	if (!(irq_status & INTR__PAGE_XFER_INC))
502 		return -EIO;
503 
504 	if (irq_status & INTR__ERASED_PAGE)
505 		memset(buf, 0xff, size);
506 
507 	return irq_status & ecc_err_mask ? -EBADMSG : 0;
508 }
509 
denali_pio_write(struct denali_nand_info * denali,const void * buf,size_t size,int page,int raw)510 static int denali_pio_write(struct denali_nand_info *denali,
511 			    const void *buf, size_t size, int page, int raw)
512 {
513 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
514 	const uint32_t *buf32 = (uint32_t *)buf;
515 	uint32_t irq_status;
516 	int i;
517 
518 	denali_reset_irq(denali);
519 
520 	for (i = 0; i < size / 4; i++)
521 		denali->host_write(denali, addr, *buf32++);
522 
523 	irq_status = denali_wait_for_irq(denali,
524 				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
525 	if (!(irq_status & INTR__PROGRAM_COMP))
526 		return -EIO;
527 
528 	return 0;
529 }
530 
denali_pio_xfer(struct denali_nand_info * denali,void * buf,size_t size,int page,int raw,int write)531 static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
532 			   size_t size, int page, int raw, int write)
533 {
534 	if (write)
535 		return denali_pio_write(denali, buf, size, page, raw);
536 	else
537 		return denali_pio_read(denali, buf, size, page, raw);
538 }
539 
denali_dma_xfer(struct denali_nand_info * denali,void * buf,size_t size,int page,int raw,int write)540 static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
541 			   size_t size, int page, int raw, int write)
542 {
543 	dma_addr_t dma_addr;
544 	uint32_t irq_mask, irq_status, ecc_err_mask;
545 	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
546 	int ret = 0;
547 
548 	dma_addr = dma_map_single(buf, size, dir);
549 	if (dma_mapping_error(denali->dev, dma_addr)) {
550 		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
551 		return denali_pio_xfer(denali, buf, size, page, raw, write);
552 	}
553 
554 	if (write) {
555 		/*
556 		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
557 		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
558 		 * when the page program is completed.
559 		 */
560 		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
561 		ecc_err_mask = 0;
562 	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
563 		irq_mask = INTR__DMA_CMD_COMP;
564 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
565 	} else {
566 		irq_mask = INTR__DMA_CMD_COMP;
567 		ecc_err_mask = INTR__ECC_ERR;
568 	}
569 
570 	iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
571 	/*
572 	 * The ->setup_dma() hook kicks DMA by using the data/command
573 	 * interface, which belongs to a different AXI port from the
574 	 * register interface.  Read back the register to avoid a race.
575 	 */
576 	ioread32(denali->reg + DMA_ENABLE);
577 
578 	denali_reset_irq(denali);
579 	denali->setup_dma(denali, dma_addr, page, write);
580 
581 	irq_status = denali_wait_for_irq(denali, irq_mask);
582 	if (!(irq_status & INTR__DMA_CMD_COMP))
583 		ret = -EIO;
584 	else if (irq_status & ecc_err_mask)
585 		ret = -EBADMSG;
586 
587 	iowrite32(0, denali->reg + DMA_ENABLE);
588 
589 	dma_unmap_single(dma_addr, size, dir);
590 
591 	if (irq_status & INTR__ERASED_PAGE)
592 		memset(buf, 0xff, size);
593 
594 	return ret;
595 }
596 
denali_data_xfer(struct denali_nand_info * denali,void * buf,size_t size,int page,int raw,int write)597 static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
