1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com>
4  * Rohit Choraria <rohitkc@ti.com>
5  */
6 
7 #include <common.h>
8 #include <log.h>
9 #include <asm/io.h>
10 #include <linux/errno.h>
11 #include <asm/arch/mem.h>
12 #include <linux/mtd/omap_gpmc.h>
13 #include <linux/mtd/nand_ecc.h>
14 #include <linux/bch.h>
15 #include <linux/compiler.h>
16 #include <nand.h>
17 #include <linux/mtd/omap_elm.h>
18 
19 #define BADBLOCK_MARKER_LENGTH	2
20 #define SECTOR_BYTES		512
21 #define ECCCLEAR		(0x1 << 8)
22 #define ECCRESULTREG1		(0x1 << 0)
23 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
24 #define BCH4_BIT_PAD		4
25 
26 #ifdef CONFIG_BCH
27 static u8  bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
28 				0x97, 0x79, 0xe5, 0x24, 0xb5};
29 #endif
30 static uint8_t cs_next;
31 static __maybe_unused struct nand_ecclayout omap_ecclayout;
32 
33 #if defined(CONFIG_NAND_OMAP_GPMC_WSCFG)
34 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE] =
35 	{ CONFIG_NAND_OMAP_GPMC_WSCFG };
36 #else
37 /* wscfg is preset to zero since its a static variable */
38 static const int8_t wscfg[CONFIG_SYS_MAX_NAND_DEVICE];
39 #endif
40 
41 /*
42  * Driver configurations
43  */
44 struct omap_nand_info {
45 	struct bch_control *control;
46 	enum omap_ecc ecc_scheme;
47 	uint8_t cs;
48 	uint8_t ws;		/* wait status pin (0,1) */
49 };
50 
51 /* We are wasting a bit of memory but al least we are safe */
52 static struct omap_nand_info omap_nand_info[GPMC_MAX_CS];
53 
54 /*
55  * omap_nand_hwcontrol - Set the address pointers corretly for the
56  *			following address/data/command operation
57  */
omap_nand_hwcontrol(struct mtd_info * mtd,int32_t cmd,uint32_t ctrl)58 static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd,
59 				uint32_t ctrl)
60 {
61 	register struct nand_chip *this = mtd_to_nand(mtd);
62 	struct omap_nand_info *info = nand_get_controller_data(this);
63 	int cs = info->cs;
64 
65 	/*
66 	 * Point the IO_ADDR to DATA and ADDRESS registers instead
67 	 * of chip address
68 	 */
69 	switch (ctrl) {
70 	case NAND_CTRL_CHANGE | NAND_CTRL_CLE:
71 		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
72 		break;
73 	case NAND_CTRL_CHANGE | NAND_CTRL_ALE:
74 		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr;
75 		break;
76 	case NAND_CTRL_CHANGE | NAND_NCE:
77 		this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
78 		break;
79 	}
80 
81 	if (cmd != NAND_CMD_NONE)
82 		writeb(cmd, this->IO_ADDR_W);
83 }
84 
85 /* Check wait pin as dev ready indicator */
omap_dev_ready(struct mtd_info * mtd)86 static int omap_dev_ready(struct mtd_info *mtd)
87 {
88 	register struct nand_chip *this = mtd_to_nand(mtd);
89 	struct omap_nand_info *info = nand_get_controller_data(this);
90 	return gpmc_cfg->status & (1 << (8 + info->ws));
91 }
92 
93 /*
94  * gen_true_ecc - This function will generate true ECC value, which
95  * can be used when correcting data read from NAND flash memory core
96  *
97  * @ecc_buf:	buffer to store ecc code
98  *
99  * @return:	re-formatted ECC value
100  */
gen_true_ecc(uint8_t * ecc_buf)101 static uint32_t gen_true_ecc(uint8_t *ecc_buf)
102 {
103 	return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) |
104 		((ecc_buf[2] & 0x0F) << 8);
105 }
106 
107 /*
108  * omap_correct_data - Compares the ecc read from nand spare area with ECC
109  * registers values and corrects one bit error if it has occurred
110  * Further details can be had from OMAP TRM and the following selected links:
111  * http://en.wikipedia.org/wiki/Hamming_code
112  * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf
113  *
114  * @mtd:		 MTD device structure
115  * @dat:		 page data
116  * @read_ecc:		 ecc read from nand flash
117  * @calc_ecc:		 ecc read from ECC registers
118  *
119  * @return 0 if data is OK or corrected, else returns -1
120  */
omap_correct_data(struct mtd_info * mtd,uint8_t * dat,uint8_t * read_ecc,uint8_t * calc_ecc)121 static int __maybe_unused omap_correct_data(struct mtd_info *mtd, uint8_t *dat,
122 				uint8_t *read_ecc, uint8_t *calc_ecc)
123 {
124 	uint32_t orig_ecc, new_ecc, res, hm;
125 	uint16_t parity_bits, byte;
126 	uint8_t bit;
127 
128 	/* Regenerate the orginal ECC */
129 	orig_ecc = gen_true_ecc(read_ecc);
130 	new_ecc = gen_true_ecc(calc_ecc);
131 	/* Get the XOR of real ecc */
132 	res = orig_ecc ^ new_ecc;
133 	if (res) {
134 		/* Get the hamming width */
135 		hm = hweight32(res);
136 		/* Single bit errors can be corrected! */
137 		if (hm == 12) {
138 			/* Correctable data! */
139 			parity_bits = res >> 16;
140 			bit = (parity_bits & 0x7);
141 			byte = (parity_bits >> 3) & 0x1FF;
142 			/* Flip the bit to correct */
143 			dat[byte] ^= (0x1 << bit);
144 		} else if (hm == 1) {
145 			printf("Error: Ecc is wrong\n");
146 			/* ECC itself is corrupted */
147 			return 2;
148 		} else {
149 			/*
150 			 * hm distance != parity pairs OR one, could mean 2 bit
151 			 * error OR potentially be on a blank page..
