1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Copyright (c) 2013 Google, Inc
4  *
5  * (C) Copyright 2012
6  * Pavel Herrmann <morpheus.ibis@gmail.com>
7  * Marek Vasut <marex@denx.de>
8  */
9 
10 #ifndef _DM_DEVICE_H
11 #define _DM_DEVICE_H
12 
13 #include <dm/ofnode.h>
14 #include <dm/uclass-id.h>
15 #include <fdtdec.h>
16 #include <linker_lists.h>
17 #include <linux/kernel.h>
18 #include <linux/list.h>
19 #include <linux/printk.h>
20 
21 struct driver_info;
22 
23 /* Driver is active (probed). Cleared when it is removed */
24 #define DM_FLAG_ACTIVATED		(1 << 0)
25 
26 /* DM is responsible for allocating and freeing plat */
27 #define DM_FLAG_ALLOC_PDATA		(1 << 1)
28 
29 /* DM should init this device prior to relocation */
30 #define DM_FLAG_PRE_RELOC		(1 << 2)
31 
32 /* DM is responsible for allocating and freeing parent_plat */
33 #define DM_FLAG_ALLOC_PARENT_PDATA	(1 << 3)
34 
35 /* DM is responsible for allocating and freeing uclass_plat */
36 #define DM_FLAG_ALLOC_UCLASS_PDATA	(1 << 4)
37 
38 /* Allocate driver private data on a DMA boundary */
39 #define DM_FLAG_ALLOC_PRIV_DMA		(1 << 5)
40 
41 /* Device is bound */
42 #define DM_FLAG_BOUND			(1 << 6)
43 
44 /* Device name is allocated and should be freed on unbind() */
45 #define DM_FLAG_NAME_ALLOCED		(1 << 7)
46 
47 /* Device has platform data provided by of-platdata */
48 #define DM_FLAG_OF_PLATDATA		(1 << 8)
49 
50 /*
51  * Call driver remove function to stop currently active DMA transfers or
52  * give DMA buffers back to the HW / controller. This may be needed for
53  * some drivers to do some final stage cleanup before the OS is called
54  * (U-Boot exit)
55  */
56 #define DM_FLAG_ACTIVE_DMA		(1 << 9)
57 
58 /*
59  * Call driver remove function to do some final configuration, before
60  * U-Boot exits and the OS is started
61  */
62 #define DM_FLAG_OS_PREPARE		(1 << 10)
63 
64 /* DM does not enable/disable the power domains corresponding to this device */
65 #define DM_FLAG_DEFAULT_PD_CTRL_OFF	(1 << 11)
66 
67 /* Driver plat has been read. Cleared when the device is removed */
68 #define DM_FLAG_PLATDATA_VALID		(1 << 12)
69 
70 /*
71  * Device is removed without switching off its power domain. This might
72  * be required, i. e. for serial console (debug) output when booting OS.
73  */
74 #define DM_FLAG_LEAVE_PD_ON		(1 << 13)
75 
76 /*
77  * Device is vital to the operation of other devices. It is possible to remove
78  * removed this device after all regular devices are removed. This is useful
79  * e.g. for clock, which need to be active during the device-removal phase.
80  */
81 #define DM_FLAG_VITAL			(1 << 14)
82 
83 /*
84  * One or multiple of these flags are passed to device_remove() so that
85  * a selective device removal as specified by the remove-stage and the
86  * driver flags can be done.
87  *
88  * DO NOT use these flags in your driver's @flags value...
89  *	use the above DM_FLAG_... values instead
90  */
91 enum {
92 	/* Normal remove, remove all devices */
93 	DM_REMOVE_NORMAL	= 1 << 0,
94 
95 	/* Remove devices with active DMA */
96 	DM_REMOVE_ACTIVE_DMA	= DM_FLAG_ACTIVE_DMA,
97 
98 	/* Remove devices which need some final OS preparation steps */
99 	DM_REMOVE_OS_PREPARE	= DM_FLAG_OS_PREPARE,
100 
101 	/* Remove only devices that are not marked vital */
102 	DM_REMOVE_NON_VITAL	= DM_FLAG_VITAL,
103 
104 	/* Remove devices with any active flag */
105 	DM_REMOVE_ACTIVE_ALL	= DM_REMOVE_ACTIVE_DMA | DM_REMOVE_OS_PREPARE,
106 
107 	/* Don't power down any attached power domains */
108 	DM_REMOVE_NO_PD		= 1 << 1,
109 };
110 
111 /**
112  * struct udevice - An instance of a driver
113  *
114  * This holds information about a device, which is a driver bound to a
115  * particular port or peripheral (essentially a driver instance).
