1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2012 The Chromium OS Authors.
4  *
5  * TSC calibration codes are adapted from Linux kernel
6  * arch/x86/kernel/tsc_msr.c and arch/x86/kernel/tsc.c
7  */
8 
9 #include <common.h>
10 #include <bootstage.h>
11 #include <dm.h>
12 #include <log.h>
13 #include <malloc.h>
14 #include <time.h>
15 #include <timer.h>
16 #include <asm/cpu.h>
17 #include <asm/global_data.h>
18 #include <asm/io.h>
19 #include <asm/i8254.h>
20 #include <asm/ibmpc.h>
21 #include <asm/msr.h>
22 #include <asm/u-boot-x86.h>
23 #include <linux/delay.h>
24 
25 #define MAX_NUM_FREQS	9
26 
27 #define INTEL_FAM6_SKYLAKE_MOBILE	0x4E
28 #define INTEL_FAM6_ATOM_GOLDMONT	0x5C /* Apollo Lake */
29 #define INTEL_FAM6_SKYLAKE_DESKTOP	0x5E
30 #define INTEL_FAM6_ATOM_GOLDMONT_X	0x5F /* Denverton */
31 #define INTEL_FAM6_KABYLAKE_MOBILE	0x8E
32 #define INTEL_FAM6_KABYLAKE_DESKTOP	0x9E
33 
34 DECLARE_GLOBAL_DATA_PTR;
35 
36 /*
37  * native_calibrate_tsc
38  * Determine TSC frequency via CPUID, else return 0.
39  */
native_calibrate_tsc(void)40 static unsigned long native_calibrate_tsc(void)
41 {
42 	struct cpuid_result tsc_info;
43 	unsigned int crystal_freq;
44 
45 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
46 		return 0;
47 
48 	if (cpuid_eax(0) < 0x15)
49 		return 0;
50 
51 	tsc_info = cpuid(0x15);
52 
53 	if (tsc_info.ebx == 0 || tsc_info.eax == 0)
54 		return 0;
55 
56 	crystal_freq = tsc_info.ecx / 1000;
57 	if (!CONFIG_IS_ENABLED(X86_TSC_TIMER_NATIVE) && !crystal_freq) {
58 		switch (gd->arch.x86_model) {
59 		case INTEL_FAM6_SKYLAKE_MOBILE:
60 		case INTEL_FAM6_SKYLAKE_DESKTOP:
61 		case INTEL_FAM6_KABYLAKE_MOBILE:
62 		case INTEL_FAM6_KABYLAKE_DESKTOP:
63 			crystal_freq = 24000;	/* 24.0 MHz */
64 			break;
65 		case INTEL_FAM6_ATOM_GOLDMONT_X:
66 			crystal_freq = 25000;	/* 25.0 MHz */
67 			break;
68 		case INTEL_FAM6_ATOM_GOLDMONT:
69 			crystal_freq = 19200;	/* 19.2 MHz */
70 			break;
71 		default:
72 			return 0;
73 		}
74 	}
75 
76 	return (crystal_freq * tsc_info.ebx / tsc_info.eax) / 1000;
77 }
78 
cpu_mhz_from_cpuid(void)79 static unsigned long cpu_mhz_from_cpuid(void)
80 {
81 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
82 		return 0;
83 
84 	if (cpuid_eax(0) < 0x16)
85 		return 0;
86 
87 	return cpuid_eax(0x16);
88 }
89 
90 /*
91  * According to Intel 64 and IA-32 System Programming Guide,
92  * if MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
93  * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
94  * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
95  * so we need manually differentiate SoC families. This is what the
96  * field msr_plat does.