152 			 * orig_ecc: contains spare area data from nand flash.
153 			 * new_ecc: generated ecc while reading data area.
154 			 * Note: if the ecc = 0, all data bits from which it was
155 			 * generated are 0xFF.
156 			 * The 3 byte(24 bits) ecc is generated per 512byte
157 			 * chunk of a page. If orig_ecc(from spare area)
158 			 * is 0xFF && new_ecc(computed now from data area)=0x0,
159 			 * this means that data area is 0xFF and spare area is
160 			 * 0xFF. A sure sign of a erased page!
161 			 */
162 			if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000))
163 				return 0;
164 			printf("Error: Bad compare! failed\n");
165 			/* detected 2 bit error */
166 			return -EBADMSG;
167 		}
168 	}
169 	return 0;
170 }
171 
172 /*
173  * omap_enable_hwecc - configures GPMC as per ECC scheme before read/write
174  * @mtd:	MTD device structure
175  * @mode:	Read/Write mode
176  */
177 __maybe_unused
omap_enable_hwecc(struct mtd_info * mtd,int32_t mode)178 static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
179 {
180 	struct nand_chip	*nand	= mtd_to_nand(mtd);
181 	struct omap_nand_info	*info	= nand_get_controller_data(nand);
182 	unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
183 	unsigned int ecc_algo = 0;
184 	unsigned int bch_type = 0;
185 	unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
186 	u32 ecc_size_config_val = 0;
187 	u32 ecc_config_val = 0;
188 	int cs = info->cs;
189 
190 	/* configure GPMC for specific ecc-scheme */
191 	switch (info->ecc_scheme) {
192 	case OMAP_ECC_HAM1_CODE_SW:
193 		return;
194 	case OMAP_ECC_HAM1_CODE_HW:
195 		ecc_algo = 0x0;
196 		bch_type = 0x0;
197 		bch_wrapmode = 0x00;
198 		eccsize0 = 0xFF;
199 		eccsize1 = 0xFF;
200 		break;
201 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
202 	case OMAP_ECC_BCH8_CODE_HW:
203 		ecc_algo = 0x1;
204 		bch_type = 0x1;
205 		if (mode == NAND_ECC_WRITE) {
206 			bch_wrapmode = 0x01;
207 			eccsize0 = 0;  /* extra bits in nibbles per sector */
208 			eccsize1 = 28; /* OOB bits in nibbles per sector */
209 		} else {
210 			bch_wrapmode = 0x01;
211 			eccsize0 = 26; /* ECC bits in nibbles per sector */
212 			eccsize1 = 2;  /* non-ECC bits in nibbles per sector */
213 		}
214 		break;
215 	case OMAP_ECC_BCH16_CODE_HW:
216 		ecc_algo = 0x1;
217 		bch_type = 0x2;
218 		if (mode == NAND_ECC_WRITE) {
219 			bch_wrapmode = 0x01;
220 			eccsize0 = 0;  /* extra bits in nibbles per sector */
221 			eccsize1 = 52; /* OOB bits in nibbles per sector */
222 		} else {
223 			bch_wrapmode = 0x01;
224 			eccsize0 = 52; /* ECC bits in nibbles per sector */
225 			eccsize1 = 0;  /* non-ECC bits in nibbles per sector */
226 		}
227 		break;
228 	default:
229 		return;
230 	}
231 	/* Clear ecc and enable bits */
232 	writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
233 	/* Configure ecc size for BCH */
234 	ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
235 	writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
236 
237 	/* Configure device details for BCH engine */
238 	ecc_config_val = ((ecc_algo << 16)	| /* HAM1 | BCHx */
239 			(bch_type << 12)	| /* BCH4/BCH8/BCH16 */
240 			(bch_wrapmode << 8)	| /* wrap mode */
241 			(dev_width << 7)	| /* bus width */
242 			(0x0 << 4)		| /* number of sectors */
243 			(cs <<  1)		| /* ECC CS */
244 			(0x1));			  /* enable ECC */
245 	writel(ecc_config_val, &gpmc_cfg->ecc_config);
246 }
247 
248 /*
249  *  omap_calculate_ecc - Read ECC result
250  *  @mtd:	MTD structure
251  *  @dat:	unused
252  *  @ecc_code:	ecc_code buffer
253  *  Using noninverted ECC can be considered ugly since writing a blank
254  *  page ie. padding will clear the ECC bytes. This is no problem as
255  *  long nobody is trying to write data on the seemingly unused page.
256  *  Reading an erased page will produce an ECC mismatch between
257  *  generated and read ECC bytes that has to be dealt with separately.
258  *  E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC
259  *  is used, the result of read will be 0x0 while the ECC offsets of the
260  *  spare area will be 0xFF which will result in an ECC mismatch.
