1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Copyright (c) 2013 Google, Inc
4 *
5 * (C) Copyright 2012
6 * Pavel Herrmann <morpheus.ibis@gmail.com>
7 * Marek Vasut <marex@denx.de>
8 */
9
10 #ifndef _DM_DEVICE_H
11 #define _DM_DEVICE_H
12
13 #include <dm/ofnode.h>
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/printk.h>
20
21 struct driver_info;
22
23 /* Driver is active (probed). Cleared when it is removed */
24 #define DM_FLAG_ACTIVATED (1 << 0)
25
26 /* DM is responsible for allocating and freeing plat */
27 #define DM_FLAG_ALLOC_PDATA (1 << 1)
28
29 /* DM should init this device prior to relocation */
30 #define DM_FLAG_PRE_RELOC (1 << 2)
31
32 /* DM is responsible for allocating and freeing parent_plat */
33 #define DM_FLAG_ALLOC_PARENT_PDATA (1 << 3)
34
35 /* DM is responsible for allocating and freeing uclass_plat */
36 #define DM_FLAG_ALLOC_UCLASS_PDATA (1 << 4)
37
38 /* Allocate driver private data on a DMA boundary */
39 #define DM_FLAG_ALLOC_PRIV_DMA (1 << 5)
40
41 /* Device is bound */
42 #define DM_FLAG_BOUND (1 << 6)
43
44 /* Device name is allocated and should be freed on unbind() */
45 #define DM_FLAG_NAME_ALLOCED (1 << 7)
46
47 /* Device has platform data provided by of-platdata */
48 #define DM_FLAG_OF_PLATDATA (1 << 8)
49
50 /*
51 * Call driver remove function to stop currently active DMA transfers or
52 * give DMA buffers back to the HW / controller. This may be needed for
53 * some drivers to do some final stage cleanup before the OS is called
54 * (U-Boot exit)
55 */
56 #define DM_FLAG_ACTIVE_DMA (1 << 9)
57
58 /*
59 * Call driver remove function to do some final configuration, before
60 * U-Boot exits and the OS is started
61 */
62 #define DM_FLAG_OS_PREPARE (1 << 10)
63
64 /* DM does not enable/disable the power domains corresponding to this device */
65 #define DM_FLAG_DEFAULT_PD_CTRL_OFF (1 << 11)
66
67 /* Driver plat has been read. Cleared when the device is removed */
68 #define DM_FLAG_PLATDATA_VALID (1 << 12)
69
70 /*
71 * Device is removed without switching off its power domain. This might
72 * be required, i. e. for serial console (debug) output when booting OS.
73 */
74 #define DM_FLAG_LEAVE_PD_ON (1 << 13)
75
76 /*
77 * Device is vital to the operation of other devices. It is possible to remove
78 * removed this device after all regular devices are removed. This is useful
79 * e.g. for clock, which need to be active during the device-removal phase.
80 */
81 #define DM_FLAG_VITAL (1 << 14)
82
83 /*
84 * One or multiple of these flags are passed to device_remove() so that
85 * a selective device removal as specified by the remove-stage and the
86 * driver flags can be done.
87 *
88 * DO NOT use these flags in your driver's @flags value...
89 * use the above DM_FLAG_... values instead
90 */
91 enum {
92 /* Normal remove, remove all devices */
93 DM_REMOVE_NORMAL = 1 << 0,
94
95 /* Remove devices with active DMA */
96 DM_REMOVE_ACTIVE_DMA = DM_FLAG_ACTIVE_DMA,
97
98 /* Remove devices which need some final OS preparation steps */
99 DM_REMOVE_OS_PREPARE = DM_FLAG_OS_PREPARE,
100
101 /* Remove only devices that are not marked vital */
102 DM_REMOVE_NON_VITAL = DM_FLAG_VITAL,
103
104 /* Remove devices with any active flag */
105 DM_REMOVE_ACTIVE_ALL = DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
106
107 /* Don't power down any attached power domains */
108 DM_REMOVE_NO_PD = 1 << 1,
109 };
110
111 /**
112 * struct udevice - An instance of a driver
113 *
114 * This holds information about a device, which is a driver bound to a
115 * particular port or peripheral (essentially a driver instance).