97  */
98 struct freq_desc {
99 	u8 x86_family;	/* CPU family */
100 	u8 x86_model;	/* model */
101 	/* 2: use 100MHz, 1: use MSR_PLATFORM_INFO, 0: MSR_IA32_PERF_STATUS */
102 	u8 msr_plat;
103 	u32 freqs[MAX_NUM_FREQS];
104 };
105 
106 static struct freq_desc freq_desc_tables[] = {
107 	/* PNW */
108 	{ 6, 0x27, 0, { 0, 0, 0, 0, 0, 99840, 0, 83200, 0 } },
109 	/* CLV+ */
110 	{ 6, 0x35, 0, { 0, 133200, 0, 0, 0, 99840, 0, 83200, 0 } },
111 	/* TNG - Intel Atom processor Z3400 series */
112 	{ 6, 0x4a, 1, { 0, 100000, 133300, 0, 0, 0, 0, 0, 0 } },
113 	/* VLV2 - Intel Atom processor E3000, Z3600, Z3700 series */
114 	{ 6, 0x37, 1, { 83300, 100000, 133300, 116700, 80000, 0, 0, 0, 0 } },
115 	/* ANN - Intel Atom processor Z3500 series */
116 	{ 6, 0x5a, 1, { 83300, 100000, 133300, 100000, 0, 0, 0, 0, 0 } },
117 	/* AMT - Intel Atom processor X7-Z8000 and X5-Z8000 series */
118 	{ 6, 0x4c, 1, { 83300, 100000, 133300, 116700,
119 			80000, 93300, 90000, 88900, 87500 } },
120 	/* Ivybridge */
121 	{ 6, 0x3a, 2, { 0, 0, 0, 0, 0, 0, 0, 0, 0 } },
122 };
123 
match_cpu(u8 family,u8 model)124 static int match_cpu(u8 family, u8 model)
125 {
126 	int i;
127 
128 	for (i = 0; i < ARRAY_SIZE(freq_desc_tables); i++) {
129 		if ((family == freq_desc_tables[i].x86_family) &&
130 		    (model == freq_desc_tables[i].x86_model))
131 			return i;
132 	}
133 
134 	return -1;
135 }
136 
137 /* Map CPU reference clock freq ID(0-7) to CPU reference clock freq(KHz) */
138 #define id_to_freq(cpu_index, freq_id) \
139 	(freq_desc_tables[cpu_index].freqs[freq_id])
140 
141 /*
142  * TSC on Intel Atom SoCs capable of determining TSC frequency by MSR is
143  * reliable and the frequency is known (provided by HW).
144  *
145  * On these platforms PIT/HPET is generally not available so calibration won't
146  * work at all and there is no other clocksource to act as a watchdog for the
147  * TSC, so we have no other choice than to trust it.
148  *
149  * Returns the TSC frequency in MHz or 0 if HW does not provide it.
150  */
cpu_mhz_from_msr(void)151 static unsigned long __maybe_unused cpu_mhz_from_msr(void)
152 {
153 	u32 lo, hi, ratio, freq_id, freq;
154 	unsigned long res;
155 	int cpu_index;
156 
157 	if (gd->arch.x86_vendor != X86_VENDOR_INTEL)
158 		return 0;
159 
160 	cpu_index = match_cpu(gd->arch.x86, gd->arch.x86_model);
161 	if (cpu_index < 0)
162 		return 0;
163 
164 	if (freq_desc_tables[cpu_index].msr_plat) {
165 		rdmsr(MSR_PLATFORM_INFO, lo, hi);
166 		ratio = (lo >> 8) & 0xff;
167 	} else {
168 		rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
169 		ratio = (hi >> 8) & 0x1f;
170 	}
171 	debug("Maximum core-clock to bus-clock ratio: 0x%x\n", ratio);
172 
173 	if (freq_desc_tables[cpu_index].msr_plat == 2) {
174 		/* TODO: Figure out how best to deal with this */
175 		freq = 100000;
176 		debug("Using frequency: %u KHz\n", freq);
177 	} else {
178 		/* Get FSB FREQ ID */
179 		rdmsr(MSR_FSB_FREQ, lo, hi);
180 		freq_id = lo & 0x7;
181 		freq = id_to_freq(cpu_index, freq_id);
182 		debug("Resolved frequency ID: %u, frequency: %u KHz\n",
183 		      freq_id, freq);
184 	}
185 
186 	/* TSC frequency = maximum resolved freq * maximum resolved bus ratio */
187 	res = freq * ratio / 1000;
188 	debug("TSC runs at %lu MHz\n", res);
189 
190 	return res;
191 }
192 
193 /*
194  * This reads the current MSB of the PIT counter, and
195  * checks if we are running on sufficiently fast and
196  * non-virtualized hardware.
197  *
198  * Our expectations are:
199  *
200  *  - the PIT is running at roughly 1.19MHz
201  *
202  *  - each IO is going to take about 1us on real hardware,
203  *    but we allow it to be much faster (by a factor of 10) or
204  *    _slightly_ slower (ie we allow up to a 2us read+counter
205  *    update - anything else implies a unacceptably slow CPU
206  *    or PIT for the fast calibration to work.
207  *
208  *  - with 256 PIT ticks to read the value, we have 214us to
209  *    see the same MSB (and overhead like doing a single TSC
210  *    read per MSB value etc).
211  *
212  *  - We're doing 2 reads per loop (LSB, MSB), and we expect
213  *    them each to take about a microsecond on real hardware.
214  *    So we expect a count value of around 100. But we'll be
215  *    generous, and accept anything over 50.
216  *
217  *  - if the PIT is stuck, and we see *many* more reads, we
218  *    return early (and the next caller of pit_expect_msb()
219  *    then consider it a failure when they don't see the
220  *    next expected value).