116  *
117  * A device will come into existence through a 'bind' call, either due to
118  * a U_BOOT_DRVINFO() macro (in which case plat is non-NULL) or a node
119  * in the device tree (in which case of_offset is >= 0). In the latter case
120  * we translate the device tree information into plat in a function
121  * implemented by the driver of_to_plat method (called just before the
122  * probe method if the device has a device tree node.
123  *
124  * All three of plat, priv and uclass_priv can be allocated by the
125  * driver, or you can use the auto members of struct driver and
126  * struct uclass_driver to have driver model do this automatically.
127  *
128  * @driver: The driver used by this device
129  * @name: Name of device, typically the FDT node name
130  * @plat_: Configuration data for this device (do not access outside driver
131  *	model)
132  * @parent_plat_: The parent bus's configuration data for this device (do not
133  *	access outside driver model)
134  * @uclass_plat_: The uclass's configuration data for this device (do not access
135  *	outside driver model)
136  * @driver_data: Driver data word for the entry that matched this device with
137  *		its driver
138  * @parent: Parent of this device, or NULL for the top level device
139  * @priv_: Private data for this device (do not access outside driver model)
140  * @uclass: Pointer to uclass for this device
141  * @uclass_priv_: The uclass's private data for this device (do not access
142  *	outside driver model)
143  * @parent_priv_: The parent's private data for this device (do not access
144  *	outside driver model)
145  * @uclass_node: Used by uclass to link its devices
146  * @child_head: List of children of this device
147  * @sibling_node: Next device in list of all devices
148  * @flags_: Flags for this device DM_FLAG_... (do not access outside driver
149  *	model)
150  * @seq_: Allocated sequence number for this device (-1 = none). This is set up
151  * when the device is bound and is unique within the device's uclass. If the
152  * device has an alias in the devicetree then that is used to set the sequence
153  * number. Otherwise, the next available number is used. Sequence numbers are
154  * used by certain commands that need device to be numbered (e.g. 'mmc dev').
155  * (do not access outside driver model)
156  * @node_: Reference to device tree node for this device (do not access outside
157  *	driver model)
158  * @devres_head: List of memory allocations associated with this device.
159  *		When CONFIG_DEVRES is enabled, devm_kmalloc() and friends will
160  *		add to this list. Memory so-allocated will be freed
161  *		automatically when the device is removed / unbound
162  * @dma_offset: Offset between the physical address space (CPU's) and the
163  *		device's bus address space
164  */
165 struct udevice {
166 	const struct driver *driver;
167 	const char *name;
168 	void *plat_;
169 	void *parent_plat_;
170 	void *uclass_plat_;
171 	ulong driver_data;
172 	struct udevice *parent;
173 	void *priv_;
174 	struct uclass *uclass;
175 	void *uclass_priv_;
176 	void *parent_priv_;
177 	struct list_head uclass_node;
178 	struct list_head child_head;
179 	struct list_head sibling_node;
180 #if !CONFIG_IS_ENABLED(OF_PLATDATA_RT)
181 	u32 flags_;
182 #endif
183 	int seq_;
184 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
185 	ofnode node_;
186 #endif
187 #ifdef CONFIG_DEVRES
188 	struct list_head devres_head;
189 #endif
190 #if CONFIG_IS_ENABLED(DM_DMA)
191 	ulong dma_offset;
192 #endif
193 };
194 
195 /**
196  * udevice_rt - runtime information set up by U-Boot
197  *
198  * This is only used with OF_PLATDATA_RT
199  *
200  * There is one of these for every udevice in the linker list, indexed by
201  * the udevice_info idx value.