116 *
117 * A device will come into existence through a 'bind' call, either due to
118 * a U_BOOT_DRVINFO() macro (in which case plat is non-NULL) or a node
119 * in the device tree (in which case of_offset is >= 0). In the latter case
120 * we translate the device tree information into plat in a function
121 * implemented by the driver of_to_plat method (called just before the
122 * probe method if the device has a device tree node.
123 *
124 * All three of plat, priv and uclass_priv can be allocated by the
125 * driver, or you can use the auto members of struct driver and
126 * struct uclass_driver to have driver model do this automatically.
127 *
128 * @driver: The driver used by this device
129 * @name: Name of device, typically the FDT node name
130 * @plat_: Configuration data for this device (do not access outside driver
131 * model)
132 * @parent_plat_: The parent bus's configuration data for this device (do not
133 * access outside driver model)
134 * @uclass_plat_: The uclass's configuration data for this device (do not access
135 * outside driver model)
136 * @driver_data: Driver data word for the entry that matched this device with
137 * its driver
138 * @parent: Parent of this device, or NULL for the top level device
139 * @priv_: Private data for this device (do not access outside driver model)
140 * @uclass: Pointer to uclass for this device
141 * @uclass_priv_: The uclass's private data for this device (do not access
142 * outside driver model)
143 * @parent_priv_: The parent's private data for this device (do not access
144 * outside driver model)
145 * @uclass_node: Used by uclass to link its devices
146 * @child_head: List of children of this device
147 * @sibling_node: Next device in list of all devices
148 * @flags_: Flags for this device DM_FLAG_... (do not access outside driver
149 * model)
150 * @seq_: Allocated sequence number for this device (-1 = none). This is set up
151 * when the device is bound and is unique within the device's uclass. If the
152 * device has an alias in the devicetree then that is used to set the sequence
153 * number. Otherwise, the next available number is used. Sequence numbers are
154 * used by certain commands that need device to be numbered (e.g. 'mmc dev').
155 * (do not access outside driver model)
156 * @node_: Reference to device tree node for this device (do not access outside
157 * driver model)
158 * @devres_head: List of memory allocations associated with this device.
159 * When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
160 * add to this list. Memory so-allocated will be freed
161 * automatically when the device is removed / unbound
162 * @dma_offset: Offset between the physical address space (CPU's) and the
163 * device's bus address space
164 */
165 struct udevice {
166 const struct driver *driver;
167 const char *name;
168 void *plat_;
169 void *parent_plat_;
170 void *uclass_plat_;
171 ulong driver_data;
172 struct udevice *parent;
173 void *priv_;
174 struct uclass *uclass;
175 void *uclass_priv_;
176 void *parent_priv_;
177 struct list_head uclass_node;
178 struct list_head child_head;
179 struct list_head sibling_node;
180 #if !CONFIG_IS_ENABLED(OF_PLATDATA_RT)
181 u32 flags_;
182 #endif
183 int seq_;
184 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
185 ofnode node_;
186 #endif
187 #ifdef CONFIG_DEVRES
188 struct list_head devres_head;
189 #endif
190 #if CONFIG_IS_ENABLED(DM_DMA)
191 ulong dma_offset;
192 #endif
193 };
194
195 /**
196 * udevice_rt - runtime information set up by U-Boot
197 *
198 * This is only used with OF_PLATDATA_RT
199 *
200 * There is one of these for every udevice in the linker list, indexed by
201 * the udevice_info idx value.