221  *
222  * These expectations mean that we know that we have seen the
223  * transition from one expected value to another with a fairly
224  * high accuracy, and we didn't miss any events. We can thus
225  * use the TSC value at the transitions to calculate a pretty
226  * good value for the TSC frequencty.
227  */
pit_verify_msb(unsigned char val)228 static inline int pit_verify_msb(unsigned char val)
229 {
230 	/* Ignore LSB */
231 	inb(0x42);
232 	return inb(0x42) == val;
233 }
234 
pit_expect_msb(unsigned char val,u64 * tscp,unsigned long * deltap)235 static inline int pit_expect_msb(unsigned char val, u64 *tscp,
236 				 unsigned long *deltap)
237 {
238 	int count;
239 	u64 tsc = 0, prev_tsc = 0;
240 
241 	for (count = 0; count < 50000; count++) {
242 		if (!pit_verify_msb(val))
243 			break;
244 		prev_tsc = tsc;
245 		tsc = rdtsc();
246 	}
247 	*deltap = rdtsc() - prev_tsc;
248 	*tscp = tsc;
249 
250 	/*
251 	 * We require _some_ success, but the quality control
252 	 * will be based on the error terms on the TSC values.
253 	 */
254 	return count > 5;
255 }
256 
257 /*
258  * How many MSB values do we want to see? We aim for
259  * a maximum error rate of 500ppm (in practice the
260  * real error is much smaller), but refuse to spend
261  * more than 50ms on it.
262  */
263 #define MAX_QUICK_PIT_MS 50
264 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
265 
quick_pit_calibrate(void)266 static unsigned long __maybe_unused quick_pit_calibrate(void)
267 {
268 	int i;
269 	u64 tsc, delta;
270 	unsigned long d1, d2;
271 
272 	/* Set the Gate high, disable speaker */
273 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
274 
275 	/*
276 	 * Counter 2, mode 0 (one-shot), binary count
277 	 *
278 	 * NOTE! Mode 2 decrements by two (and then the
279 	 * output is flipped each time, giving the same
280 	 * final output frequency as a decrement-by-one),
281 	 * so mode 0 is much better when looking at the
282 	 * individual counts.
283 	 */
284 	outb(0xb0, 0x43);
285 
286 	/* Start at 0xffff */
287 	outb(0xff, 0x42);
288 	outb(0xff, 0x42);
289 
290 	/*
291 	 * The PIT starts counting at the next edge, so we
292 	 * need to delay for a microsecond. The easiest way
293 	 * to do that is to just read back the 16-bit counter
294 	 * once from the PIT.
295 	 */
296 	pit_verify_msb(0);
297 
298 	if (pit_expect_msb(0xff, &tsc, &d1)) {
299 		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
300 			if (!pit_expect_msb(0xff-i, &delta, &d2))
301 				break;
302 
303 			/*
304 			 * Iterate until the error is less than 500 ppm
305 			 */
306 			delta -= tsc;
307 			if (d1+d2 >= delta >> 11)
308 				continue;
309 
310 			/*
311 			 * Check the PIT one more time to verify that
312 			 * all TSC reads were stable wrt the PIT.
313 			 *
314 			 * This also guarantees serialization of the
315 			 * last cycle read ('d2') in pit_expect_msb.
316 			 */
317 			if (!pit_verify_msb(0xfe - i))
318 				break;
319 			goto success;
320 		}
321 	}
322 	debug("Fast TSC calibration failed\n");
323 	return 0;
324 
325 success:
326 	/*
327 	 * Ok, if we get here, then we've seen the
328 	 * MSB of the PIT decrement 'i' times, and the
329 	 * error has shrunk to less than 500 ppm.
330 	 *
331 	 * As a result, we can depend on there not being
332 	 * any odd delays anywhere, and the TSC reads are
333 	 * reliable (within the error).
334 	 *
335 	 * kHz = ticks / time-in-seconds / 1000;
336 	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
337 	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
338 	 */
339 	delta *= PIT_TICK_RATE;
340 	delta /= (i*256*1000);
341 	debug("Fast TSC calibration using PIT\n");
342 	return delta / 1000;
343 }
344 
345 /* Get the speed of the TSC timer in MHz */
get_tbclk_mhz(void)346 unsigned notrace long get_tbclk_mhz(void)
347 {
348 	return get_tbclk() / 1000000;
349 }
350 
get_ms_timer(void)351 static ulong get_ms_timer(void)
352 {
353 	return (get_ticks() * 1000) / get_tbclk();
354 }
355 
get_timer(ulong base)356 ulong get_timer(ulong base)
357 {
358 	return get_ms_timer() - base;
359 }
360 
timer_get_us(void)361 ulong notrace timer_get_us(void)
362 {
363 	return get_ticks() / get_tbclk_mhz();
364 }
365 
timer_get_boot_us(void)366 ulong timer_get_boot_us(void)
367 {
368 	return timer_get_us();
369 }
370 
__udelay(unsigned long usec)371 void __udelay(unsigned long usec)
372 {
373 	u64 now = get_ticks();
374 	u64 stop;
375 
376 	stop = now + (u64)usec * get_tbclk_mhz();
377 
378 	while ((int64_t)(stop - get_ticks()) > 0)
379 #if defined(CONFIG_QEMU) && defined(CONFIG_SMP)
380 		/*
381 		 * Add a 'pause' instruction on qemu target,
382 		 * to give other VCPUs a chance to run.