202  *
203  * @flags_: Flags for this device DM_FLAG_... (do not access outside driver
204  *	model)
205  */
206 struct udevice_rt {
207 	u32 flags_;
208 };
209 
210 /* Maximum sequence number supported */
211 #define DM_MAX_SEQ	999
212 
213 /* Returns the operations for a device */
214 #define device_get_ops(dev)	(dev->driver->ops)
215 
216 #if CONFIG_IS_ENABLED(OF_PLATDATA_RT)
217 u32 dev_get_flags(const struct udevice *dev);
218 void dev_or_flags(const struct udevice *dev, u32 or);
219 void dev_bic_flags(const struct udevice *dev, u32 bic);
220 #else
dev_get_flags(const struct udevice * dev)221 static inline u32 dev_get_flags(const struct udevice *dev)
222 {
223 	return dev->flags_;
224 }
225 
dev_or_flags(struct udevice * dev,u32 or)226 static inline void dev_or_flags(struct udevice *dev, u32 or)
227 {
228 	dev->flags_ |= or;
229 }
230 
dev_bic_flags(struct udevice * dev,u32 bic)231 static inline void dev_bic_flags(struct udevice *dev, u32 bic)
232 {
233 	dev->flags_ &= ~bic;
234 }
235 #endif /* OF_PLATDATA_RT */
236 
237 /**
238  * dev_ofnode() - get the DT node reference associated with a udevice
239  *
240  * @dev:	device to check
241  * @return reference of the the device's DT node
242  */
dev_ofnode(const struct udevice * dev)243 static inline ofnode dev_ofnode(const struct udevice *dev)
244 {
245 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
246 	return dev->node_;
247 #else
248 	return ofnode_null();
249 #endif
250 }
251 
252 /* Returns non-zero if the device is active (probed and not removed) */
253 #define device_active(dev)	(dev_get_flags(dev) & DM_FLAG_ACTIVATED)
254 
255 #if CONFIG_IS_ENABLED(DM_DMA)
256 #define dev_set_dma_offset(_dev, _offset)	_dev->dma_offset = _offset
257 #define dev_get_dma_offset(_dev)		_dev->dma_offset
258 #else
259 #define dev_set_dma_offset(_dev, _offset)
260 #define dev_get_dma_offset(_dev)		0
261 #endif
262 
dev_of_offset(const struct udevice * dev)263 static inline int dev_of_offset(const struct udevice *dev)
264 {
265 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
266 	return ofnode_to_offset(dev_ofnode(dev));
267 #else
268 	return -1;
269 #endif
270 }
271 
dev_has_ofnode(const struct udevice * dev)272 static inline bool dev_has_ofnode(const struct udevice *dev)
273 {
274 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
275 	return ofnode_valid(dev_ofnode(dev));
276 #else
277 	return false;
278 #endif
279 }
280 
dev_set_ofnode(struct udevice * dev,ofnode node)281 static inline void dev_set_ofnode(struct udevice *dev, ofnode node)
282 {
283 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
284 	dev->node_ = node;
285 #endif
286 }
287 
dev_seq(const struct udevice * dev)288 static inline int dev_seq(const struct udevice *dev)
289 {
290 	return dev->seq_;
291 }
292 
293 /**
294  * struct udevice_id - Lists the compatible strings supported by a driver
295  * @compatible: Compatible string
296  * @data: Data for this compatible string
297  */
298 struct udevice_id {
299 	const char *compatible;
300 	ulong data;
301 };
302 
303 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
304 #define of_match_ptr(_ptr)	(_ptr)
305 #else
306 #define of_match_ptr(_ptr)	NULL
307 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
308 
309 /**
310  * struct driver - A driver for a feature or peripheral
311  *
312  * This holds methods for setting up a new device, and also removing it.
313  * The device needs information to set itself up - this is provided either
314  * by plat or a device tree node (which we find by looking up
315  * matching compatible strings with of_match).
316  *
317  * Drivers all belong to a uclass, representing a class of devices of the
318  * same type. Common elements of the drivers can be implemented in the uclass,
319  * or the uclass can provide a consistent interface to the drivers within
320  * it.
321  *
322  * @name: Device name
323  * @id: Identifies the uclass we belong to
324  * @of_match: List of compatible strings to match, and any identifying data
325  * for each.
326  * @bind: Called to bind a device to its driver
327  * @probe: Called to probe a device, i.e. activate it
328  * @remove: Called to remove a device, i.e. de-activate it
329  * @unbind: Called to unbind a device from its driver
330  * @of_to_plat: Called before probe to decode device tree data
331  * @child_post_bind: Called after a new child has been bound
332  * @child_pre_probe: Called before a child device is probed. The device has
333  * memory allocated but it has not yet been probed.
334  * @child_post_remove: Called after a child device is removed. The device
335  * has memory allocated but its device_remove() method has been called.
336  * @priv_auto: If non-zero this is the size of the private data
337  * to be allocated in the device's ->priv pointer. If zero, then the driver
338  * is responsible for allocating any data required.
339  * @plat_auto: If non-zero this is the size of the
340  * platform data to be allocated in the device's ->plat pointer.
341  * This is typically only useful for device-tree-aware drivers (those with
342  * an of_match), since drivers which use plat will have the data
343  * provided in the U_BOOT_DRVINFO() instantiation.
344  * @per_child_auto: Each device can hold private data owned by
345  * its parent. If required this will be automatically allocated if this
346  * value is non-zero.
347  * @per_child_plat_auto: A bus likes to store information about
348  * its children. If non-zero this is the size of this data, to be allocated
349  * in the child's parent_plat pointer.