202 *
203 * @flags_: Flags for this device DM_FLAG_... (do not access outside driver
204 * model)
205 */
206 struct udevice_rt {
207 u32 flags_;
208 };
209
210 /* Maximum sequence number supported */
211 #define DM_MAX_SEQ 999
212
213 /* Returns the operations for a device */
214 #define device_get_ops(dev) (dev->driver->ops)
215
216 #if CONFIG_IS_ENABLED(OF_PLATDATA_RT)
217 u32 dev_get_flags(const struct udevice *dev);
218 void dev_or_flags(const struct udevice *dev, u32 or);
219 void dev_bic_flags(const struct udevice *dev, u32 bic);
220 #else
dev_get_flags(const struct udevice * dev)221 static inline u32 dev_get_flags(const struct udevice *dev)
222 {
223 return dev->flags_;
224 }
225
dev_or_flags(struct udevice * dev,u32 or)226 static inline void dev_or_flags(struct udevice *dev, u32 or)
227 {
228 dev->flags_ |= or;
229 }
230
dev_bic_flags(struct udevice * dev,u32 bic)231 static inline void dev_bic_flags(struct udevice *dev, u32 bic)
232 {
233 dev->flags_ &= ~bic;
234 }
235 #endif /* OF_PLATDATA_RT */
236
237 /**
238 * dev_ofnode() - get the DT node reference associated with a udevice
239 *
240 * @dev: device to check
241 * @return reference of the the device's DT node
242 */
dev_ofnode(const struct udevice * dev)243 static inline ofnode dev_ofnode(const struct udevice *dev)
244 {
245 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
246 return dev->node_;
247 #else
248 return ofnode_null();
249 #endif
250 }
251
252 /* Returns non-zero if the device is active (probed and not removed) */
253 #define device_active(dev) (dev_get_flags(dev) & DM_FLAG_ACTIVATED)
254
255 #if CONFIG_IS_ENABLED(DM_DMA)
256 #define dev_set_dma_offset(_dev, _offset) _dev->dma_offset = _offset
257 #define dev_get_dma_offset(_dev) _dev->dma_offset
258 #else
259 #define dev_set_dma_offset(_dev, _offset)
260 #define dev_get_dma_offset(_dev) 0
261 #endif
262
dev_of_offset(const struct udevice * dev)263 static inline int dev_of_offset(const struct udevice *dev)
264 {
265 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
266 return ofnode_to_offset(dev_ofnode(dev));
267 #else
268 return -1;
269 #endif
270 }
271
dev_has_ofnode(const struct udevice * dev)272 static inline bool dev_has_ofnode(const struct udevice *dev)
273 {
274 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
275 return ofnode_valid(dev_ofnode(dev));
276 #else
277 return false;
278 #endif
279 }
280
dev_set_ofnode(struct udevice * dev,ofnode node)281 static inline void dev_set_ofnode(struct udevice *dev, ofnode node)
282 {
283 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
284 dev->node_ = node;
285 #endif
286 }
287
dev_seq(const struct udevice * dev)288 static inline int dev_seq(const struct udevice *dev)
289 {
290 return dev->seq_;
291 }
292
293 /**
294 * struct udevice_id - Lists the compatible strings supported by a driver
295 * @compatible: Compatible string
296 * @data: Data for this compatible string
297 */
298 struct udevice_id {
299 const char *compatible;
300 ulong data;
301 };
302
303 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
304 #define of_match_ptr(_ptr) (_ptr)
305 #else
306 #define of_match_ptr(_ptr) NULL
307 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
308
309 /**
310 * struct driver - A driver for a feature or peripheral
311 *
312 * This holds methods for setting up a new device, and also removing it.
313 * The device needs information to set itself up - this is provided either
314 * by plat or a device tree node (which we find by looking up
315 * matching compatible strings with of_match).
316 *
317 * Drivers all belong to a uclass, representing a class of devices of the
318 * same type. Common elements of the drivers can be implemented in the uclass,
319 * or the uclass can provide a consistent interface to the drivers within
320 * it.
321 *
322 * @name: Device name
323 * @id: Identifies the uclass we belong to
324 * @of_match: List of compatible strings to match, and any identifying data
325 * for each.
326 * @bind: Called to bind a device to its driver
327 * @probe: Called to probe a device, i.e. activate it
328 * @remove: Called to remove a device, i.e. de-activate it
329 * @unbind: Called to unbind a device from its driver
330 * @of_to_plat: Called before probe to decode device tree data
331 * @child_post_bind: Called after a new child has been bound
332 * @child_pre_probe: Called before a child device is probed. The device has
333 * memory allocated but it has not yet been probed.
334 * @child_post_remove: Called after a child device is removed. The device
335 * has memory allocated but its device_remove() method has been called.
336 * @priv_auto: If non-zero this is the size of the private data
337 * to be allocated in the device's ->priv pointer. If zero, then the driver
338 * is responsible for allocating any data required.
339 * @plat_auto: If non-zero this is the size of the
340 * platform data to be allocated in the device's ->plat pointer.
341 * This is typically only useful for device-tree-aware drivers (those with
342 * an of_match), since drivers which use plat will have the data
343 * provided in the U_BOOT_DRVINFO() instantiation.
344 * @per_child_auto: Each device can hold private data owned by
345 * its parent. If required this will be automatically allocated if this
346 * value is non-zero.
347 * @per_child_plat_auto: A bus likes to store information about
348 * its children. If non-zero this is the size of this data, to be allocated
349 * in the child's parent_plat pointer.