383 		 */
384 		asm volatile("pause");
385 #else
386 		;
387 #endif
388 }
389 
tsc_timer_get_count(struct udevice * dev)390 static u64 tsc_timer_get_count(struct udevice *dev)
391 {
392 	u64 now_tick = rdtsc();
393 
394 	return now_tick - gd->arch.tsc_base;
395 }
396 
tsc_timer_ensure_setup(bool early)397 static void tsc_timer_ensure_setup(bool early)
398 {
399 	if (gd->arch.tsc_inited)
400 		return;
401 	if (IS_ENABLED(CONFIG_X86_TSC_READ_BASE))
402 		gd->arch.tsc_base = rdtsc();
403 
404 	if (!gd->arch.clock_rate) {
405 		unsigned long fast_calibrate;
406 
407 		fast_calibrate = native_calibrate_tsc();
408 		if (fast_calibrate)
409 			goto done;
410 
411 		/* Reduce code size by dropping other methods */
412 		if (CONFIG_IS_ENABLED(X86_TSC_TIMER_NATIVE))
413 			panic("no timer");
414 
415 		fast_calibrate = cpu_mhz_from_cpuid();
416 		if (fast_calibrate)
417 			goto done;
418 
419 		fast_calibrate = cpu_mhz_from_msr();
420 		if (fast_calibrate)
421 			goto done;
422 
423 		fast_calibrate = quick_pit_calibrate();
424 		if (fast_calibrate)
425 			goto done;
426 
427 		if (early)
428 			fast_calibrate = CONFIG_X86_TSC_TIMER_EARLY_FREQ;
429 		else
430 			return;
431 
432 done:
433 		gd->arch.clock_rate = fast_calibrate * 1000000;
434 	}
435 	gd->arch.tsc_inited = true;
436 }
437 
tsc_timer_probe(struct udevice * dev)438 static int tsc_timer_probe(struct udevice *dev)
439 {
440 	struct timer_dev_priv *uc_priv = dev_get_uclass_priv(dev);
441 
442 	/* Try hardware calibration first */
443 	tsc_timer_ensure_setup(false);
444 	if (!gd->arch.clock_rate) {
445 		/*
446 		 * Use the clock frequency specified in the
447 		 * device tree as last resort
448 		 */
449 		if (!uc_priv->clock_rate)
450 			panic("TSC frequency is ZERO");
451 	} else {
452 		uc_priv->clock_rate = gd->arch.clock_rate;
453 	}
454 
455 	return 0;
456 }
457 
timer_early_get_rate(void)458 unsigned long notrace timer_early_get_rate(void)
459 {
460 	/*
461 	 * When TSC timer is used as the early timer, be warned that the timer
462 	 * clock rate can only be calibrated via some hardware ways. Specifying
463 	 * it in the device tree won't work for the early timer.
464 	 */
465 	tsc_timer_ensure_setup(true);
466 
467 	return gd->arch.clock_rate;
468 }
469 
timer_early_get_count(void)470 u64 notrace timer_early_get_count(void)
471 {
472 	tsc_timer_ensure_setup(true);
473 
474 	return rdtsc() - gd->arch.tsc_base;
475 }
476 
477 static const struct timer_ops tsc_timer_ops = {
478 	.get_count = tsc_timer_get_count,
479 };
480 
481 #if !CONFIG_IS_ENABLED(OF_PLATDATA)
482 static const struct udevice_id tsc_timer_ids[] = {
483 	{ .compatible = "x86,tsc-timer", },
484 	{ }
485 };
486 #endif
487 
488 U_BOOT_DRIVER(x86_tsc_timer) = {
489 	.name	= "x86_tsc_timer",
490 	.id	= UCLASS_TIMER,
491 	.of_match = of_match_ptr(tsc_timer_ids),
492 	.probe = tsc_timer_probe,
493 	.ops	= &tsc_timer_ops,
494 };
495