598 			    size_t size, int page, int raw, int write)
599 {
600 	iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
601 	iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
602 		  denali->reg + TRANSFER_SPARE_REG);
603 
604 	if (denali->dma_avail)
605 		return denali_dma_xfer(denali, buf, size, page, raw, write);
606 	else
607 		return denali_pio_xfer(denali, buf, size, page, raw, write);
608 }
609 
denali_oob_xfer(struct mtd_info * mtd,struct nand_chip * chip,int page,int write)610 static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
611 			    int page, int write)
612 {
613 	struct denali_nand_info *denali = mtd_to_denali(mtd);
614 	unsigned int start_cmd = write ? NAND_CMD_SEQIN : NAND_CMD_READ0;
615 	unsigned int rnd_cmd = write ? NAND_CMD_RNDIN : NAND_CMD_RNDOUT;
616 	int writesize = mtd->writesize;
617 	int oobsize = mtd->oobsize;
618 	uint8_t *bufpoi = chip->oob_poi;
619 	int ecc_steps = chip->ecc.steps;
620 	int ecc_size = chip->ecc.size;
621 	int ecc_bytes = chip->ecc.bytes;
622 	int oob_skip = denali->oob_skip_bytes;
623 	size_t size = writesize + oobsize;
624 	int i, pos, len;
625 
626 	/* BBM at the beginning of the OOB area */
627 	chip->cmdfunc(mtd, start_cmd, writesize, page);
628 	if (write)
629 		chip->write_buf(mtd, bufpoi, oob_skip);
630 	else
631 		chip->read_buf(mtd, bufpoi, oob_skip);
632 	bufpoi += oob_skip;
633 
634 	/* OOB ECC */
635 	for (i = 0; i < ecc_steps; i++) {
636 		pos = ecc_size + i * (ecc_size + ecc_bytes);
637 		len = ecc_bytes;
638 
639 		if (pos >= writesize)
640 			pos += oob_skip;
641 		else if (pos + len > writesize)
642 			len = writesize - pos;
643 
644 		chip->cmdfunc(mtd, rnd_cmd, pos, -1);
645 		if (write)
646 			chip->write_buf(mtd, bufpoi, len);
647 		else
648 			chip->read_buf(mtd, bufpoi, len);
649 		bufpoi += len;
650 		if (len < ecc_bytes) {
651 			len = ecc_bytes - len;
652 			chip->cmdfunc(mtd, rnd_cmd, writesize + oob_skip, -1);
653 			if (write)
654 				chip->write_buf(mtd, bufpoi, len);
655 			else
656 				chip->read_buf(mtd, bufpoi, len);
657 			bufpoi += len;
658 		}
659 	}
660 
661 	/* OOB free */
662 	len = oobsize - (bufpoi - chip->oob_poi);
663 	chip->cmdfunc(mtd, rnd_cmd, size - len, -1);
664 	if (write)
665 		chip->write_buf(mtd, bufpoi, len);
666 	else
667 		chip->read_buf(mtd, bufpoi, len);
668 }
669 
denali_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)670 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
671 				uint8_t *buf, int oob_required, int page)
672 {
673 	struct denali_nand_info *denali = mtd_to_denali(mtd);
674 	int writesize = mtd->writesize;
675 	int oobsize = mtd->oobsize;
676 	int ecc_steps = chip->ecc.steps;
677 	int ecc_size = chip->ecc.size;
678 	int ecc_bytes = chip->ecc.bytes;
679 	void *tmp_buf = denali->buf;
680 	int oob_skip = denali->oob_skip_bytes;
681 	size_t size = writesize + oobsize;
682 	int ret, i, pos, len;
683 
684 	ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
685 	if (ret)
686 		return ret;
687 
688 	/* Arrange the buffer for syndrome payload/ecc layout */
689 	if (buf) {
690 		for (i = 0; i < ecc_steps; i++) {
691 			pos = i * (ecc_size + ecc_bytes);
692 			len = ecc_size;
693 
694 			if (pos >= writesize)
695 				pos += oob_skip;
696 			else if (pos + len > writesize)
697 				len = writesize - pos;
698 