350 * @ops: Driver-specific operations. This is typically a list of function
351 * pointers defined by the driver, to implement driver functions required by
352 * the uclass.
353 * @flags: driver flags - see DM_FLAGS_...
354 * @acpi_ops: Advanced Configuration and Power Interface (ACPI) operations,
355 * allowing the device to add things to the ACPI tables passed to Linux
356 */
357 struct driver {
358 char *name;
359 enum uclass_id id;
360 const struct udevice_id *of_match;
361 int (*bind)(struct udevice *dev);
362 int (*probe)(struct udevice *dev);
363 int (*remove)(struct udevice *dev);
364 int (*unbind)(struct udevice *dev);
365 int (*of_to_plat)(struct udevice *dev);
366 int (*child_post_bind)(struct udevice *dev);
367 int (*child_pre_probe)(struct udevice *dev);
368 int (*child_post_remove)(struct udevice *dev);
369 int priv_auto;
370 int plat_auto;
371 int per_child_auto;
372 int per_child_plat_auto;
373 const void *ops; /* driver-specific operations */
374 uint32_t flags;
375 #if CONFIG_IS_ENABLED(ACPIGEN)
376 struct acpi_ops *acpi_ops;
377 #endif
378 };
379
380 /* Declare a new U-Boot driver */
381 #define U_BOOT_DRIVER(__name) \
382 ll_entry_declare(struct driver, __name, driver)
383
384 /* Get a pointer to a given driver */
385 #define DM_DRIVER_GET(__name) \
386 ll_entry_get(struct driver, __name, driver)
387
388 /**
389 * DM_DRIVER_REF() - Get a reference to a driver
390 *
391 * This is useful in data structures and code for referencing a driver at
392 * build time. Before this is used, an extern U_BOOT_DRIVER() must have been
393 * declared.
394 *
395 * For example:
396 *
397 * extern U_BOOT_DRIVER(sandbox_fixed_clock);
398 *
399 * struct driver *drvs[] = {
400 * DM_DRIVER_REF(sandbox_fixed_clock),
401 * };
402 *
403 * @_name: Name of the driver. This must be a valid C identifier, used by the
404 * linker_list
405 * @returns struct driver * for the driver
406 */
407 #define DM_DRIVER_REF(_name) \
408 ll_entry_ref(struct driver, _name, driver)
409
410 /**
411 * Declare a macro to state a alias for a driver name. This macro will
412 * produce no code but its information will be parsed by tools like
413 * dtoc
414 */
415 #define DM_DRIVER_ALIAS(__name, __alias)
416
417 /**
418 * Declare a macro to indicate which phase of U-Boot this driver is fore.
419 *
420 *
421 * This macro produces no code but its information will be parsed by dtoc. The
422 * macro can be only be used once in a driver. Put it within the U_BOOT_DRIVER()
423 * declaration, e.g.:
424 *
425 * U_BOOT_DRIVER(cpu) = {
426 * .name = ...
427 * ...
428 * DM_PHASE(tpl)
429 * };
430 */
431 #define DM_PHASE(_phase)
432
433 /**
434 * Declare a macro to declare a header needed for a driver. Often the correct
435 * header can be found automatically, but only for struct declarations. For
436 * enums and #defines used in the driver declaration and declared in a different
437 * header from the structs, this macro must be used.
438 *
439 * This macro produces no code but its information will be parsed by dtoc. The
440 * macro can be used multiple times with different headers, for the same driver.
441 * Put it within the U_BOOT_DRIVER() declaration, e.g.:
442 *
443 * U_BOOT_DRIVER(cpu) = {
444 * .name = ...
445 * ...