261  */
omap_calculate_ecc(struct mtd_info * mtd,const uint8_t * dat,uint8_t * ecc_code)262 static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
263 				uint8_t *ecc_code)
264 {
265 	struct nand_chip *chip = mtd_to_nand(mtd);
266 	struct omap_nand_info *info = nand_get_controller_data(chip);
267 	const uint32_t *ptr;
268 	uint32_t val = 0;
269 	int8_t i = 0, j;
270 
271 	switch (info->ecc_scheme) {
272 	case OMAP_ECC_HAM1_CODE_HW:
273 		val = readl(&gpmc_cfg->ecc1_result);
274 		ecc_code[0] = val & 0xFF;
275 		ecc_code[1] = (val >> 16) & 0xFF;
276 		ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
277 		break;
278 #ifdef CONFIG_BCH
279 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
280 #endif
281 	case OMAP_ECC_BCH8_CODE_HW:
282 		ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3];
283 		val = readl(ptr);
284 		ecc_code[i++] = (val >>  0) & 0xFF;
285 		ptr--;
286 		for (j = 0; j < 3; j++) {
287 			val = readl(ptr);
288 			ecc_code[i++] = (val >> 24) & 0xFF;
289 			ecc_code[i++] = (val >> 16) & 0xFF;
290 			ecc_code[i++] = (val >>  8) & 0xFF;
291 			ecc_code[i++] = (val >>  0) & 0xFF;
292 			ptr--;
293 		}
294 		break;
295 	case OMAP_ECC_BCH16_CODE_HW:
296 		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]);
297 		ecc_code[i++] = (val >>  8) & 0xFF;
298 		ecc_code[i++] = (val >>  0) & 0xFF;
299 		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]);
300 		ecc_code[i++] = (val >> 24) & 0xFF;
301 		ecc_code[i++] = (val >> 16) & 0xFF;
302 		ecc_code[i++] = (val >>  8) & 0xFF;
303 		ecc_code[i++] = (val >>  0) & 0xFF;
304 		val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]);
305 		ecc_code[i++] = (val >> 24) & 0xFF;
306 		ecc_code[i++] = (val >> 16) & 0xFF;
307 		ecc_code[i++] = (val >>  8) & 0xFF;
308 		ecc_code[i++] = (val >>  0) & 0xFF;
309 		for (j = 3; j >= 0; j--) {
310 			val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j]
311 									);
312 			ecc_code[i++] = (val >> 24) & 0xFF;
313 			ecc_code[i++] = (val >> 16) & 0xFF;
314 			ecc_code[i++] = (val >>  8) & 0xFF;
315 			ecc_code[i++] = (val >>  0) & 0xFF;
316 		}
317 		break;
318 	default:
319 		return -EINVAL;
320 	}
321 	/* ECC scheme specific syndrome customizations */
322 	switch (info->ecc_scheme) {
323 	case OMAP_ECC_HAM1_CODE_HW:
324 		break;
325 #ifdef CONFIG_BCH
326 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
327 
328 		for (i = 0; i < chip->ecc.bytes; i++)
329 			*(ecc_code + i) = *(ecc_code + i) ^
330 						bch8_polynomial[i];
331 		break;
332 #endif
333 	case OMAP_ECC_BCH8_CODE_HW:
334 		ecc_code[chip->ecc.bytes - 1] = 0x00;
335 		break;
336 	case OMAP_ECC_BCH16_CODE_HW:
337 		break;
338 	default:
339 		return -EINVAL;
340 	}
341 	return 0;
342 }
343 
344 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
345 
346 #define PREFETCH_CONFIG1_CS_SHIFT	24
347 #define PREFETCH_FIFOTHRESHOLD_MAX	0x40
348 #define PREFETCH_FIFOTHRESHOLD(val)	((val) << 8)
349 #define PREFETCH_STATUS_COUNT(val)	(val & 0x00003fff)
350 #define PREFETCH_STATUS_FIFO_CNT(val)	((val >> 24) & 0x7F)
351 #define ENABLE_PREFETCH			(1 << 7)
352 
353 /**
354  * omap_prefetch_enable - configures and starts prefetch transfer
355  * @fifo_th: fifo threshold to be used for read/ write
356  * @count: number of bytes to be transferred
357  * @is_write: prefetch read(0) or write post(1) mode
358  * @cs: chip select to use
359  */
omap_prefetch_enable(int fifo_th,unsigned int count,int is_write,int cs)360 static int omap_prefetch_enable(int fifo_th, unsigned int count, int is_write, int cs)
361 {
362 	uint32_t val;
363 
364 	if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX)
365 		return -EINVAL;
366 
367 	if (readl(&gpmc_cfg->prefetch_control))
368 		return -EBUSY;
369 
370 	/* Set the amount of bytes to be prefetched */
371 	writel(count, &gpmc_cfg->prefetch_config2);
372 
373 	val = (cs << PREFETCH_CONFIG1_CS_SHIFT) | (is_write & 1) |
374 		PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH;
375 	writel(val, &gpmc_cfg->prefetch_config1);
376 
377 	/*  Start the prefetch engine */
378 	writel(1, &gpmc_cfg->prefetch_control);
379 
380 	return 0;
381 }
382 
383 /**
384  * omap_prefetch_reset - disables and stops the prefetch engine
385  */
omap_prefetch_reset(void)386 static void omap_prefetch_reset(void)
387 {
388 	writel(0, &gpmc_cfg->prefetch_control);
389 	writel(0, &gpmc_cfg->prefetch_config1);
390 }
391 
__read_prefetch_aligned(struct nand_chip * chip,uint32_t * buf,int len)392 static int __read_prefetch_aligned(struct nand_chip *chip, uint32_t *buf, int len)
393 {
394 	int ret;
395 	uint32_t cnt;
396 	struct omap_nand_info *info = nand_get_controller_data(chip);
397 
398 	ret = omap_prefetch_enable(PREFETCH_FIFOTHRESHOLD_MAX, len, 0, info->cs);
399 	if (ret < 0)
400 		return ret;
401 
402 	do {
403 		int i;
404 
405 		cnt = readl(&gpmc_cfg->prefetch_status);
406 		cnt = PREFETCH_STATUS_FIFO_CNT(cnt);
407 
408 		for (i = 0; i < cnt / 4; i++) {
409 			*buf++ = readl(CONFIG_SYS_NAND_BASE);
410 			len -= 4;
411 		}
412 	} while (len);
413 
414 	omap_prefetch_reset();
415 
416 	return 0;
417 }
418 
omap_nand_read(struct mtd_info * mtd,uint8_t * buf,int len)419 static inline void omap_nand_read(struct mtd_info *mtd, uint8_t *buf, int len)
420 {
421 	struct nand_chip *chip = mtd_to_nand(mtd);
422 
423 	if (chip->options & NAND_BUSWIDTH_16)
424 		nand_read_buf16(mtd, buf, len);
425 	else
426 		nand_read_buf(mtd, buf, len);
427 }
428 
omap_nand_read_prefetch(struct mtd_info * mtd,uint8_t * buf,int len)429 static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
430 {
431 	int ret;
432 	uint32_t head, tail;
433 	struct nand_chip *chip = mtd_to_nand(mtd);
434 
435 	/*
436 	 * If the destination buffer is unaligned, start with reading
437 	 * the overlap byte-wise.