350  * @ops: Driver-specific operations. This is typically a list of function
351  * pointers defined by the driver, to implement driver functions required by
352  * the uclass.
353  * @flags: driver flags - see DM_FLAGS_...
354  * @acpi_ops: Advanced Configuration and Power Interface (ACPI) operations,
355  * allowing the device to add things to the ACPI tables passed to Linux
356  */
357 struct driver {
358 	char *name;
359 	enum uclass_id id;
360 	const struct udevice_id *of_match;
361 	int (*bind)(struct udevice *dev);
362 	int (*probe)(struct udevice *dev);
363 	int (*remove)(struct udevice *dev);
364 	int (*unbind)(struct udevice *dev);
365 	int (*of_to_plat)(struct udevice *dev);
366 	int (*child_post_bind)(struct udevice *dev);
367 	int (*child_pre_probe)(struct udevice *dev);
368 	int (*child_post_remove)(struct udevice *dev);
369 	int priv_auto;
370 	int plat_auto;
371 	int per_child_auto;
372 	int per_child_plat_auto;
373 	const void *ops;	/* driver-specific operations */
374 	uint32_t flags;
375 #if CONFIG_IS_ENABLED(ACPIGEN)
376 	struct acpi_ops *acpi_ops;
377 #endif
378 };
379 
380 /* Declare a new U-Boot driver */
381 #define U_BOOT_DRIVER(__name)						\
382 	ll_entry_declare(struct driver, __name, driver)
383 
384 /* Get a pointer to a given driver */
385 #define DM_DRIVER_GET(__name)						\
386 	ll_entry_get(struct driver, __name, driver)
387 
388 /**
389  * DM_DRIVER_REF() - Get a reference to a driver
390  *
391  * This is useful in data structures and code for referencing a driver at
392  * build time. Before this is used, an extern U_BOOT_DRIVER() must have been
393  * declared.
394  *
395  * For example:
396  *
397  * extern U_BOOT_DRIVER(sandbox_fixed_clock);
398  *
399  * struct driver *drvs[] = {
400  *	DM_DRIVER_REF(sandbox_fixed_clock),
401  * };
402  *
403  * @_name: Name of the driver. This must be a valid C identifier, used by the
404  *	linker_list
405  * @returns struct driver * for the driver
406  */
407 #define DM_DRIVER_REF(_name)					\
408 	ll_entry_ref(struct driver, _name, driver)
409 
410 /**
411  * Declare a macro to state a alias for a driver name. This macro will
412  * produce no code but its information will be parsed by tools like
413  * dtoc
414  */
415 #define DM_DRIVER_ALIAS(__name, __alias)
416 
417 /**
418  * Declare a macro to indicate which phase of U-Boot this driver is fore.
419  *
420  *
421  * This macro produces no code but its information will be parsed by dtoc. The
422  * macro can be only be used once in a driver. Put it within the U_BOOT_DRIVER()
423  * declaration, e.g.:
424  *
425  * U_BOOT_DRIVER(cpu) = {
426  *	.name = ...
427  *	...
428  *	DM_PHASE(tpl)
429  * };
430  */
431 #define DM_PHASE(_phase)
432 
433 /**
434  * Declare a macro to declare a header needed for a driver. Often the correct
435  * header can be found automatically, but only for struct declarations. For
436  * enums and #defines used in the driver declaration and declared in a different
437  * header from the structs, this macro must be used.
438  *
439  * This macro produces no code but its information will be parsed by dtoc. The
440  * macro can be used multiple times with different headers, for the same driver.
441  * Put it within the U_BOOT_DRIVER() declaration, e.g.:
442  *
443  * U_BOOT_DRIVER(cpu) = {
444  *	.name = ...
445  *	...
446  *	DM_HEADER(<asm/cpu.h>)
447  * };
448  */
449 #define DM_HEADER(_hdr)
450 
451 /**
452  * dev_get_plat() - Get the platform data for a device
453  *
454  * This checks that dev is not NULL, but no other checks for now
455  *
456  * @dev		Device to check
457  * @return platform data, or NULL if none
458  */
459 void *dev_get_plat(const struct udevice *dev);
460 
461 /**
462  * dev_get_parent_plat() - Get the parent platform data for a device
463  *
464  * This checks that dev is not NULL, but no other checks for now
465  *
466  * @dev		Device to check
467  * @return parent's platform data, or NULL if none
468  */
469 void *dev_get_parent_plat(const struct udevice *dev);
470 
471 /**
472  * dev_get_uclass_plat() - Get the uclass platform data for a device
473  *
474  * This checks that dev is not NULL, but no other checks for now
475  *
476  * @dev		Device to check
477  * @return uclass's platform data, or NULL if none
478  */
479 void *dev_get_uclass_plat(const struct udevice *dev);
480 
481 /**
482  * dev_get_priv() - Get the private data for a device
483  *
484  * This checks that dev is not NULL, but no other checks for now
485  *
486  * @dev		Device to check
487  * @return private data, or NULL if none
488  */
489 void *dev_get_priv(const struct udevice *dev);
490 
491 /**
492  * dev_get_parent_priv() - Get the parent private data for a device
493  *
494  * The parent private data is data stored in the device but owned by the
495  * parent. For example, a USB device may have parent data which contains
496  * information about how to talk to the device over USB.