446 * DM_HEADER(<asm/cpu.h>)
447 * };
448 */
449 #define DM_HEADER(_hdr)
450
451 /**
452 * dev_get_plat() - Get the platform data for a device
453 *
454 * This checks that dev is not NULL, but no other checks for now
455 *
456 * @dev Device to check
457 * @return platform data, or NULL if none
458 */
459 void *dev_get_plat(const struct udevice *dev);
460
461 /**
462 * dev_get_parent_plat() - Get the parent platform data for a device
463 *
464 * This checks that dev is not NULL, but no other checks for now
465 *
466 * @dev Device to check
467 * @return parent's platform data, or NULL if none
468 */
469 void *dev_get_parent_plat(const struct udevice *dev);
470
471 /**
472 * dev_get_uclass_plat() - Get the uclass platform data for a device
473 *
474 * This checks that dev is not NULL, but no other checks for now
475 *
476 * @dev Device to check
477 * @return uclass's platform data, or NULL if none
478 */
479 void *dev_get_uclass_plat(const struct udevice *dev);
480
481 /**
482 * dev_get_priv() - Get the private data for a device
483 *
484 * This checks that dev is not NULL, but no other checks for now
485 *
486 * @dev Device to check
487 * @return private data, or NULL if none
488 */
489 void *dev_get_priv(const struct udevice *dev);
490
491 /**
492 * dev_get_parent_priv() - Get the parent private data for a device
493 *
494 * The parent private data is data stored in the device but owned by the
495 * parent. For example, a USB device may have parent data which contains
496 * information about how to talk to the device over USB.
497 *
498 * This checks that dev is not NULL, but no other checks for now
499 *
500 * @dev Device to check
501 * @return parent data, or NULL if none
502 */
503 void *dev_get_parent_priv(const struct udevice *dev);
504
505 /**
506 * dev_get_uclass_priv() - Get the private uclass data for a device
507 *
508 * This checks that dev is not NULL, but no other checks for now
509 *
510 * @dev Device to check
511 * @return private uclass data for this device, or NULL if none
512 */
513 void *dev_get_uclass_priv(const struct udevice *dev);
514
515 /**
516 * struct dev_get_parent() - Get the parent of a device
517 *
518 * @child: Child to check
519 * @return parent of child, or NULL if this is the root device
520 */
521 struct udevice *dev_get_parent(const struct udevice *child);
522
523 /**
524 * dev_get_driver_data() - get the driver data used to bind a device
525 *
526 * When a device is bound using a device tree node, it matches a
527 * particular compatible string in struct udevice_id. This function
528 * returns the associated data value for that compatible string. This is
529 * the 'data' field in struct udevice_id.
530 *
531 * As an example, consider this structure:
532 * static const struct udevice_id tegra_i2c_ids[] = {
533 * { .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
534 * { .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
535 * { .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
536 * { }
537 * };
538 *
539 * When driver model finds a driver for this it will store the 'data' value
540 * corresponding to the compatible string it matches. This function returns
541 * that value. This allows the driver to handle several variants of a device.
542 *
543 * For USB devices, this is the driver_info field in struct usb_device_id.
544 *
545 * @dev: Device to check
546 * @return driver data (0 if none is provided)
547 */
548 ulong dev_get_driver_data(const struct udevice *dev);
549
550 /**
551 * dev_get_driver_ops() - get the device's driver's operations
552 *
553 * This checks that dev is not NULL, and returns the pointer to device's
554 * driver's operations.
555 *
556 * @dev: Device to check
557 * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
558 */
559 const void *dev_get_driver_ops(const struct udevice *dev);
560
561 /**
562 * device_get_uclass_id() - return the uclass ID of a device
563 *
564 * @dev: Device to check
565 * @return uclass ID for the device
566 */
567 enum uclass_id device_get_uclass_id(const struct udevice *dev);
568
569 /**
570 * dev_get_uclass_name() - return the uclass name of a device
571 *
572 * This checks that dev is not NULL.
573 *
574 * @dev: Device to check
575 * @return pointer to the uclass name for the device
576 */
577 const char *dev_get_uclass_name(const struct udevice *dev);
578
579 /**
580 * device_get_child() - Get the child of a device by index
581 *
582 * Returns the numbered child, 0 being the first. This does not use
583 * sequence numbers, only the natural order.
584 *
585 * @dev: Parent device to check
586 * @index: Child index
587 * @devp: Returns pointer to device
588 * @return 0 if OK, -ENODEV if no such device, other error if the device fails
589 * to probe
590 */
591 int device_get_child(const struct udevice *parent, int index,
592 struct udevice **devp);
593
594 /**
595 * device_get_child_count() - Get the available child count of a device
596 *
597 * Returns the number of children to a device.
598 *
599 * @parent: Parent device to check
600 */
601 int device_get_child_count(const struct udevice *parent);
602
603 /**
604 * device_find_child_by_seq() - Find a child device based on a sequence
605 *
606 * This searches for a device with the given seq.
607 *
608 * @parent: Parent device
609 * @seq: Sequence number to find (0=first)
610 * @devp: Returns pointer to device (there is only one per for each seq).