438 	 */
439 	head = ((uint32_t) buf) % 4;
440 	if (head) {
441 		omap_nand_read(mtd, buf, head);
442 		buf += head;
443 		len -= head;
444 	}
445 
446 	/*
447 	 * Only transfer multiples of 4 bytes in a pre-fetched fashion.
448 	 * If there's a residue, care for it byte-wise afterwards.
449 	 */
450 	tail = len % 4;
451 
452 	ret = __read_prefetch_aligned(chip, (uint32_t *)buf, len - tail);
453 	if (ret < 0) {
454 		/* fallback in case the prefetch engine is busy */
455 		omap_nand_read(mtd, buf, len);
456 	} else if (tail) {
457 		buf += len - tail;
458 		omap_nand_read(mtd, buf, tail);
459 	}
460 }
461 #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
462 
463 #ifdef CONFIG_NAND_OMAP_ELM
464 /*
465  * omap_reverse_list - re-orders list elements in reverse order [internal]
466  * @list:	pointer to start of list
467  * @length:	length of list
468 */
omap_reverse_list(u8 * list,unsigned int length)469 static void omap_reverse_list(u8 *list, unsigned int length)
470 {
471 	unsigned int i, j;
472 	unsigned int half_length = length / 2;
473 	u8 tmp;
474 	for (i = 0, j = length - 1; i < half_length; i++, j--) {
475 		tmp = list[i];
476 		list[i] = list[j];
477 		list[j] = tmp;
478 	}
479 }
480 
481 /*
482  * omap_correct_data_bch - Compares the ecc read from nand spare area
483  * with ECC registers values and corrects one bit error if it has occurred
484  *
485  * @mtd:	MTD device structure
486  * @dat:	page data
487  * @read_ecc:	ecc read from nand flash (ignored)
488  * @calc_ecc:	ecc read from ECC registers
489  *
490  * @return 0 if data is OK or corrected, else returns -1
491  */
omap_correct_data_bch(struct mtd_info * mtd,uint8_t * dat,uint8_t * read_ecc,uint8_t * calc_ecc)492 static int omap_correct_data_bch(struct mtd_info *mtd, uint8_t *dat,
493 				uint8_t *read_ecc, uint8_t *calc_ecc)
494 {
495 	struct nand_chip *chip = mtd_to_nand(mtd);
496 	struct omap_nand_info *info = nand_get_controller_data(chip);
497 	struct nand_ecc_ctrl *ecc = &chip->ecc;
498 	uint32_t error_count = 0, error_max;
499 	uint32_t error_loc[ELM_MAX_ERROR_COUNT];
500 	enum bch_level bch_type;
501 	uint32_t i, ecc_flag = 0;
502 	uint8_t count;
503 	uint32_t byte_pos, bit_pos;
504 	int err = 0;
505 
506 	/* check calculated ecc */
507 	for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
508 		if (calc_ecc[i] != 0x00)
509 			ecc_flag = 1;
510 	}
511 	if (!ecc_flag)
512 		return 0;
513 
514 	/* check for whether its a erased-page */
515 	ecc_flag = 0;
516 	for (i = 0; i < ecc->bytes && !ecc_flag; i++) {
517 		if (read_ecc[i] != 0xff)
518 			ecc_flag = 1;
519 	}
520 	if (!ecc_flag)
521 		return 0;
522 
523 	/*
524 	 * while reading ECC result we read it in big endian.
525 	 * Hence while loading to ELM we have rotate to get the right endian.