699 			memcpy(buf, tmp_buf + pos, len);
700 			buf += len;
701 			if (len < ecc_size) {
702 				len = ecc_size - len;
703 				memcpy(buf, tmp_buf + writesize + oob_skip,
704 				       len);
705 				buf += len;
706 			}
707 		}
708 	}
709 
710 	if (oob_required) {
711 		uint8_t *oob = chip->oob_poi;
712 
713 		/* BBM at the beginning of the OOB area */
714 		memcpy(oob, tmp_buf + writesize, oob_skip);
715 		oob += oob_skip;
716 
717 		/* OOB ECC */
718 		for (i = 0; i < ecc_steps; i++) {
719 			pos = ecc_size + i * (ecc_size + ecc_bytes);
720 			len = ecc_bytes;
721 
722 			if (pos >= writesize)
723 				pos += oob_skip;
724 			else if (pos + len > writesize)
725 				len = writesize - pos;
726 
727 			memcpy(oob, tmp_buf + pos, len);
728 			oob += len;
729 			if (len < ecc_bytes) {
730 				len = ecc_bytes - len;
731 				memcpy(oob, tmp_buf + writesize + oob_skip,
732 				       len);
733 				oob += len;
734 			}
735 		}
736 
737 		/* OOB free */
738 		len = oobsize - (oob - chip->oob_poi);
739 		memcpy(oob, tmp_buf + size - len, len);
740 	}
741 
742 	return 0;
743 }
744 
denali_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)745 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
746 			   int page)
747 {
748 	denali_oob_xfer(mtd, chip, page, 0);
749 
750 	return 0;
751 }
752 
denali_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)753 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
754 			    int page)
755 {
756 	struct denali_nand_info *denali = mtd_to_denali(mtd);
757 	int status;
758 
759 	denali_reset_irq(denali);
760 
761 	denali_oob_xfer(mtd, chip, page, 1);
762 
763 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
764 	status = chip->waitfunc(mtd, chip);
765 
766 	return status & NAND_STATUS_FAIL ? -EIO : 0;
767 }
768 
denali_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)769 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
770 			    uint8_t *buf, int oob_required, int page)
771 {
772 	struct denali_nand_info *denali = mtd_to_denali(mtd);
773 	unsigned long uncor_ecc_flags = 0;
774 	int stat = 0;
775 	int ret;
776 
777 	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
778 	if (ret && ret != -EBADMSG)
779 		return ret;
780 
781 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
782 		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
783 	else if (ret == -EBADMSG)
784 		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
785 
786 	if (stat < 0)
787 		return stat;
788 
789 	if (uncor_ecc_flags) {
790 		ret = denali_read_oob(mtd, chip, page);
791 		if (ret)
792 			return ret;
793 
794 		stat = denali_check_erased_page(mtd, chip, buf,
795 						uncor_ecc_flags, stat);
796 	}
797 
798 	return stat;
799 }
800 
denali_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)801 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
802 				 const uint8_t *buf, int oob_required, int page)
803 {
804 	struct denali_nand_info *denali = mtd_to_denali(mtd);
805 	int writesize = mtd->writesize;
806 	int oobsize = mtd->oobsize;
807 	int ecc_steps = chip->ecc.steps;
808 	int ecc_size = chip->ecc.size;
809 	int ecc_bytes = chip->ecc.bytes;
810 	void *tmp_buf = denali->buf;
811 	int oob_skip = denali->oob_skip_bytes;
812 	size_t size = writesize + oobsize;
813 	int i, pos, len;
814 
815 	/*
816 	 * Fill the buffer with 0xff first except the full page transfer.
817 	 * This simplifies the logic.