497  *
498  * This checks that dev is not NULL, but no other checks for now
499  *
500  * @dev		Device to check
501  * @return parent data, or NULL if none
502  */
503 void *dev_get_parent_priv(const struct udevice *dev);
504 
505 /**
506  * dev_get_uclass_priv() - Get the private uclass data for a device
507  *
508  * This checks that dev is not NULL, but no other checks for now
509  *
510  * @dev		Device to check
511  * @return private uclass data for this device, or NULL if none
512  */
513 void *dev_get_uclass_priv(const struct udevice *dev);
514 
515 /**
516  * struct dev_get_parent() - Get the parent of a device
517  *
518  * @child:	Child to check
519  * @return parent of child, or NULL if this is the root device
520  */
521 struct udevice *dev_get_parent(const struct udevice *child);
522 
523 /**
524  * dev_get_driver_data() - get the driver data used to bind a device
525  *
526  * When a device is bound using a device tree node, it matches a
527  * particular compatible string in struct udevice_id. This function
528  * returns the associated data value for that compatible string. This is
529  * the 'data' field in struct udevice_id.
530  *
531  * As an example, consider this structure:
532  * static const struct udevice_id tegra_i2c_ids[] = {
533  *	{ .compatible = "nvidia,tegra114-i2c", .data = TYPE_114 },
534  *	{ .compatible = "nvidia,tegra20-i2c", .data = TYPE_STD },
535  *	{ .compatible = "nvidia,tegra20-i2c-dvc", .data = TYPE_DVC },
536  *	{ }
537  * };
538  *
539  * When driver model finds a driver for this it will store the 'data' value
540  * corresponding to the compatible string it matches. This function returns
541  * that value. This allows the driver to handle several variants of a device.
542  *
543  * For USB devices, this is the driver_info field in struct usb_device_id.
544  *
545  * @dev:	Device to check
546  * @return driver data (0 if none is provided)
547  */
548 ulong dev_get_driver_data(const struct udevice *dev);
549 
550 /**
551  * dev_get_driver_ops() - get the device's driver's operations
552  *
553  * This checks that dev is not NULL, and returns the pointer to device's
554  * driver's operations.
555  *
556  * @dev:	Device to check
557  * @return void pointer to driver's operations or NULL for NULL-dev or NULL-ops
558  */
559 const void *dev_get_driver_ops(const struct udevice *dev);
560 
561 /**
562  * device_get_uclass_id() - return the uclass ID of a device
563  *
564  * @dev:	Device to check
565  * @return uclass ID for the device
566  */
567 enum uclass_id device_get_uclass_id(const struct udevice *dev);
568 
569 /**
570  * dev_get_uclass_name() - return the uclass name of a device
571  *
572  * This checks that dev is not NULL.
573  *
574  * @dev:	Device to check
575  * @return  pointer to the uclass name for the device
576  */
577 const char *dev_get_uclass_name(const struct udevice *dev);
578 
579 /**
580  * device_get_child() - Get the child of a device by index
581  *
582  * Returns the numbered child, 0 being the first. This does not use
583  * sequence numbers, only the natural order.
584  *
585  * @dev:	Parent device to check
586  * @index:	Child index
587  * @devp:	Returns pointer to device
588  * @return 0 if OK, -ENODEV if no such device, other error if the device fails
589  *	   to probe
590  */
591 int device_get_child(const struct udevice *parent, int index,
592 		     struct udevice **devp);
593 
594 /**
595  * device_get_child_count() - Get the available child count of a device
596  *
597  * Returns the number of children to a device.
598  *
599  * @parent:	Parent device to check
600  */
601 int device_get_child_count(const struct udevice *parent);
602 
603 /**
604  * device_find_child_by_seq() - Find a child device based on a sequence
605  *
606  * This searches for a device with the given seq.
607  *
608  * @parent: Parent device
609  * @seq: Sequence number to find (0=first)
610  * @devp: Returns pointer to device (there is only one per for each seq).