526 	 */
527 	switch (info->ecc_scheme) {
528 	case OMAP_ECC_BCH8_CODE_HW:
529 		bch_type = BCH_8_BIT;
530 		omap_reverse_list(calc_ecc, ecc->bytes - 1);
531 		break;
532 	case OMAP_ECC_BCH16_CODE_HW:
533 		bch_type = BCH_16_BIT;
534 		omap_reverse_list(calc_ecc, ecc->bytes);
535 		break;
536 	default:
537 		return -EINVAL;
538 	}
539 	/* use elm module to check for errors */
540 	elm_config(bch_type);
541 	err = elm_check_error(calc_ecc, bch_type, &error_count, error_loc);
542 	if (err)
543 		return err;
544 
545 	/* correct bch error */
546 	for (count = 0; count < error_count; count++) {
547 		switch (info->ecc_scheme) {
548 		case OMAP_ECC_BCH8_CODE_HW:
549 			/* 14th byte in ECC is reserved to match ROM layout */
550 			error_max = SECTOR_BYTES + (ecc->bytes - 1);
551 			break;
552 		case OMAP_ECC_BCH16_CODE_HW:
553 			error_max = SECTOR_BYTES + ecc->bytes;
554 			break;
555 		default:
556 			return -EINVAL;
557 		}
558 		byte_pos = error_max - (error_loc[count] / 8) - 1;
559 		bit_pos  = error_loc[count] % 8;
560 		if (byte_pos < SECTOR_BYTES) {
561 			dat[byte_pos] ^= 1 << bit_pos;
562 			debug("nand: bit-flip corrected @data=%d\n", byte_pos);
563 		} else if (byte_pos < error_max) {
564 			read_ecc[byte_pos - SECTOR_BYTES] ^= 1 << bit_pos;
565 			debug("nand: bit-flip corrected @oob=%d\n", byte_pos -
566 								SECTOR_BYTES);
567 		} else {
568 			err = -EBADMSG;
569 			printf("nand: error: invalid bit-flip location\n");
570 		}
571 	}
572 	return (err) ? err : error_count;
573 }
574 
575 /**
576  * omap_read_page_bch - hardware ecc based page read function
577  * @mtd:	mtd info structure
578  * @chip:	nand chip info structure
579  * @buf:	buffer to store read data
580  * @oob_required: caller expects OOB data read to chip->oob_poi
581  * @page:	page number to read
582  *
583  */
omap_read_page_bch(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)584 static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
585 				uint8_t *buf, int oob_required, int page)
586 {
587 	int i, eccsize = chip->ecc.size;
588 	int eccbytes = chip->ecc.bytes;
589 	int eccsteps = chip->ecc.steps;
590 	uint8_t *p = buf;
591 	uint8_t *ecc_calc = chip->buffers->ecccalc;
592 	uint8_t *ecc_code = chip->buffers->ecccode;
593 	uint32_t *eccpos = chip->ecc.layout->eccpos;
594 	uint8_t *oob = chip->oob_poi;
595 	uint32_t data_pos;
596 	uint32_t oob_pos;
597 
598 	data_pos = 0;
599 	/* oob area start */
600 	oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
601 	oob += chip->ecc.layout->eccpos[0];
602 
603 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize,
604 				oob += eccbytes) {
605 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
606 		/* read data */
607 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
608 		chip->read_buf(mtd, p, eccsize);
609 
610 		/* read respective ecc from oob area */
611 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
612 		chip->read_buf(mtd, oob, eccbytes);
613 		/* read syndrome */
614 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
615 
616 		data_pos += eccsize;
617 		oob_pos += eccbytes;
618 	}
619 
620 	for (i = 0; i < chip->ecc.total; i++)
621 		ecc_code[i] = chip->oob_poi[eccpos[i]];
622 
623 	eccsteps = chip->ecc.steps;
624 	p = buf;
625 
626 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
627 		int stat;
628 
629 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
630 		if (stat < 0)
631 			mtd->ecc_stats.failed++;
632 		else
633 			mtd->ecc_stats.corrected += stat;
634 	}
635 	return 0;
636 }
637 #endif /* CONFIG_NAND_OMAP_ELM */
638 
639 /*
640  * OMAP3 BCH8 support (with BCH library)
641  */
642 #ifdef CONFIG_BCH
643 /**
644  * omap_correct_data_bch_sw - Decode received data and correct errors
645  * @mtd: MTD device structure
646  * @data: page data
647  * @read_ecc: ecc read from nand flash
648  * @calc_ecc: ecc read from HW ECC registers
649  */
omap_correct_data_bch_sw(struct mtd_info * mtd,u_char * data,u_char * read_ecc,u_char * calc_ecc)650 static int omap_correct_data_bch_sw(struct mtd_info *mtd, u_char *data,
651 				 u_char *read_ecc, u_char *calc_ecc)
652 {
653 	int i, count;
654 	/* cannot correct more than 8 errors */
655 	unsigned int errloc[8];
656 	struct nand_chip *chip = mtd_to_nand(mtd);
657 	struct omap_nand_info *info = nand_get_controller_data(chip);
658 
659 	count = decode_bch(info->control, NULL, SECTOR_BYTES,
660 				read_ecc, calc_ecc, NULL, errloc);
661 	if (count > 0) {
662 		/* correct errors */
663 		for (i = 0; i < count; i++) {
664 			/* correct data only, not ecc bytes */
665 			if (errloc[i] < SECTOR_BYTES << 3)
666 				data[errloc[i] >> 3] ^= 1 << (errloc[i] & 7);
667 			debug("corrected bitflip %u\n", errloc[i]);
668 #ifdef DEBUG
669 			puts("read_ecc: ");
670 			/*
671 			 * BCH8 have 13 bytes of ECC; BCH4 needs adoption
672 			 * here!