818 	 */
819 	if (!buf || !oob_required)
820 		memset(tmp_buf, 0xff, size);
821 
822 	/* Arrange the buffer for syndrome payload/ecc layout */
823 	if (buf) {
824 		for (i = 0; i < ecc_steps; i++) {
825 			pos = i * (ecc_size + ecc_bytes);
826 			len = ecc_size;
827 
828 			if (pos >= writesize)
829 				pos += oob_skip;
830 			else if (pos + len > writesize)
831 				len = writesize - pos;
832 
833 			memcpy(tmp_buf + pos, buf, len);
834 			buf += len;
835 			if (len < ecc_size) {
836 				len = ecc_size - len;
837 				memcpy(tmp_buf + writesize + oob_skip, buf,
838 				       len);
839 				buf += len;
840 			}
841 		}
842 	}
843 
844 	if (oob_required) {
845 		const uint8_t *oob = chip->oob_poi;
846 
847 		/* BBM at the beginning of the OOB area */
848 		memcpy(tmp_buf + writesize, oob, oob_skip);
849 		oob += oob_skip;
850 
851 		/* OOB ECC */
852 		for (i = 0; i < ecc_steps; i++) {
853 			pos = ecc_size + i * (ecc_size + ecc_bytes);
854 			len = ecc_bytes;
855 
856 			if (pos >= writesize)
857 				pos += oob_skip;
858 			else if (pos + len > writesize)
859 				len = writesize - pos;
860 
861 			memcpy(tmp_buf + pos, oob, len);
862 			oob += len;
863 			if (len < ecc_bytes) {
864 				len = ecc_bytes - len;
865 				memcpy(tmp_buf + writesize + oob_skip, oob,
866 				       len);
867 				oob += len;
868 			}
869 		}
870 
871 		/* OOB free */
872 		len = oobsize - (oob - chip->oob_poi);
873 		memcpy(tmp_buf + size - len, oob, len);
874 	}
875 
876 	return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
877 }
878 
denali_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)879 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
880 			     const uint8_t *buf, int oob_required, int page)
881 {
882 	struct denali_nand_info *denali = mtd_to_denali(mtd);
883 
884 	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
885 				page, 0, 1);
886 }
887 
denali_select_chip(struct mtd_info * mtd,int chip)888 static void denali_select_chip(struct mtd_info *mtd, int chip)
889 {
890 	struct denali_nand_info *denali = mtd_to_denali(mtd);
891 
892 	denali->active_bank = chip;
893 }
894 
denali_waitfunc(struct mtd_info * mtd,struct nand_chip * chip)895 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
896 {
897 	struct denali_nand_info *denali = mtd_to_denali(mtd);
898 	uint32_t irq_status;
899 
900 	/* R/B# pin transitioned from low to high? */
901 	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
902 
903 	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
904 }
905 
denali_erase(struct mtd_info * mtd,int page)906 static int denali_erase(struct mtd_info *mtd, int page)
907 {
908 	struct denali_nand_info *denali = mtd_to_denali(mtd);
909 	uint32_t irq_status;
910 
911 	denali_reset_irq(denali);
912 
913 	denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
914 			   DENALI_ERASE);
915 
916 	/* wait for erase to complete or failure to occur */
917 	irq_status = denali_wait_for_irq(denali,
918 					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
919 
920 	return irq_status & INTR__ERASE_COMP ? 0 : NAND_STATUS_FAIL;
921 }
922 
denali_setup_data_interface(struct mtd_info * mtd,int chipnr,const struct nand_data_interface * conf)923 static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
924 				       const struct nand_data_interface *conf)
925 {
926 	struct denali_nand_info *denali = mtd_to_denali(mtd);
927 	const struct nand_sdr_timings *timings;
928 	unsigned long t_x, mult_x;
929 	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
930 	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
931 	int addr_2_data_mask;
932 	uint32_t tmp;
933 
934 	timings = nand_get_sdr_timings(conf);
935 	if (IS_ERR(timings))
936 		return PTR_ERR(timings);
937 
938 	/* clk_x period in picoseconds */
939 	t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
940 	if (!t_x)
941 		return -EINVAL;
942 
943 	/*
944 	 * The bus interface clock, clk_x, is phase aligned with the core clock.