611 * Set to NULL if none is found
612 * @return 0 if OK, -ENODEV if not found
613 */
614 int device_find_child_by_seq(const struct udevice *parent, int seq,
615 struct udevice **devp);
616
617 /**
618 * device_get_child_by_seq() - Get a child device based on a sequence
619 *
620 * If an active device has this sequence it will be returned. If there is no
621 * such device then this will check for a device that is requesting this
622 * sequence.
623 *
624 * The device is probed to activate it ready for use.
625 *
626 * @parent: Parent device
627 * @seq: Sequence number to find (0=first)
628 * @devp: Returns pointer to device (there is only one per for each seq)
629 * Set to NULL if none is found
630 * @return 0 if OK, -ve on error
631 */
632 int device_get_child_by_seq(const struct udevice *parent, int seq,
633 struct udevice **devp);
634
635 /**
636 * device_find_child_by_of_offset() - Find a child device based on FDT offset
637 *
638 * Locates a child device by its device tree offset.
639 *
640 * @parent: Parent device
641 * @of_offset: Device tree offset to find
642 * @devp: Returns pointer to device if found, otherwise this is set to NULL
643 * @return 0 if OK, -ve on error
644 */
645 int device_find_child_by_of_offset(const struct udevice *parent, int of_offset,
646 struct udevice **devp);
647
648 /**
649 * device_get_child_by_of_offset() - Get a child device based on FDT offset
650 *
651 * Locates a child device by its device tree offset.
652 *
653 * The device is probed to activate it ready for use.
654 *
655 * @parent: Parent device
656 * @of_offset: Device tree offset to find
657 * @devp: Returns pointer to device if found, otherwise this is set to NULL
658 * @return 0 if OK, -ve on error
659 */
660 int device_get_child_by_of_offset(const struct udevice *parent, int of_offset,
661 struct udevice **devp);
662
663 /**
664 * device_find_global_by_ofnode() - Get a device based on ofnode
665 *
666 * Locates a device by its device tree ofnode, searching globally throughout
667 * the all driver model devices.
668 *
669 * The device is NOT probed
670 *
671 * @node: Device tree ofnode to find
672 * @devp: Returns pointer to device if found, otherwise this is set to NULL
673 * @return 0 if OK, -ve on error
674 */
675
676 int device_find_global_by_ofnode(ofnode node, struct udevice **devp);
677
678 /**
679 * device_get_global_by_ofnode() - Get a device based on ofnode
680 *
681 * Locates a device by its device tree ofnode, searching globally throughout
682 * the all driver model devices.
683 *
684 * The device is probed to activate it ready for use.
685 *
686 * @node: Device tree ofnode to find
687 * @devp: Returns pointer to device if found, otherwise this is set to NULL
688 * @return 0 if OK, -ve on error
689 */
690 int device_get_global_by_ofnode(ofnode node, struct udevice **devp);
691
692 /**
693 * device_get_by_ofplat_idx() - Get a device based on of-platdata index
694 *
695 * Locates a device by either its struct driver_info index, or its
696 * struct udevice index. The latter is used with OF_PLATDATA_INST, since we have
697 * a list of build-time instantiated struct udevice records, The former is used
698 * with !OF_PLATDATA_INST since in that case we have a list of
699 * struct driver_info records.
700 *
701 * The index number is written into the idx field of struct phandle_1_arg, etc.
702 * It is the position of this driver_info/udevice in its linker list.
703 *
704 * The device is probed to activate it ready for use.
705 *
706 * @idx: Index number of the driver_info/udevice structure (0=first)
707 * @devp: Returns pointer to device if found, otherwise this is set to NULL
708 * @return 0 if OK, -ve on error
709 */
710 int device_get_by_ofplat_idx(uint idx, struct udevice **devp);
711
712 /**
713 * device_find_first_child() - Find the first child of a device
714 *
715 * @parent: Parent device to search
716 * @devp: Returns first child device, or NULL if none
717 * @return 0
718 */
719 int device_find_first_child(const struct udevice *parent,
720 struct udevice **devp);
721
722 /**
723 * device_find_next_child() - Find the next child of a device
724 *
725 * @devp: Pointer to previous child device on entry. Returns pointer to next
726 * child device, or NULL if none
727 * @return 0
728 */
729 int device_find_next_child(struct udevice **devp);
730
731 /**
732 * device_find_first_inactive_child() - Find the first inactive child
733 *
734 * This is used to locate an existing child of a device which is of a given
735 * uclass.