673 			 */
674 			for (i = 0; i < 13; i++)
675 				printf("%02x ", read_ecc[i]);
676 			puts("\n");
677 			puts("calc_ecc: ");
678 			for (i = 0; i < 13; i++)
679 				printf("%02x ", calc_ecc[i]);
680 			puts("\n");
681 #endif
682 		}
683 	} else if (count < 0) {
684 		puts("ecc unrecoverable error\n");
685 	}
686 	return count;
687 }
688 
689 /**
690  * omap_free_bch - Release BCH ecc resources
691  * @mtd: MTD device structure
692  */
omap_free_bch(struct mtd_info * mtd)693 static void __maybe_unused omap_free_bch(struct mtd_info *mtd)
694 {
695 	struct nand_chip *chip = mtd_to_nand(mtd);
696 	struct omap_nand_info *info = nand_get_controller_data(chip);
697 
698 	if (info->control) {
699 		free_bch(info->control);
700 		info->control = NULL;
701 	}
702 }
703 #endif /* CONFIG_BCH */
704 
705 /**
706  * omap_select_ecc_scheme - configures driver for particular ecc-scheme
707  * @nand: NAND chip device structure
708  * @ecc_scheme: ecc scheme to configure
709  * @pagesize: number of main-area bytes per page of NAND device
710  * @oobsize: number of OOB/spare bytes per page of NAND device
711  */
omap_select_ecc_scheme(struct nand_chip * nand,enum omap_ecc ecc_scheme,unsigned int pagesize,unsigned int oobsize)712 static int omap_select_ecc_scheme(struct nand_chip *nand,
713 	enum omap_ecc ecc_scheme, unsigned int pagesize, unsigned int oobsize) {
714 	struct omap_nand_info	*info		= nand_get_controller_data(nand);
715 	struct nand_ecclayout	*ecclayout	= &omap_ecclayout;
716 	int eccsteps = pagesize / SECTOR_BYTES;
717 	int i;
718 
719 	switch (ecc_scheme) {
720 	case OMAP_ECC_HAM1_CODE_SW:
721 		debug("nand: selected OMAP_ECC_HAM1_CODE_SW\n");
722 		/* For this ecc-scheme, ecc.bytes, ecc.layout, ... are
723 		 * initialized in nand_scan_tail(), so just set ecc.mode */
724 		info->control		= NULL;
725 		nand->ecc.mode		= NAND_ECC_SOFT;
726 		nand->ecc.layout	= NULL;
727 		nand->ecc.size		= 0;
728 		break;
729 
730 	case OMAP_ECC_HAM1_CODE_HW:
731 		debug("nand: selected OMAP_ECC_HAM1_CODE_HW\n");
732 		/* check ecc-scheme requirements before updating ecc info */
733 		if ((3 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
734 			printf("nand: error: insufficient OOB: require=%d\n", (
735 				(3 * eccsteps) + BADBLOCK_MARKER_LENGTH));
736 			return -EINVAL;
737 		}
738 		info->control		= NULL;
739 		/* populate ecc specific fields */
740 		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
741 		nand->ecc.mode		= NAND_ECC_HW;
742 		nand->ecc.strength	= 1;
743 		nand->ecc.size		= SECTOR_BYTES;
744 		nand->ecc.bytes		= 3;
745 		nand->ecc.hwctl		= omap_enable_hwecc;
746 		nand->ecc.correct	= omap_correct_data;
747 		nand->ecc.calculate	= omap_calculate_ecc;
748 		/* define ecc-layout */
749 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
750 		for (i = 0; i < ecclayout->eccbytes; i++) {
751 			if (nand->options & NAND_BUSWIDTH_16)
752 				ecclayout->eccpos[i] = i + 2;
753 			else
754 				ecclayout->eccpos[i] = i + 1;
755 		}
756 		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
757 		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
758 						BADBLOCK_MARKER_LENGTH;
759 		break;
760 
761 	case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
762 #ifdef CONFIG_BCH
763 		debug("nand: selected OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
764 		/* check ecc-scheme requirements before updating ecc info */
765 		if ((13 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
766 			printf("nand: error: insufficient OOB: require=%d\n", (
767 				(13 * eccsteps) + BADBLOCK_MARKER_LENGTH));
768 			return -EINVAL;
769 		}
770 		/* check if BCH S/W library can be used for error detection */
771 		info->control = init_bch(13, 8, 0x201b);
772 		if (!info->control) {
773 			printf("nand: error: could not init_bch()\n");
774 			return -ENODEV;
775 		}
776 		/* populate ecc specific fields */
777 		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
778 		nand->ecc.mode		= NAND_ECC_HW;
779 		nand->ecc.strength	= 8;
780 		nand->ecc.size		= SECTOR_BYTES;
781 		nand->ecc.bytes		= 13;
782 		nand->ecc.hwctl		= omap_enable_hwecc;
783 		nand->ecc.correct	= omap_correct_data_bch_sw;
784 		nand->ecc.calculate	= omap_calculate_ecc;
785 		/* define ecc-layout */
786 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
787 		ecclayout->eccpos[0]	= BADBLOCK_MARKER_LENGTH;
788 		for (i = 1; i < ecclayout->eccbytes; i++) {
789 			if (i % nand->ecc.bytes)
790 				ecclayout->eccpos[i] =
791 						ecclayout->eccpos[i - 1] + 1;