945 	 * The clk_x is an integral multiple N of the core clk.  The value N is
946 	 * configured at IP delivery time, and its available value is 4, 5, 6.
947 	 */
948 	mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
949 	if (mult_x < 4 || mult_x > 6)
950 		return -EINVAL;
951 
952 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
953 		return 0;
954 
955 	/* tREA -> ACC_CLKS */
956 	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_x);
957 	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
958 
959 	tmp = ioread32(denali->reg + ACC_CLKS);
960 	tmp &= ~ACC_CLKS__VALUE;
961 	tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
962 	iowrite32(tmp, denali->reg + ACC_CLKS);
963 
964 	/* tRWH -> RE_2_WE */
965 	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
966 	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
967 
968 	tmp = ioread32(denali->reg + RE_2_WE);
969 	tmp &= ~RE_2_WE__VALUE;
970 	tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
971 	iowrite32(tmp, denali->reg + RE_2_WE);
972 
973 	/* tRHZ -> RE_2_RE */
974 	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
975 	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
976 
977 	tmp = ioread32(denali->reg + RE_2_RE);
978 	tmp &= ~RE_2_RE__VALUE;
979 	tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
980 	iowrite32(tmp, denali->reg + RE_2_RE);
981 
982 	/*
983 	 * tCCS, tWHR -> WE_2_RE
984 	 *
985 	 * With WE_2_RE properly set, the Denali controller automatically takes
986 	 * care of the delay; the driver need not set NAND_WAIT_TCCS.
987 	 */
988 	we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
989 	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
990 
991 	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
992 	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
993 	tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
994 	iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
995 
996 	/* tADL -> ADDR_2_DATA */
997 
998 	/* for older versions, ADDR_2_DATA is only 6 bit wide */
999 	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
1000 	if (denali->revision < 0x0501)
1001 		addr_2_data_mask >>= 1;
1002 
1003 	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
1004 	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
1005 
1006 	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
1007 	tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
1008 	tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
1009 	iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
1010 
1011 	/* tREH, tWH -> RDWR_EN_HI_CNT */
1012 	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
1013 				  t_x);
1014 	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
1015 
1016 	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
1017 	tmp &= ~RDWR_EN_HI_CNT__VALUE;
1018 	tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
1019 	iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
1020 
1021 	/* tRP, tWP -> RDWR_EN_LO_CNT */
1022 	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
1023 	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
1024 				     t_x);
1025 	rdwr_en_lo_hi = max_t(int, rdwr_en_lo_hi, mult_x);
1026 	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
1027 	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
1028 
1029 	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
1030 	tmp &= ~RDWR_EN_LO_CNT__VALUE;
1031 	tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
1032 	iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
1033 
1034 	/* tCS, tCEA -> CS_SETUP_CNT */
1035 	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
1036 			(int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
1037 			0);
1038 	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
1039 
1040 	tmp = ioread32(denali->reg + CS_SETUP_CNT);
1041 	tmp &= ~CS_SETUP_CNT__VALUE;
1042 	tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
1043 	iowrite32(tmp, denali->reg + CS_SETUP_CNT);
1044 
1045 	return 0;
1046 }
1047 
denali_reset_banks(struct denali_nand_info * denali)1048 static void denali_reset_banks(struct denali_nand_info *denali)
1049 {
1050 	u32 irq_status;
1051 	int i;
1052 
1053 	for (i = 0; i < denali->max_banks; i++) {
1054 		denali->active_bank = i;
1055 
1056 		denali_reset_irq(denali);
1057 
1058 		iowrite32(DEVICE_RESET__BANK(i),
1059 			  denali->reg + DEVICE_RESET);
1060 
1061 		irq_status = denali_wait_for_irq(denali,
1062 			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
1063 		if (!(irq_status & INTR__INT_ACT))
1064 			break;
1065 	}
1066 
1067 	dev_dbg(denali->dev, "%d chips connected\n", i);
1068 	denali->max_banks = i;
1069 }
1070 
denali_hw_init(struct denali_nand_info * denali)1071 static void denali_hw_init(struct denali_nand_info *denali)
1072 {
1073 	/*
1074 	 * The REVISION register may not be reliable.  Platforms are allowed to
1075 	 * override it.