736 *
737 * The device is NOT probed
738 *
739 * @parent: Parent device to search
740 * @uclass_id: Uclass to look for
741 * @devp: Returns device found, if any
742 * @return 0 if found, else -ENODEV
743 */
744 int device_find_first_inactive_child(const struct udevice *parent,
745 enum uclass_id uclass_id,
746 struct udevice **devp);
747
748 /**
749 * device_find_first_child_by_uclass() - Find the first child of a device in uc
750 *
751 * @parent: Parent device to search
752 * @uclass_id: Uclass to look for
753 * @devp: Returns first child device in that uclass, if any
754 * @return 0 if found, else -ENODEV
755 */
756 int device_find_first_child_by_uclass(const struct udevice *parent,
757 enum uclass_id uclass_id,
758 struct udevice **devp);
759
760 /**
761 * device_find_child_by_name() - Find a child by device name
762 *
763 * @parent: Parent device to search
764 * @name: Name to look for
765 * @devp: Returns device found, if any
766 * @return 0 if found, else -ENODEV
767 */
768 int device_find_child_by_name(const struct udevice *parent, const char *name,
769 struct udevice **devp);
770
771 /**
772 * device_first_child_ofdata_err() - Find the first child and reads its plat
773 *
774 * The of_to_plat() method is called on the child before it is returned,
775 * but the child is not probed.
776 *
777 * @parent: Parent to check
778 * @devp: Returns child that was found, if any
779 * @return 0 on success, -ENODEV if no children, other -ve on error
780 */
781 int device_first_child_ofdata_err(struct udevice *parent,
782 struct udevice **devp);
783
784 /*
785 * device_next_child_ofdata_err() - Find the next child and read its plat
786 *
787 * The of_to_plat() method is called on the child before it is returned,
788 * but the child is not probed.
789 *
790 * @devp: On entry, points to the previous child; on exit returns the child that
791 * was found, if any
792 * @return 0 on success, -ENODEV if no children, other -ve on error
793 */
794 int device_next_child_ofdata_err(struct udevice **devp);
795
796 /**
797 * device_first_child_err() - Get the first child of a device
798 *
799 * The device returned is probed if necessary, and ready for use
800 *
801 * @parent: Parent device to search
802 * @devp: Returns device found, if any
803 * @return 0 if found, -ENODEV if not, -ve error if device failed to probe
804 */
805 int device_first_child_err(struct udevice *parent, struct udevice **devp);
806
807 /**
808 * device_next_child_err() - Get the next child of a parent device
809 *
810 * The device returned is probed if necessary, and ready for use
811 *
812 * @devp: On entry, pointer to device to lookup. On exit, returns pointer
813 * to the next sibling if no error occurred
814 * @return 0 if found, -ENODEV if not, -ve error if device failed to probe
815 */
816 int device_next_child_err(struct udevice **devp);
817
818 /**
819 * device_has_children() - check if a device has any children
820 *
821 * @dev: Device to check
822 * @return true if the device has one or more children
823 */
824 bool device_has_children(const struct udevice *dev);
825
826 /**
827 * device_has_active_children() - check if a device has any active children
828 *
829 * @dev: Device to check
830 * @return true if the device has one or more children and at least one of
831 * them is active (probed).
832 */
833 bool device_has_active_children(const struct udevice *dev);
834
835 /**
836 * device_is_last_sibling() - check if a device is the last sibling
837 *
838 * This function can be useful for display purposes, when special action needs
839 * to be taken when displaying the last sibling. This can happen when a tree
840 * view of devices is being displayed.
841 *
842 * @dev: Device to check
843 * @return true if there are no more siblings after this one - i.e. is it
844 * last in the list.
845 */
846 bool device_is_last_sibling(const struct udevice *dev);
847
848 /**
849 * device_set_name() - set the name of a device
850 *
851 * This must be called in the device's bind() method and no later. Normally
852 * this is unnecessary but for probed devices which don't get a useful name
853 * this function can be helpful.
854 *
855 * The name is allocated and will be freed automatically when the device is
856 * unbound.
857 *
858 * @dev: Device to update
859 * @name: New name (this string is allocated new memory and attached to
860 * the device)
861 * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
862 * string
863 */
864 int device_set_name(struct udevice *dev, const char *name);
865
866 /**
867 * device_set_name_alloced() - note that a device name is allocated
868 *
869 * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
870 * unbound the name will be freed. This avoids memory leaks.