792 			else
793 				ecclayout->eccpos[i] =
794 						ecclayout->eccpos[i - 1] + 2;
795 		}
796 		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
797 		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
798 						BADBLOCK_MARKER_LENGTH;
799 		break;
800 #else
801 		printf("nand: error: CONFIG_BCH required for ECC\n");
802 		return -EINVAL;
803 #endif
804 
805 	case OMAP_ECC_BCH8_CODE_HW:
806 #ifdef CONFIG_NAND_OMAP_ELM
807 		debug("nand: selected OMAP_ECC_BCH8_CODE_HW\n");
808 		/* check ecc-scheme requirements before updating ecc info */
809 		if ((14 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
810 			printf("nand: error: insufficient OOB: require=%d\n", (
811 				(14 * eccsteps) + BADBLOCK_MARKER_LENGTH));
812 			return -EINVAL;
813 		}
814 		/* intialize ELM for ECC error detection */
815 		elm_init();
816 		info->control		= NULL;
817 		/* populate ecc specific fields */
818 		memset(&nand->ecc, 0, sizeof(struct nand_ecc_ctrl));
819 		nand->ecc.mode		= NAND_ECC_HW;
820 		nand->ecc.strength	= 8;
821 		nand->ecc.size		= SECTOR_BYTES;
822 		nand->ecc.bytes		= 14;
823 		nand->ecc.hwctl		= omap_enable_hwecc;
824 		nand->ecc.correct	= omap_correct_data_bch;
825 		nand->ecc.calculate	= omap_calculate_ecc;
826 		nand->ecc.read_page	= omap_read_page_bch;
827 		/* define ecc-layout */
828 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
829 		for (i = 0; i < ecclayout->eccbytes; i++)
830 			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
831 		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
832 		ecclayout->oobfree[0].length = oobsize - ecclayout->eccbytes -
833 						BADBLOCK_MARKER_LENGTH;
834 		break;
835 #else
836 		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
837 		return -EINVAL;
838 #endif
839 
840 	case OMAP_ECC_BCH16_CODE_HW:
841 #ifdef CONFIG_NAND_OMAP_ELM
842 		debug("nand: using OMAP_ECC_BCH16_CODE_HW\n");
843 		/* check ecc-scheme requirements before updating ecc info */
844 		if ((26 * eccsteps) + BADBLOCK_MARKER_LENGTH > oobsize) {
845 			printf("nand: error: insufficient OOB: require=%d\n", (
846 				(26 * eccsteps) + BADBLOCK_MARKER_LENGTH));
847 			return -EINVAL;
848 		}
849 		/* intialize ELM for ECC error detection */
850 		elm_init();
851 		/* populate ecc specific fields */
852 		nand->ecc.mode		= NAND_ECC_HW;
853 		nand->ecc.size		= SECTOR_BYTES;
854 		nand->ecc.bytes		= 26;
855 		nand->ecc.strength	= 16;
856 		nand->ecc.hwctl		= omap_enable_hwecc;
857 		nand->ecc.correct	= omap_correct_data_bch;
858 		nand->ecc.calculate	= omap_calculate_ecc;
859 		nand->ecc.read_page	= omap_read_page_bch;
860 		/* define ecc-layout */
861 		ecclayout->eccbytes	= nand->ecc.bytes * eccsteps;
862 		for (i = 0; i < ecclayout->eccbytes; i++)
863 			ecclayout->eccpos[i] = i + BADBLOCK_MARKER_LENGTH;
864 		ecclayout->oobfree[0].offset = i + BADBLOCK_MARKER_LENGTH;
865 		ecclayout->oobfree[0].length = oobsize - nand->ecc.bytes -
866 						BADBLOCK_MARKER_LENGTH;
867 		break;
868 #else
869 		printf("nand: error: CONFIG_NAND_OMAP_ELM required for ECC\n");
870 		return -EINVAL;
871 #endif
872 	default:
873 		debug("nand: error: ecc scheme not enabled or supported\n");
874 		return -EINVAL;
875 	}
876 
877 	/* nand_scan_tail() sets ham1 sw ecc; hw ecc layout is set by driver */
878 	if (ecc_scheme != OMAP_ECC_HAM1_CODE_SW)
879 		nand->ecc.layout = ecclayout;
880 
881 	info->ecc_scheme = ecc_scheme;
882 	return 0;
883 }
884 
885 #ifndef CONFIG_SPL_BUILD
886 /*
887  * omap_nand_switch_ecc - switch the ECC operation between different engines
888  * (h/w and s/w) and different algorithms (hamming and BCHx)
889  *
890  * @hardware		- true if one of the HW engines should be used
891  * @eccstrength		- the number of bits that could be corrected
892  *			  (1 - hamming, 4 - BCH4, 8 - BCH8, 16 - BCH16)
893  */
omap_nand_switch_ecc(uint32_t hardware,uint32_t eccstrength)894 int __maybe_unused omap_nand_switch_ecc(uint32_t hardware, uint32_t eccstrength)
895 {
896 	struct nand_chip *nand;
897 	struct mtd_info *mtd = get_nand_dev_by_index(nand_curr_device);
898 	int err = 0;
899 
900 	if (!mtd) {
901 		printf("nand: error: no NAND devices found\n");
902 		return -ENODEV;
903 	}
904 
905 	nand = mtd_to_nand(mtd);
906 	nand->options |= NAND_OWN_BUFFERS;
907 	nand->options &= ~NAND_SUBPAGE_READ;
908 	/* Setup the ecc configurations again */
909 	if (hardware) {
910 		if (eccstrength == 1) {
911 			err = omap_select_ecc_scheme(nand,
912 					OMAP_ECC_HAM1_CODE_HW,