611  * Set to NULL if none is found
612  * @return 0 if OK, -ENODEV if not found
613  */
614 int device_find_child_by_seq(const struct udevice *parent, int seq,
615 			     struct udevice **devp);
616 
617 /**
618  * device_get_child_by_seq() - Get a child device based on a sequence
619  *
620  * If an active device has this sequence it will be returned. If there is no
621  * such device then this will check for a device that is requesting this
622  * sequence.
623  *
624  * The device is probed to activate it ready for use.
625  *
626  * @parent: Parent device
627  * @seq: Sequence number to find (0=first)
628  * @devp: Returns pointer to device (there is only one per for each seq)
629  * Set to NULL if none is found
630  * @return 0 if OK, -ve on error
631  */
632 int device_get_child_by_seq(const struct udevice *parent, int seq,
633 			    struct udevice **devp);
634 
635 /**
636  * device_find_child_by_of_offset() - Find a child device based on FDT offset
637  *
638  * Locates a child device by its device tree offset.
639  *
640  * @parent: Parent device
641  * @of_offset: Device tree offset to find
642  * @devp: Returns pointer to device if found, otherwise this is set to NULL
643  * @return 0 if OK, -ve on error
644  */
645 int device_find_child_by_of_offset(const struct udevice *parent, int of_offset,
646 				   struct udevice **devp);
647 
648 /**
649  * device_get_child_by_of_offset() - Get a child device based on FDT offset
650  *
651  * Locates a child device by its device tree offset.
652  *
653  * The device is probed to activate it ready for use.
654  *
655  * @parent: Parent device
656  * @of_offset: Device tree offset to find
657  * @devp: Returns pointer to device if found, otherwise this is set to NULL
658  * @return 0 if OK, -ve on error
659  */
660 int device_get_child_by_of_offset(const struct udevice *parent, int of_offset,
661 				  struct udevice **devp);
662 
663 /**
664  * device_find_global_by_ofnode() - Get a device based on ofnode
665  *
666  * Locates a device by its device tree ofnode, searching globally throughout
667  * the all driver model devices.
668  *
669  * The device is NOT probed
670  *
671  * @node: Device tree ofnode to find
672  * @devp: Returns pointer to device if found, otherwise this is set to NULL
673  * @return 0 if OK, -ve on error
674  */
675 
676 int device_find_global_by_ofnode(ofnode node, struct udevice **devp);
677 
678 /**
679  * device_get_global_by_ofnode() - Get a device based on ofnode
680  *
681  * Locates a device by its device tree ofnode, searching globally throughout
682  * the all driver model devices.
683  *
684  * The device is probed to activate it ready for use.
685  *
686  * @node: Device tree ofnode to find
687  * @devp: Returns pointer to device if found, otherwise this is set to NULL
688  * @return 0 if OK, -ve on error
689  */
690 int device_get_global_by_ofnode(ofnode node, struct udevice **devp);
691 
692 /**
693  * device_get_by_ofplat_idx() - Get a device based on of-platdata index
694  *
695  * Locates a device by either its struct driver_info index, or its
696  * struct udevice index. The latter is used with OF_PLATDATA_INST, since we have
697  * a list of build-time instantiated struct udevice records, The former is used
698  * with !OF_PLATDATA_INST since in that case we have a list of
699  * struct driver_info records.
700  *
701  * The index number is written into the idx field of struct phandle_1_arg, etc.
702  * It is the position of this driver_info/udevice in its linker list.
703  *
704  * The device is probed to activate it ready for use.
705  *
706  * @idx: Index number of the driver_info/udevice structure (0=first)
707  * @devp: Returns pointer to device if found, otherwise this is set to NULL
708  * @return 0 if OK, -ve on error
709  */
710 int device_get_by_ofplat_idx(uint idx, struct udevice **devp);
711 
712 /**
713  * device_find_first_child() - Find the first child of a device
714  *
715  * @parent: Parent device to search
716  * @devp: Returns first child device, or NULL if none
717  * @return 0
718  */
719 int device_find_first_child(const struct udevice *parent,
720 			    struct udevice **devp);
721 
722 /**
723  * device_find_next_child() - Find the next child of a device
724  *
725  * @devp: Pointer to previous child device on entry. Returns pointer to next
726  *		child device, or NULL if none
727  * @return 0
728  */
729 int device_find_next_child(struct udevice **devp);
730 
731 /**
732  * device_find_first_inactive_child() - Find the first inactive child
733  *
734  * This is used to locate an existing child of a device which is of a given
735  * uclass.