1076 	 */
1077 	if (!denali->revision)
1078 		denali->revision = swab16(ioread32(denali->reg + REVISION));
1079 
1080 	/*
1081 	 * Set how many bytes should be skipped before writing data in OOB.
1082 	 * If a platform requests a non-zero value, set it to the register.
1083 	 * Otherwise, read the value out, expecting it has already been set up
1084 	 * by firmware.
1085 	 */
1086 	if (denali->oob_skip_bytes)
1087 		iowrite32(denali->oob_skip_bytes,
1088 			  denali->reg + SPARE_AREA_SKIP_BYTES);
1089 	else
1090 		denali->oob_skip_bytes = ioread32(denali->reg +
1091 						  SPARE_AREA_SKIP_BYTES);
1092 
1093 	denali_detect_max_banks(denali);
1094 	iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
1095 	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
1096 
1097 	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
1098 	iowrite32(WRITE_PROTECT__FLAG, denali->reg + WRITE_PROTECT);
1099 }
1100 
denali_calc_ecc_bytes(int step_size,int strength)1101 int denali_calc_ecc_bytes(int step_size, int strength)
1102 {
1103 	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
1104 	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
1105 }
1106 EXPORT_SYMBOL(denali_calc_ecc_bytes);
1107 
denali_ecc_setup(struct mtd_info * mtd,struct nand_chip * chip,struct denali_nand_info * denali)1108 static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip,
1109 			    struct denali_nand_info *denali)
1110 {
1111 	int oobavail = mtd->oobsize - denali->oob_skip_bytes;
1112 	int ret;
1113 
1114 	/*
1115 	 * If .size and .strength are already set (usually by DT),
1116 	 * check if they are supported by this controller.
1117 	 */
1118 	if (chip->ecc.size && chip->ecc.strength)
1119 		return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail);
1120 
1121 	/*
1122 	 * We want .size and .strength closest to the chip's requirement
1123 	 * unless NAND_ECC_MAXIMIZE is requested.
1124 	 */
1125 	if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) {
1126 		ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail);
1127 		if (!ret)
1128 			return 0;
1129 	}
1130 
1131 	/* Max ECC strength is the last thing we can do */
1132 	return nand_maximize_ecc(chip, denali->ecc_caps, oobavail);
1133 }
1134 
1135 static struct nand_ecclayout nand_oob;
1136 
denali_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1137 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
1138 				struct mtd_oob_region *oobregion)
1139 {
1140 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1141 	struct nand_chip *chip = mtd_to_nand(mtd);
1142 
1143 	if (section)
1144 		return -ERANGE;
1145 
1146 	oobregion->offset = denali->oob_skip_bytes;
1147 	oobregion->length = chip->ecc.total;
1148 
1149 	return 0;
1150 }
1151 
denali_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1152 static int denali_ooblayout_free(struct mtd_info *mtd, int section,
1153 				 struct mtd_oob_region *oobregion)
1154 {
1155 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1156 	struct nand_chip *chip = mtd_to_nand(mtd);
1157 
1158 	if (section)
1159 		return -ERANGE;
1160 
1161 	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
1162 	oobregion->length = mtd->oobsize - oobregion->offset;
1163 
1164 	return 0;
1165 }
1166 
1167 static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
1168 	.ecc = denali_ooblayout_ecc,
1169 	.rfree = denali_ooblayout_free,
1170 };
1171 
denali_multidev_fixup(struct denali_nand_info * denali)1172 static int denali_multidev_fixup(struct denali_nand_info *denali)
1173 {
1174 	struct nand_chip *chip = &denali->nand;
1175 	struct mtd_info *mtd = nand_to_mtd(chip);
1176 
1177 	/*
1178 	 * Support for multi device:
1179 	 * When the IP configuration is x16 capable and two x8 chips are
1180 	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
1181 	 * In this case, the core framework knows nothing about this fact,
1182 	 * so we should tell it the _logical_ pagesize and anything necessary.