913 					mtd->writesize, mtd->oobsize);
914 		} else if (eccstrength == 8) {
915 			err = omap_select_ecc_scheme(nand,
916 					OMAP_ECC_BCH8_CODE_HW,
917 					mtd->writesize, mtd->oobsize);
918 		} else if (eccstrength == 16) {
919 			err = omap_select_ecc_scheme(nand,
920 					OMAP_ECC_BCH16_CODE_HW,
921 					mtd->writesize, mtd->oobsize);
922 		} else {
923 			printf("nand: error: unsupported ECC scheme\n");
924 			return -EINVAL;
925 		}
926 	} else {
927 		if (eccstrength == 1) {
928 			err = omap_select_ecc_scheme(nand,
929 					OMAP_ECC_HAM1_CODE_SW,
930 					mtd->writesize, mtd->oobsize);
931 		} else if (eccstrength == 8) {
932 			err = omap_select_ecc_scheme(nand,
933 					OMAP_ECC_BCH8_CODE_HW_DETECTION_SW,
934 					mtd->writesize, mtd->oobsize);
935 		} else {
936 			printf("nand: error: unsupported ECC scheme\n");
937 			return -EINVAL;
938 		}
939 	}
940 
941 	/* Update NAND handling after ECC mode switch */
942 	if (!err)
943 		err = nand_scan_tail(mtd);
944 	return err;
945 }
946 #endif /* CONFIG_SPL_BUILD */
947 
948 /*
949  * Board-specific NAND initialization. The following members of the
950  * argument are board-specific:
951  * - IO_ADDR_R: address to read the 8 I/O lines of the flash device
952  * - IO_ADDR_W: address to write the 8 I/O lines of the flash device
953  * - cmd_ctrl: hardwarespecific function for accesing control-lines
954  * - waitfunc: hardwarespecific function for accesing device ready/busy line
955  * - ecc.hwctl: function to enable (reset) hardware ecc generator
956  * - ecc.mode: mode of ecc, see defines
957  * - chip_delay: chip dependent delay for transfering data from array to
958  *   read regs (tR)
959  * - options: various chip options. They can partly be set to inform
960  *   nand_scan about special functionality. See the defines for further
961  *   explanation
962  */
board_nand_init(struct nand_chip * nand)963 int board_nand_init(struct nand_chip *nand)
964 {
965 	int32_t gpmc_config = 0;
966 	int cs = cs_next++;
967 	int err = 0;
968 	/*
969 	 * xloader/Uboot's gpmc configuration would have configured GPMC for
970 	 * nand type of memory. The following logic scans and latches on to the
971 	 * first CS with NAND type memory.
972 	 * TBD: need to make this logic generic to handle multiple CS NAND
973 	 * devices.
974 	 */
975 	while (cs < GPMC_MAX_CS) {
976 		/* Check if NAND type is set */
977 		if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) {
978 			/* Found it!! */
979 			break;
980 		}
981 		cs++;
982 	}
983 	if (cs >= GPMC_MAX_CS) {
984 		printf("nand: error: Unable to find NAND settings in "
985 			"GPMC Configuration - quitting\n");
986 		return -ENODEV;
987 	}
988 
989 	gpmc_config = readl(&gpmc_cfg->config);
990 	/* Disable Write protect */
991 	gpmc_config |= 0x10;
992 	writel(gpmc_config, &gpmc_cfg->config);
993 
994 	nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat;
995 	nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd;
996 	omap_nand_info[cs].control = NULL;
997 	omap_nand_info[cs].cs = cs;
998 	omap_nand_info[cs].ws = wscfg[cs];
999 	nand_set_controller_data(nand, &omap_nand_info[cs]);
1000 	nand->cmd_ctrl	= omap_nand_hwcontrol;
1001 	nand->options	|= NAND_NO_PADDING | NAND_CACHEPRG;
1002 	nand->chip_delay = 100;
1003 	nand->ecc.layout = &omap_ecclayout;
1004 
1005 	/* configure driver and controller based on NAND device bus-width */
1006 	gpmc_config = readl(&gpmc_cfg->cs[cs].config1);
1007 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
1008 	nand->options |= NAND_BUSWIDTH_16;
1009 	writel(gpmc_config | (0x1 << 12), &gpmc_cfg->cs[cs].config1);
1010 #else
1011 	nand->options &= ~NAND_BUSWIDTH_16;
1012 	writel(gpmc_config & ~(0x1 << 12), &gpmc_cfg->cs[cs].config1);
1013 #endif
1014 	/* select ECC scheme */
1015 #if defined(CONFIG_NAND_OMAP_ECCSCHEME)
1016 	err = omap_select_ecc_scheme(nand, CONFIG_NAND_OMAP_ECCSCHEME,
1017 			CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE);
1018 #else
1019 	/* pagesize and oobsize are not required to configure sw ecc-scheme */
1020 	err = omap_select_ecc_scheme(nand, OMAP_ECC_HAM1_CODE_SW,
1021 			0, 0);
1022 #endif
1023 	if (err)
1024 		return err;
1025 
1026 #ifdef CONFIG_NAND_OMAP_GPMC_PREFETCH
1027 	nand->read_buf = omap_nand_read_prefetch;
1028 #else
1029 	if (nand->options & NAND_BUSWIDTH_16)
1030 		nand->read_buf = nand_read_buf16;
1031 	else
1032 		nand->read_buf = nand_read_buf;
1033 #endif
1034 
1035 	nand->dev_ready = omap_dev_ready;
1036 
1037 	return 0;
1038 }
1039