871 *
872 * @dev: Device to update
873 */
874 void device_set_name_alloced(struct udevice *dev);
875
876 /**
877 * device_is_compatible() - check if the device is compatible with the compat
878 *
879 * This allows to check whether the device is comaptible with the compat.
880 *
881 * @dev: udevice pointer for which compatible needs to be verified.
882 * @compat: Compatible string which needs to verified in the given
883 * device
884 * @return true if OK, false if the compatible is not found
885 */
886 bool device_is_compatible(const struct udevice *dev, const char *compat);
887
888 /**
889 * of_machine_is_compatible() - check if the machine is compatible with
890 * the compat
891 *
892 * This allows to check whether the machine is comaptible with the compat.
893 *
894 * @compat: Compatible string which needs to verified
895 * @return true if OK, false if the compatible is not found
896 */
897 bool of_machine_is_compatible(const char *compat);
898
899 /**
900 * dev_disable_by_path() - Disable a device given its device tree path
901 *
902 * @path: The device tree path identifying the device to be disabled
903 * @return 0 on success, -ve on error
904 */
905 int dev_disable_by_path(const char *path);
906
907 /**
908 * dev_enable_by_path() - Enable a device given its device tree path
909 *
910 * @path: The device tree path identifying the device to be enabled
911 * @return 0 on success, -ve on error
912 */
913 int dev_enable_by_path(const char *path);
914
915 /**
916 * device_is_on_pci_bus - Test if a device is on a PCI bus
917 *
918 * @dev: device to test
919 * @return: true if it is on a PCI bus, false otherwise
920 */
device_is_on_pci_bus(const struct udevice * dev)921 static inline bool device_is_on_pci_bus(const struct udevice *dev)
922 {
923 return dev->parent && device_get_uclass_id(dev->parent) == UCLASS_PCI;
924 }
925
926 /**
927 * device_foreach_child_safe() - iterate through child devices safely
928 *
929 * This allows the @pos child to be removed in the loop if required.
930 *
931 * @pos: struct udevice * for the current device
932 * @next: struct udevice * for the next device
933 * @parent: parent device to scan
934 */
935 #define device_foreach_child_safe(pos, next, parent) \
936 list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
937
938 /**
939 * device_foreach_child() - iterate through child devices
940 *
941 * @pos: struct udevice * for the current device
942 * @parent: parent device to scan
943 */
944 #define device_foreach_child(pos, parent) \
945 list_for_each_entry(pos, &parent->child_head, sibling_node)
946
947 /**
948 * device_foreach_child_of_to_plat() - iterate through children
949 *
950 * This stops when it gets an error, with @pos set to the device that failed to
951 * read ofdata.
952
953 * This creates a for() loop which works through the available children of
954 * a device in order from start to end. Device ofdata is read by calling
955 * device_of_to_plat() on each one. The devices are not probed.
956 *
957 * @pos: struct udevice * for the current device
958 * @parent: parent device to scan
959 */
960 #define device_foreach_child_of_to_plat(pos, parent) \
961 for (int _ret = device_first_child_ofdata_err(parent, &dev); !_ret; \
962 _ret = device_next_child_ofdata_err(&dev))
963
964 /**
965 * device_foreach_child_probe() - iterate through children, probing them
966 *
967 * This creates a for() loop which works through the available children of
968 * a device in order from start to end. Devices are probed if necessary,
969 * and ready for use.
970 *
971 * This stops when it gets an error, with @pos set to the device that failed to
972 * probe
973 *
974 * @pos: struct udevice * for the current device
975 * @parent: parent device to scan
976 */
977 #define device_foreach_child_probe(pos, parent) \
978 for (int _ret = device_first_child_err(parent, &dev); !_ret; \
979 _ret = device_next_child_err(&dev))
980
981 /**
982 * dm_scan_fdt_dev() - Bind child device in the device tree
983 *
984 * This handles device which have sub-nodes in the device tree. It scans all
985 * sub-nodes and binds drivers for each node where a driver can be found.
986 *
987 * If this is called prior to relocation, only pre-relocation devices will be
988 * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
989 * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
990 * be bound.
991 *
992 * @dev: Device to scan
993 * @return 0 if OK, -ve on error
994 */
995 int dm_scan_fdt_dev(struct udevice *dev);
996
997 #endif
998