1183 	 */
1184 	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
1185 
1186 	/*
1187 	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
1188 	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
1189 	 */
1190 	if (denali->devs_per_cs == 0) {
1191 		denali->devs_per_cs = 1;
1192 		iowrite32(1, denali->reg + DEVICES_CONNECTED);
1193 	}
1194 
1195 	if (denali->devs_per_cs == 1)
1196 		return 0;
1197 
1198 	if (denali->devs_per_cs != 2) {
1199 		dev_err(denali->dev, "unsupported number of devices %d\n",
1200 			denali->devs_per_cs);
1201 		return -EINVAL;
1202 	}
1203 
1204 	/* 2 chips in parallel */
1205 	mtd->size <<= 1;
1206 	mtd->erasesize <<= 1;
1207 	mtd->writesize <<= 1;
1208 	mtd->oobsize <<= 1;
1209 	chip->chipsize <<= 1;
1210 	chip->page_shift += 1;
1211 	chip->phys_erase_shift += 1;
1212 	chip->bbt_erase_shift += 1;
1213 	chip->chip_shift += 1;
1214 	chip->pagemask <<= 1;
1215 	chip->ecc.size <<= 1;
1216 	chip->ecc.bytes <<= 1;
1217 	chip->ecc.strength <<= 1;
1218 	denali->oob_skip_bytes <<= 1;
1219 
1220 	return 0;
1221 }
1222 
denali_wait_reset_complete(struct denali_nand_info * denali)1223 int denali_wait_reset_complete(struct denali_nand_info *denali)
1224 {
1225 	u32 irq_status;
1226 
1227 	irq_status = denali_wait_for_irq(denali, INTR__RST_COMP);
1228 	if (!(irq_status & INTR__RST_COMP))
1229 		return -EIO;
1230 
1231 	return 0;
1232 }
1233 
denali_init(struct denali_nand_info * denali)1234 int denali_init(struct denali_nand_info *denali)
1235 {
1236 	struct nand_chip *chip = &denali->nand;
1237 	struct mtd_info *mtd = nand_to_mtd(chip);
1238 	u32 features = ioread32(denali->reg + FEATURES);
1239 	int ret;
1240 
1241 	denali_hw_init(denali);
1242 
1243 	denali_clear_irq_all(denali);
1244 
1245 	denali_reset_banks(denali);
1246 
1247 	denali->active_bank = DENALI_INVALID_BANK;
1248 
1249 	chip->flash_node = dev_of_offset(denali->dev);
1250 	/* Fallback to the default name if DT did not give "label" property */
1251 	if (!mtd->name)
1252 		mtd->name = "denali-nand";
1253 
1254 	chip->select_chip = denali_select_chip;
1255 	chip->read_byte = denali_read_byte;
1256 	chip->write_byte = denali_write_byte;
1257 	chip->read_word = denali_read_word;
1258 	chip->cmd_ctrl = denali_cmd_ctrl;
1259 	chip->dev_ready = denali_dev_ready;
1260 	chip->waitfunc = denali_waitfunc;
1261 
1262 	if (features & FEATURES__INDEX_ADDR) {
1263 		denali->host_read = denali_indexed_read;
1264 		denali->host_write = denali_indexed_write;
1265 	} else {
1266 		denali->host_read = denali_direct_read;
1267 		denali->host_write = denali_direct_write;
1268 	}
1269 
1270 	/* clk rate info is needed for setup_data_interface */
1271 	if (denali->clk_x_rate)
1272 		chip->setup_data_interface = denali_setup_data_interface;
1273 
1274 	ret = nand_scan_ident(mtd, denali->max_banks, NULL);
1275 	if (ret)
1276 		return ret;
1277 
1278 	if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
1279 		denali->dma_avail = 1;
1280 
1281 	if (denali->dma_avail) {
1282 		chip->buf_align = ARCH_DMA_MINALIGN;
1283 		if (denali->caps & DENALI_CAP_DMA_64BIT)
1284 			denali->setup_dma = denali_setup_dma64;