736  *
737  * The device is NOT probed
738  *
739  * @parent:	Parent device to search
740  * @uclass_id:	Uclass to look for
741  * @devp:	Returns device found, if any
742  * @return 0 if found, else -ENODEV
743  */
744 int device_find_first_inactive_child(const struct udevice *parent,
745 				     enum uclass_id uclass_id,
746 				     struct udevice **devp);
747 
748 /**
749  * device_find_first_child_by_uclass() - Find the first child of a device in uc
750  *
751  * @parent: Parent device to search
752  * @uclass_id:	Uclass to look for
753  * @devp: Returns first child device in that uclass, if any
754  * @return 0 if found, else -ENODEV
755  */
756 int device_find_first_child_by_uclass(const struct udevice *parent,
757 				      enum uclass_id uclass_id,
758 				      struct udevice **devp);
759 
760 /**
761  * device_find_child_by_name() - Find a child by device name
762  *
763  * @parent:	Parent device to search
764  * @name:	Name to look for
765  * @devp:	Returns device found, if any
766  * @return 0 if found, else -ENODEV
767  */
768 int device_find_child_by_name(const struct udevice *parent, const char *name,
769 			      struct udevice **devp);
770 
771 /**
772  * device_first_child_ofdata_err() - Find the first child and reads its plat
773  *
774  * The of_to_plat() method is called on the child before it is returned,
775  * but the child is not probed.
776  *
777  * @parent: Parent to check
778  * @devp: Returns child that was found, if any
779  * @return 0 on success, -ENODEV if no children, other -ve on error
780  */
781 int device_first_child_ofdata_err(struct udevice *parent,
782 				  struct udevice **devp);
783 
784 /*
785  * device_next_child_ofdata_err() - Find the next child and read its plat
786  *
787  * The of_to_plat() method is called on the child before it is returned,
788  * but the child is not probed.
789  *
790  * @devp: On entry, points to the previous child; on exit returns the child that
791  *	was found, if any
792  * @return 0 on success, -ENODEV if no children, other -ve on error
793  */
794 int device_next_child_ofdata_err(struct udevice **devp);
795 
796 /**
797  * device_first_child_err() - Get the first child of a device
798  *
799  * The device returned is probed if necessary, and ready for use
800  *
801  * @parent:	Parent device to search
802  * @devp:	Returns device found, if any
803  * @return 0 if found, -ENODEV if not, -ve error if device failed to probe
804  */
805 int device_first_child_err(struct udevice *parent, struct udevice **devp);
806 
807 /**
808  * device_next_child_err() - Get the next child of a parent device
809  *
810  * The device returned is probed if necessary, and ready for use
811  *
812  * @devp: On entry, pointer to device to lookup. On exit, returns pointer
813  * to the next sibling if no error occurred
814  * @return 0 if found, -ENODEV if not, -ve error if device failed to probe
815  */
816 int device_next_child_err(struct udevice **devp);
817 
818 /**
819  * device_has_children() - check if a device has any children
820  *
821  * @dev:	Device to check
822  * @return true if the device has one or more children
823  */
824 bool device_has_children(const struct udevice *dev);
825 
826 /**
827  * device_has_active_children() - check if a device has any active children
828  *
829  * @dev:	Device to check
830  * @return true if the device has one or more children and at least one of
831  * them is active (probed).
832  */
833 bool device_has_active_children(const struct udevice *dev);
834 
835 /**
836  * device_is_last_sibling() - check if a device is the last sibling
837  *
838  * This function can be useful for display purposes, when special action needs
839  * to be taken when displaying the last sibling. This can happen when a tree
840  * view of devices is being displayed.
841  *
842  * @dev:	Device to check
843  * @return true if there are no more siblings after this one - i.e. is it
844  * last in the list.
845  */
846 bool device_is_last_sibling(const struct udevice *dev);
847 
848 /**
849  * device_set_name() - set the name of a device
850  *
851  * This must be called in the device's bind() method and no later. Normally
852  * this is unnecessary but for probed devices which don't get a useful name
853  * this function can be helpful.
854  *
855  * The name is allocated and will be freed automatically when the device is
856  * unbound.
857  *
858  * @dev:	Device to update
859  * @name:	New name (this string is allocated new memory and attached to
860  *		the device)
861  * @return 0 if OK, -ENOMEM if there is not enough memory to allocate the
862  * string
863  */
864 int device_set_name(struct udevice *dev, const char *name);
865 
866 /**
867  * device_set_name_alloced() - note that a device name is allocated
868  *
869  * This sets the DM_FLAG_NAME_ALLOCED flag for the device, so that when it is
870  * unbound the name will be freed. This avoids memory leaks.
871  *
872  * @dev:	Device to update
873  */
874 void device_set_name_alloced(struct udevice *dev);
875 
876 /**
877  * device_is_compatible() - check if the device is compatible with the compat
878  *
879  * This allows to check whether the device is comaptible with the compat.
880  *
881  * @dev:	udevice pointer for which compatible needs to be verified.
882  * @compat:	Compatible string which needs to verified in the given
883  *		device
884  * @return true if OK, false if the compatible is not found
885  */
886 bool device_is_compatible(const struct udevice *dev, const char *compat);
887 
888 /**
889  * of_machine_is_compatible() - check if the machine is compatible with
890  *				the compat
891  *
892  * This allows to check whether the machine is comaptible with the compat.
893  *
894  * @compat:	Compatible string which needs to verified
895  * @return true if OK, false if the compatible is not found
896  */
897 bool of_machine_is_compatible(const char *compat);
898 
899 /**
900  * dev_disable_by_path() - Disable a device given its device tree path
901  *
902  * @path:	The device tree path identifying the device to be disabled
903  * @return 0 on success, -ve on error
904  */
905 int dev_disable_by_path(const char *path);
906 
907 /**
908  * dev_enable_by_path() - Enable a device given its device tree path
909  *
910  * @path:	The device tree path identifying the device to be enabled
911  * @return 0 on success, -ve on error
912  */
913 int dev_enable_by_path(const char *path);
914 
915 /**
916  * device_is_on_pci_bus - Test if a device is on a PCI bus
917  *
918  * @dev:	device to test
919  * @return:	true if it is on a PCI bus, false otherwise
920  */
device_is_on_pci_bus(const struct udevice * dev)921 static inline bool device_is_on_pci_bus(const struct udevice *dev)
922 {
923 	return dev->parent && device_get_uclass_id(dev->parent) == UCLASS_PCI;
924 }
925 
926 /**
927  * device_foreach_child_safe() - iterate through child devices safely
928  *
929  * This allows the @pos child to be removed in the loop if required.
930  *
931  * @pos: struct udevice * for the current device
932  * @next: struct udevice * for the next device
933  * @parent: parent device to scan
934  */
935 #define device_foreach_child_safe(pos, next, parent)	\
936 	list_for_each_entry_safe(pos, next, &parent->child_head, sibling_node)
937 
938 /**
939  * device_foreach_child() - iterate through child devices
940  *
941  * @pos: struct udevice * for the current device
942  * @parent: parent device to scan
943  */
944 #define device_foreach_child(pos, parent)	\
945 	list_for_each_entry(pos, &parent->child_head, sibling_node)
946 
947 /**
948  * device_foreach_child_of_to_plat() - iterate through children
949  *
950  * This stops when it gets an error, with @pos set to the device that failed to
951  * read ofdata.
952 
953  * This creates a for() loop which works through the available children of
954  * a device in order from start to end. Device ofdata is read by calling
955  * device_of_to_plat() on each one. The devices are not probed.
956  *
957  * @pos: struct udevice * for the current device
958  * @parent: parent device to scan
959  */
960 #define device_foreach_child_of_to_plat(pos, parent)	\
961 	for (int _ret = device_first_child_ofdata_err(parent, &dev); !_ret; \
962 	     _ret = device_next_child_ofdata_err(&dev))
963 
964 /**
965  * device_foreach_child_probe() - iterate through children, probing them
966  *
967  * This creates a for() loop which works through the available children of
968  * a device in order from start to end. Devices are probed if necessary,
969  * and ready for use.
970  *
971  * This stops when it gets an error, with @pos set to the device that failed to
972  * probe
973  *
974  * @pos: struct udevice * for the current device
975  * @parent: parent device to scan
976  */
977 #define device_foreach_child_probe(pos, parent)	\
978 	for (int _ret = device_first_child_err(parent, &dev); !_ret; \
979 	     _ret = device_next_child_err(&dev))
980 
981 /**
982  * dm_scan_fdt_dev() - Bind child device in the device tree
983  *
984  * This handles device which have sub-nodes in the device tree. It scans all
985  * sub-nodes and binds drivers for each node where a driver can be found.
986  *
987  * If this is called prior to relocation, only pre-relocation devices will be
988  * bound (those marked with u-boot,dm-pre-reloc in the device tree, or where
989  * the driver has the DM_FLAG_PRE_RELOC flag set). Otherwise, all devices will
990  * be bound.
991  *
992  * @dev:	Device to scan
993  * @return 0 if OK, -ve on error
994  */
995 int dm_scan_fdt_dev(struct udevice *dev);
996 
997 #endif
998