1285 		else
1286 			denali->setup_dma = denali_setup_dma32;
1287 	} else {
1288 		chip->buf_align = 4;
1289 	}
1290 
1291 	chip->options |= NAND_USE_BOUNCE_BUFFER;
1292 	chip->bbt_options |= NAND_BBT_USE_FLASH;
1293 	chip->bbt_options |= NAND_BBT_NO_OOB;
1294 	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1295 
1296 	/* no subpage writes on denali */
1297 	chip->options |= NAND_NO_SUBPAGE_WRITE;
1298 
1299 	ret = denali_ecc_setup(mtd, chip, denali);
1300 	if (ret) {
1301 		dev_err(denali->dev, "Failed to setup ECC settings.\n");
1302 		return ret;
1303 	}
1304 
1305 	dev_dbg(denali->dev,
1306 		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1307 		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1308 
1309 	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
1310 		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
1311 		  denali->reg + ECC_CORRECTION);
1312 	iowrite32(mtd->erasesize / mtd->writesize,
1313 		  denali->reg + PAGES_PER_BLOCK);
1314 	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
1315 		  denali->reg + DEVICE_WIDTH);
1316 	iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
1317 		  denali->reg + TWO_ROW_ADDR_CYCLES);
1318 	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
1319 	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
1320 
1321 	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
1322 	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
1323 	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
1324 	iowrite32(mtd->writesize / chip->ecc.size,
1325 		  denali->reg + CFG_NUM_DATA_BLOCKS);
1326 
1327 	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1328 
1329 	nand_oob.eccbytes = denali->nand.ecc.bytes;
1330 	denali->nand.ecc.layout = &nand_oob;
1331 
1332 	if (chip->options & NAND_BUSWIDTH_16) {
1333 		chip->read_buf = denali_read_buf16;
1334 		chip->write_buf = denali_write_buf16;
1335 	} else {
1336 		chip->read_buf = denali_read_buf;
1337 		chip->write_buf = denali_write_buf;
1338 	}
1339 	chip->ecc.options |= NAND_ECC_CUSTOM_PAGE_ACCESS;
1340 	chip->ecc.read_page = denali_read_page;
1341 	chip->ecc.read_page_raw = denali_read_page_raw;
1342 	chip->ecc.write_page = denali_write_page;
1343 	chip->ecc.write_page_raw = denali_write_page_raw;
1344 	chip->ecc.read_oob = denali_read_oob;
1345 	chip->ecc.write_oob = denali_write_oob;
1346 	chip->erase = denali_erase;
1347 
1348 	ret = denali_multidev_fixup(denali);
1349 	if (ret)
1350 		return ret;
1351 
1352 	/*
1353 	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
1354 	 * use devm_kmalloc() because the memory allocated by devm_ does not
1355 	 * guarantee DMA-safe alignment.
1356 	 */
1357 	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
1358 	if (!denali->buf)
1359 		return -ENOMEM;
1360 
1361 	ret = nand_scan_tail(mtd);
1362 	if (ret)
1363 		goto free_buf;
1364 
1365 	ret = nand_register(0, mtd);
1366 	if (ret) {
1367 		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1368 		goto free_buf;
1369 	}
1370 	return 0;
1371 
1372 free_buf:
1373 	kfree(denali->buf);
1374 
1375 	return ret;
1376 }
1377